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Abstract

Background: While most anatomic TSA stems allow some intra-operative adjustments, the default configuration
assumes that head offset is directly proportional to stem diameter. Some authors reported that humeral head
diameter is proportional to intra-medullary canal width and humeral head offset, but none investigated the direct
relationship between head offset and endosteal measurements. The purpose of the study was to determine
whether global humeral head offset is proportional to intramedullary canal width at the distal metaphysis and
proximal diaphysis.

Methods: We analyzed 100 Computed Tomography shoulder scans of patients aged 59.1 ± 20.5 with no signs of
gleno-humeral arthritis nor humeral dysplasia. The width of the intramedullary diaphyseal canal was determined at
four transverse sections 65, 70, 100 and 105 mm below the head center. The inter-observer agreement was
excellent for intramedullary canal width (ICC = 0.96), head diameter (ICC = 0.97) and global head offset (ICC = 0.85).
Correlations were analysed using Pearson’s coefficients and multivariable regressions were performed to determine
associations between head offset and five independent variables (gender, age, intramedullary canal width, head
diameter).

Results: Global head offset was negatively correlated with head diameter (r = − 0.31, p = 0.002), but not correlated
with intramedullary canal width (r = − 0.11, p = 0.282). Multivariable regression confirmed that global head offset
was independently associated with head diameter (beta = − 0.15, p = 0.005), but not with intramedullary canal
width (beta = 0.06, p = 0.431).

Conclusions: The present study revealed that humeral offset is not correlated with intramedullary canal width.
Implant manufacturers and shoulder surgeons should be aware of the subtle morphologic features, to enhance
humeral stem design and restore native anatomy.

Keywords: Intramedullary canal width, Humeral offset, Correlation, Association, Proximal humerus, Implant design,
Endosteal, CT
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Background
Success of total shoulder arthroplasty (TSA) requires ac-
curate restoration of anatomy (Godeneche et al., 2002;
Irlenbusch et al., 2011; Pearl, 2005; Pearl et al., 2009;
Wirth et al., 2007), as even small discrepancies between
native and prosthetic geometry could trigger pain and
compromise function (Kadum et al., 2016; Pearl et al.,
2002; Pearl & Volk, 1996). For these reasons, most
commercially-available anatomic TSA stems allow some
intra-operative adjustments of humeral head offset – the
distance between the head center and the diaphyseal axis
– using ‘telephone dial’ or linear peg-hole configurations
(Boileau & Walch, 1997; Irlenbusch et al., 2011; Pearl et
al., 2009).
Numerous studies investigated the anatomy of the

proximal humerus, first using 3D reconstructions of
fresh or dry cadaver bones (Boileau & Walch, 1997; Her-
tel et al., 2002; McPherson et al., 1997; Pearl & Volk,
1996; Robertson et al., 2000; Roche et al., 2006), and
more recently using X-rays (Boileau & Walch, 1997;
Hertel et al., 2002; McPherson et al., 1997; Pearl & Volk,
1996; Robertson et al., 2000; Roche et al., 2006) or com-
puted tomography (CT) scans (Aroonjarattham et al.,
2009; Bockmann et al., 2016; Boileau et al., 2008; Dela-
derriere et al., 2012; Jia et al., 2016; Johnson et al., 2013;
Kadum et al., 2016; Matsumura et al., 2014; Matsumura
et al., 2016; Saka et al., 2015; Vlachopoulos et al., 2016;
Zhang et al., 2016). Some authors reported that humeral
head diameter is proportional to both intra- and
extra-medullary humeral diameters (McPherson et al.,
1997) as well as to humeral head offset (Pearl & Volk,
1996), but none investigated the direct relationship be-
tween head offset and endosteal measurements.
While some anatomic humeral components are de-

signed with head offset proportional to stem size, others
are designed with constant head offset regardless of stem
size (Table 1). To the authors’ knowledge, there are no
anatomic studies that investigated the correlation be-
tween native head offset and intramedullary canal width.
The purpose of this study was therefore to determine
the relationship between head offset and intramedullary
canal width in the proximal humerus. The hypothesis
was that native head offset is not correlated with intra-
medullary canal width.

