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ABSTRACT: Given the large number of crystal structures
and NMR ensembles that have been solved to date, classical
molecular dynamics (MD) simulations have become powerful
tools in the atomistic study of the kinetics and thermody-
namics of biomolecular systems on ever increasing time scales.
By virtue of the high-dimensional conformational state space
that is explored, the interpretation of large-scale simulations
faces difficulties not unlike those in the big data community.
We address this challenge by introducing a method called
clustering based feature selection (CB-FS) that employs a
posterior analysis approach. It combines supervised machine learning (SML) and feature selection with Markov state models to
automatically identify the relevant degrees of freedom that separate conformational states. We highlight the utility of the method
in the evaluation of large-scale simulations and show that it can be used for the rapid and automated identification of relevant
order parameters involved in the functional transitions of two exemplary cell-signaling proteins central to human disease states.

■ INTRODUCTION

Modern molecular dynamics (MD) simulations have matured
to a point at which simulations of many complex biological
systems can be carried out routinely. Recent performance
boosts from software and hardware developments have further
added to the adaptability of biophysical simulations and have
pushed the computational study of protein dynamics into the
micro- and millisecond regime.1,2 As the resulting trajectories
approach the terabyte scale, conventional analysis techniques
tend to encounter a sustainability limit and are faced with
challenges typical for big data: what is the information content
and how can we organize it.
Markov state models (MSMs)3−6 are kinetic representations

of complex dynamical systems and have been used to study MD
trajectories. They partition the accessible protein conforma-
tional landscape by first finely discretizing the data into
microstates, which can then be lumped together to form
macrostates.3,7 MSMs can be used to gain holistic insight into
conformational preferences of protein dynamics via the
identification of metastable intermediates. Transition path
theory8−10(TPT) can subsequently be applied to identify
pathways that connect various regions of the phase space.11

MSMs have been shown to be useful for exploring and
understanding of underlying dynamics in protein folding and
conformational change.3,4,12

While, MSMs can used to locate metastable conformational
states and TPT can be employed to find and assess the
probabilistic paths that connect them, these methods do not
provide an atomistic level of detail into the specifics that set the

states apart. A basic challenge in this process is choosing a low-
dimensional projection that best captures experimentally
determined properties of the biomolecular system under
investigation. How do we identify the important degrees of
freedom in the clustered simulation data? Which measurements
are relevant and can be used to elucidate the functional
dynamics? Typically the decision is based on chemical intuition
or on prior knowledge about the system at hand, which
provides a good starting point for the data analysis. While
useful for proteins that are well studied, the approach grows
increasingly biased as the prior information content decreases.
When experimental observables cannot be translated directly
into computational measurements or when there is no obvious
way to do so, the challenge of discerning the signal from the
noise can become rate limiting or even prohibitive in the
discovery process.
Here we show that feature selection algorithms coupled with

reaction coordinate identification methods13,14 and techniques
from supervised machine learning can be used to interpret
clusters of MD trajectories by finding the relevant degrees of
freedom that separate these clusters. Consider a protein that
possesses j metastable states, which are defined by m degrees of
freedom. Supervised machine learning (SML) algorithms can
pick out k critical features (where k < m) that can distinguish
between the j states. The features are quantifiable geometric
properties−such as dihedral angles and distances−within
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individual MD frames. We hypothesize that an SML algorithm
capable of drawing a decision boundary to distinguish human
faces15 can also be used to differentiate between active,
intermediate, and inactive protein conformations at an
atomistic level. We show that the Gini importance criterion16

used in the construction of decision tree (DT) and random
forest (RF)17 classifiers can also be employed in the search for
degrees of freedom that correlate most strongly with the
assignment of a conformation to a particular MSM macrostate.
Here, we utilize the CB-FS approach for the analysis of

MSMs. It can, however, be trivially expanded to the
interpretation of results from any high-dimensional clustering
algorithms, such as K-means or K-medoids. We chose to
analyze data that was clustered into MSMs because of its
biophysical relevance and the link it provides between theory
and experiment. To that end, we applied CB-FS to identify the
key degrees of freedom that are involved in the conformational
transitions of the signal hub-protein ubiquitin and those of the
regulatory protein Src kinase.

■ METHODS
Supervised machine learning techniques have been effectively
employed for tasks that include spam filtering, optical character
recognition, search engines, and computer vision−all of which
require the assignment of unseen data to an output class.
Typically, an SML algorithm is tasked to find a high-
dimensional decision boundary between training examples in
order to predict an output. Similarly, we use decision trees
(DTs) to predict the Markov state for protein conformations
represented in a high-dimensional vector space. We choose
DTs over other classification methods primarily because of
their natural translation to biology. Since the early days of the
Monod-Wyman-Changeux (MWF)18 and Koshland-Neḿethy-
Filmer (KNF)19 model of allostery, proteins have been viewed
as adopting distinct active and inactive conformations, many of
which vary by no more than a few degrees of freedom. MSMs
allow us to locate these different conformations, while DTs can
use the information content of each state to identify the
characteristic degrees of freedom that set them apart.
Throughout the Methods section, we adhere the following

convention: D = data set of vectorized conformations, X =
conformation, cm = Markov state assigned to conformation, θ =
feature/degree of freedom under investigation, xj = value of jth

feature of the xth conformation, {t}= set of threshold values for
each feature, τ = nodes of trees, Δ = normalized gain, and I(:) =
Gini impurity of a node.
Markov State Models. Markov state models are kinetic

models of complex, dynamic systems. They partition the
conformational landscape of proteins into discrete states where
the transitions between states are considered as a memory less
jump process (Markovian). This is equivalent to representing
the system as an N*N transition matrix where N is the number
of states in the model. The eigenvectors of the transition matrix
correspond to dynamic events that−when added together−can
describe complex events such as folding pathways or functional
activation sequences. For more information about the analysis
of protein dynamics we direct the interested reader to recent
reviews of this topic.3,20