Methods
From their databases of pre-existing shoulder CT im-
ages, the authors selected 100 scans that had sufficient
resolution (slice thickness 0.5 mm, with a 64 slices CT
scanner) and length (> 11 cm of proximal humeri), ex-
cluding shoulders with signs of: (i) osteoarthritis or
rheumatoid arthritis, (ii) Hill Sachs lesions, (iii) humeral
head necrosis or deformities, and (iv) mal-unions sec-
ondary to displaced humeral neck fractures. The cohort

comprised 62 men and 38 women aged 59.1 ± 20.5 years
(range, 18–96). The patients presented with fractures of
the scapula or clavicle (45), rotator cuff tears (39), shoul-
der dislocation or instability with no signs of osseous
damage at the proximal humerus or glenoid (9), tumor
at the scapula or distal humerus (5), calcific tendinitis
(1) and thoracic syndrome (1). All patients provided

Table 1 Design characteritics of humeral stems by different
manufacturers

Manufacturer Stem brand Stem
size

Distal diameter
(mm)

Offset
(mm)

Wright
Medical

AscendFlex 1 – 6

3 – 6.4

5 – 7

7 – 8.2

9 – 10

Exactech Equinoxe 7–100 7 7.5

9–105 9 7.5

11–110 11 8.5

13–115 13 9.5

15–120 15 9.5

17–125 17 9.5

Zimmer Trabecular
metal

6–130 6 7.9

8–130 8 7.9

8–170 8 7.9

9–130 9 7.9

10–130 10 7.9

10–170 10 7.9

11–130 11 7.9

12–130 12 7.9

12–170 12 7.9

13–130 13 7.9

14–130 14 7.9

14–170 14 7.9

15–130 15 7.9

16–130 16 7.9

17–130 17 7.9

18–130 18 7.9

DePuy
Synthes

Global FX 6–120 6 7.4

8–130 8 7.4

10–140 10 7.4

12–150 12 7.4

6–160 6 7.4

8–200 8 7.4

10–210 10 7.4

12–220 12 7.4

–Not applicable, short stem
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informed consent to use of their images and data for re-
search and publishing purposes. As the study was per-
formed using pre-existing CT scans, institutional review
board (IRB) approval was not required.
The Digital Imaging and Communication in Medicine

(DICOM) files were processed using Osirix (Pixmeo
SARL, Bernex, Switzerland) in standard resolution. Four

series of 8 points were digitalised on endosteal trans-
verse sections 65, 70, 100 and 105 mm below the head
center (Fig. 1), to determine the width of the intrame-
dullary diaphyseal canal, using the ‘cylinder of best fit’
method, and to establish the cranio-caudal (CC) axis.
Three series of 8 points were also digitized on the sur-
face of the humeral head (1 series per plane) to deter-
mine the humeral head diameter, using the ‘sphere of
best fit’ method and to establish the coordinates of the
head center. Because the CT scans did not include the
elbow joint, it was not possible to establish the mediolat-
eral (ML) axis using the coordinates of the humeral epi-
condyles. Instead, the coordinates of the centre of the
proximal bicipital groove, at the level revealing its full
depth, were used to approximate the humeral transepi-
condylar (TEA), by applying an external rotation of 60°
to the line connecting the head center to the proximal
bicipital groove (Fig. 2). The approximation was deduced
from two recent studies: (i) Johnson et al. (Johnson et
al., 2013), who reported the “proximal groove” to be at
60° of internal rotation relative to the humeral TEA; and
(ii) Oh et al. (Oh et al., 2017), who found the bicipital
groove to be at 60.6° of internal rotation relative to the
TEA (“method 2” 30° between bicipital groove and refer-
ence line + 30.6° between reference line and TEA). The
anterior and posterior boundaries of the anatomic neck
were digitized using the limits of the subchondral bone
on axial slices, 5–7 mm below the slice where the hu-
meral head has it maximum diameter, and their perpen-
dicular bisector defined the humeral neck axis, which
was used to calculate head retroversion with respect to
the estimated ML axis. The global head offset was deter-
mined by measuring the medial and posterior distances
between the humeral head centre and the CC axis in the
transverse plane (Fig. 3).

Statistical analysis
The sample size necessary to test the hypothesis, that
there is no correlation (− 0.24 < r < 0.24) between native
head offset and intramedullary canal width, with alpha =
0.05 and beta = 0.80, was calculated a priori to be a mini-
mum of 71 patients.
The authors selected 13 shoulders at random, for which

all parameters were measured by a second observer, to
calculate their inter-observer agreement. The intra-class
correlation coefficients (ICC) were excellent for intrame-
dullary canal width (ICC = 0.96; CI, 0.60–0.99), head
diameter (ICC = 0.97; CI, 0.91–0.99) and global head offset
(ICC = 0.85; CI, 0.58–0.95).
Descriptive statistics were used to summarize the data.

Shapiro–Wilk tests were used to assess the normality of
distributions. For non-Gaussian quantitative data, differ-
ences between groups were evaluated using Wilcoxon
rank-sum tests (Mann–Whitney U test). For continuous

Fig. 1 Determination of the humeral head center coordinates by
digitizing 3 series of 8 points on the head surface (‘sphere of best fit’
method), and determination of the intra-medullary canal axis and
width by digitizing 4 series of 8 points on transverse sections 65, 70,
100 and 105 mm below the head center (‘cylinder of best fit’ method)

Fig. 2 Estimation of the Medio-Lateral (ML) axis based on the centers
of the humeral head (a) and of the bicipital groove at its proximal
portion (b)
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variables, correlations were analysed using Pearsons co-
efficients. Uni-variable and multivariable linear regres-
sions were performed to determine associations between
head offset and five independent variables (gender, age,
intramedullary canal width, head diameter, and head
retroversion). Both uni- and multi-varaible analyses were
deemed necessary to identify potential confounding vari-
ables. Statistical analyses were performed using R version
3.3.3 (R Foundation for Statistical Computing, Vienna,
Austria). P-values < 0.05 were considered statistically
significant.

Results
The average intramedullary canal width was 14.5 ± 2.5 mm
(range, 9.4–20.5), and the average head diameter was 44.9
± 4.4 mm (range, 36.2–56.0), with a retroversion of 24.6° ±
19.2° (range, − 30.7°–59.8°) (Table 2). The mean global head
offset was 5.9 ± 1.4 mm (range, 3.4–10.8), with a medial
component of 5.1 ± 1.5 mm (range, 2.2–10.7) and a poster-
ior component of 2.2 ± 1.6 mm (range, − 0.9 – 6.4). There

were no significant differences in global offset between men
and women (5.80 ± 1.45 vs 6.11 ± 1.31; p = 0.094).
Intramedullary canal width was positively correlated

with head diameter (r = 0.63, CI = 0.50–0.74; p <
0.001). Global head offset was negatively correlated
with head diameter (r = − 0.31, CI = − 0.48 – -0.13; p
= 0.002), but not with intramedullary canal width (r =
− 0.11; CI = − 0.30–0.09; p = 0.282), thus confirming
the study hypothesis (Fig. 4). Medial head offset was
negatively correlated with head diameter (r = − 0.28,
CI = − 0.45– -0.09; p = 0.004), but not with intrame-
dullary canal width (r = − 0.13; CI = − 0.32–0.07; p =
0.187). Posterior head offset was neither correlated
with head diameter (r = − 0.11, CI = − 0.30–0.09; p =
0.298), nor with intramedullary canal width (r = −
0.05; CI = − 0.24–0.15; p = 0.645).
Uni-variable regression revealed that global head

offset was significantly associated with head diameter
(beta, − 0.10; CI, − 0.16 – -0.04; p = 0.001) and patient
age (beta, 0.01; CI, 0.00–0.03; p = 0.033) but not with
intramedullary canal width (beta, − 0.06; CI, − 0.17–
0.05; p = 0.282) (Table 3). Multivariable regression
confirmed that global head offset was independently
associated with head diameter (beta, − 0.15; CI, − 0.26
– -0.04; p = 0.005), but not with intramedullary canal
width (beta, 0.06; CI, − 0.09–0.20; p = 0.431), reaffirm-
ing the study hypothesis.

Discussion
The principal finding of our study was that there is no
correlation between head offset and intramedullary canal
width, thereby confirming our hypothesis. Accurate res-
toration of anatomy is a prerequisite for the success of

Fig. 3 Determination of the medial and posterior components of humeral head offset between the center of the humeral head (O) and the
intramedullary canal axis (CC axis). MO, Medial Offset; PO, Posterior Offset; GO, Global Offset

Table 2 Patient characteristics and principal humeral
morphometric measurements

Mean ± SD Median Range

Age 59.1 ± 20.5 65.0 (18.0 - 96.0)

Intramedullary canal width 14.5 ± 2.5 14.8 (9.4 - 20.5)

Head diameter 44.9 ± 4.4 45.9 (36.2 - 56.0)

Head retroversion 24.6 ± 19.2 21.8 (−30.7 - 59.8)

Offset 5.9 ± 1.4 6.1 (3.4 - 10.8)

Medial offset 5.1 ± 1.5 5.3 (2.2 - 10.7)

Posterior offset 2.2 ± 1.6 2.0 (−0.9 - 6.4)
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TSA (Godeneche et al., 2002; Irlenbusch et al., 2011;
Pearl, 2005; Pearl et al., 2009; Wirth et al., 2007). Many
anatomic parameters, such as head offset and height,
center of rotation, and neck-shaft angle, have been stud-
ied to improve the design of anatomic humeral stems
(Aroonjarattham et al., 2009; Irlenbusch et al., 2011;
Jeong et al., 2009; Kadum et al., 2016; McPherson et al.,
1997; Pearl, 2005; Robertson et al., 2000; Roche et al.,
2006). While landmark studies reported that humeral
head diameter is proportional to intra-medullary canal
width (McPherson et al., 1997) and head offset (Pearl &
Volk, 1996), this study is the first to investigate the dir-
ect relationship between head offset and intramedullary
canal width.
It is important to note that, as in numerous published

studies, our anatomic parameters were measured on
shoulders with normal or healthy bone morphology,
whereas the findings are relevant to design prosthetic
humeral stems for arthritic shoulders that feature sub-
stantial proximal deformations. We chose to study
shoulders with normal or healthy bone morphology for
two reasons: (i) in arthritic shoulders, subchondral dam-
age to the humeral head often renders calculations of its
diameter and centre difficult and inaccurate; and (ii) the
goals of TSA are to replace damaged articular surfaces
and restore adequate joint architecture, which is often
deformed due to congenital or progressive pathologies
in arthritic shoulders.

While shoulder arthroplasty was initially intended for
elderly patients with low functional expectations, TSA is
now performed in younger patients with greater func-
tional demands, which renders reconstruction of native
anatomy all the more essential. Modern TSA implants
allow for some adjustments of humeral head offset
(Irlenbusch et al., 2011; Wirth et al., 2007), but some de-
fault designs assume it to be directly proportional to
stem diameter, such that larger stems are designed with
greater head offsets (Table 1). Our multivariable analysis
suggests that this assumption is incorrect, as global head
offset was not associated with intramedullary canal
width, even when considering the effects of age, gender,
and head retroversion.
Our morphologic measurements are within the ranges

reported in other published studies (Table 4): 43–51 mm
for head diameter (Aroonjarattham et al., 2009; Hertel
et al., 2002; Matsumura et al., 2016; Merolla et al., 2008),
16°–31° for head retroversion (Aroonjarattham et al.,
2009; Boileau et al., 2008; Harrold & Wigderowitz, 2013;
Hertel et al., 2002; Johnson et al., 2013; Matsumura et al.,
2016; Oh et al., 2017; Roberts et al., 1991; Robertson et al.,
2000), 7–15 mm for intramedullary canal width (Akpinar
et al., 2003; McPherson et al., 1997; Murdoch et al., 2002),
and 1–4 mm for posterior head offset (Aroonjarattham
et al., 2009; Boileau et al., 2008; Hertel et al., 2002;
Merolla et al., 2008; Robertson et al., 2000). The medial
component of the global head offset was also within the

Fig. 4 Global humeral head offset for quintiles of intrameduallary canal width (a) and humeral head diameter (b)

Table 3 Linear regressions to identify factors associated with global head offset

Variable Univariable Multivariable (n = 94 shoulders)

Regression coefficient 95% C.I. p-value Regression coefficient 95% C.I. p-value

Male gender −0.31 (−0.88 – 0.26) 0.289 0.60 (−0.19 – 1.36) 0.130

Age 0.01 (0.00 – 0.03) 0.033 0.01 (−0.01 – 0.02) 0.387

Intramedullary canal width −0.06 (−0.17 – 0.05) 0.282 0.06 (−0.09 – 0.20) 0.431

Head diameter −0.10 (−0.16 – -0.04) 0.001 −0.15 (−0.26 – -0.04) 0.005

Head retroversion 0.00 (−0.01 – -0.02) 0.740 0.00 (−0.01 – 0.02) 0.440
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range of 4–6 mm from CT studies (Aroonjarattham et al.,
2009; Deladerriere et al., 2012), but below the range of 6–
10 mm from X-ray studies (Boileau & Walch, 1997;
Hertel et al., 2002; Merolla et al., 2008; Pearl & Volk,
1996; Robertson et al., 2000). This discrepancy is likely
due to magnification and rotation in X-ray measurements,
which tend to exaggerate the true medial offset. While
Pearl et al. (Pearl & Volk, 1996) found the correlation
between medial head offset and head diameter to be
moderate and positive (r = 0.6), we found it to be
weak and negative (r = − 0.28). These contradictory re-
sults might be explained by differences in measurement
techniques, as Pearl et al. used cadaver bone x-rays, and
referred to the reamed canal for the CC axis.
The limitations of this study include: (i) the inability to

determine the transepicondylar axis to establish the
frontal humeral plane and calculate true head retrover-
sion, (ii) the digitization of endosteal transverse sections
at fixed rather than proportional distances below the
head center, which was not possible because the total
heights of the humerus and of the patient were unknown,
(iii) the population studied was Caucasian, and may not
be representative of other ethnicities (Aroonjarattham
et al., 2009; Matsumura et al., 2016; Zhang et al., 2016),
and (iv) the cohort did not comprise any arthritic joints
which may have different morphologic characteristics.
The main strengths of this study are the use of CT-scans
which were demonstrated to be more accurate than
X-rays in the assessment of morphology of the proximal
humerus (Jia et al., 2016) and a precise measurement
method validated by strong inter-observer repeatability.

Conclusions
The present study revealed that humeral offset is not
correlated with intramedullary canal width. These find-
ings are relevant to implant manufacturers and shoulder
surgeons, who should be aware of the subtle morpho-
logic features, to enhance humeral stem design and restore
native anatomy.
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