Decision Tree (DT) Classifiers. Tree classifiers are
hierarchical structures that model the output class as indicator
functions over a restricted set of values of the input variables.
An indicator function, defined over a set R, designates
membership to that set. DTs can be represented as binary

trees where the nodes correspond to a decision criterion and
the leaves represent an output variable. Applied to biomolecular
simulation data, we can determine if a protein is in different
Markov states by querying the values of its features at every
node. DTs are capable of modeling the following class of
functions
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where {Rm}1
M is the set of disjointed subregions of the input

features. {cm}1
M is the set of output classes (Markov states), and

I(x ∈ Rm) is the indicator function. The indicator function
denotes membership of conformation x to the mth region of
phase space. The function assigns a particular Markov state (cm)
to a conformation (x) if x is in a certain region of phase space
(Rm). The high-dimensional partitioning is learned by the DTs
based on a labeled training set that it has previously seen. We
can expand this indicator function into a product of “m”
individual features as shown in eq 2
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where I(xj ∈ sjm) is the indicator function. The value of feature j
of the conformation x belongs to the set of values that the jth

feature has in the mth region (sjm). This expansion highlights the
natural link that DTs have to the description of biological
systems. Structural and computational studies4,12,21 have shown
that residue side chains adopt distinct orientations charac-
terized by specific sets of contacts, dihedrals, etc., that can be
depicted as metastable conformational wells. We propose that
such multistate landscapes can be captured using the piecewise
indicator functions shown in eq 2. Compiling our data in the
form of vector representations allows us to include virtually any
degree of freedom such as backbone, side chain dihedrals,
contact maps, and hydrogen bond (H-bond) networks.
The parameters from eq 1 can be optimized by employing a

recursive greedy algorithm.17,22 This works by dividing the data
along a feature that can best separate the output states. For
instance, if the data at any arbitrary node “τ” is represented by
“D”, then we can divide it into two subsets at each possible
threshold “t” for every possible feature “θ”.

θ θ= | ≤D t D t( , )left (3)

θ =D t D D( , ) \right left

The threshold “t” depends on the type of feature θ and can
be obtained through an exhaustive search over all possible
midpoint values in the training data, if the feature is confined to
linear positive values. Periodic variables like dihedrals can be
represented as features in positive real space and divided
through multiple single boundary divisions to account for their
periodicity. The resulting sequential divisions are equivalent to
using two boundaries at once. The curious reader is encouraged
to review the Supporting Information for an algorithm that
converts an arbitrary tree into a binary tree. To select the best
possible split, we calculate the impurity at node “τ” and at all of
its children. The normalized gain Δ16,22 can be used as criterion
to choose the best split for the data at every node
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where I(:) is the impurity (statistical heterogeneity) criterion, k
is the number of child nodes, N(vj) is the number of data points
with child node vj, and N is the total number of points. We then
select the parameters (θ,t) that maximizes the normalized gain.

θ θ* = Δθt t( , ) argmax ( , )t( , ) (5)

This procedure is repeated recursively until either all the data
has been divided into completely pure samples or only a single
sample is left at the leaf node. Alternatively, the process can be
terminated upon satisfaction of a threshold criterion. The
information gain in eq 4 is equivalent to an entropy reduction
in the target state given the potential split and is comparable to
the mutual information (MI) between the target variable and
the feature under investigation. In contrast to MI calculations
and due to a more complex objective function (eq 1), DTs are
capable of modeling additive effects (Figure 1 and the
Supporting Information).
Equation 6 defines the Gini impurity criterion

∑τ τ= − |
=

I p i( ) 1 [ ( )]
i

c

1

2

(6)

where τ is the node under consideration, and c is the number of
states. The Gini impurity is a computationally efficient
approximation to the Shannon information entropy. Similar
to the latter, the Gini impurity of a pure sample is 0 and is
maximized when the sample is uniformly heterogeneous. Since
DTs built with either criterion give consistent results,22 we used
the Gini impurity. Intuitively speaking, DTs greedily and
recursively divide the data in an attempt to make it more pure.
The gain in information−when summed and normalized over
the entire tree for individual features θ over all the nodes τ
where it was employed−allows us to calculate the significance
of each feature, better known as the Gini importance

∑θ θ= Δ
τ

τGini importance( ) ( )
(7)

where θ is the feature under investigation.

We propose using DTs over other classification methods,
such as regularized kernel support vector machines or logistic
regression, due to the interpretability of the final model, its
ability to ignore correlated variables, and because it can handle
both continuous and binary data.
Choosing or pruning the right sized DT can be an involved

process. The complexity of the tree is proportional to its depth
where smaller trees tend to have a large bias and large trees are
typically characterized by a large variance. The simplest way to
choose the right sized tree is via test set estimates on the
maximum tree depth. In short, we divide our data set into
training and testing sets (ranging from a 50−50 split to 80−20
splits). We build iteratively more complex trees by increasing
the maximum allowable depth. At each iteration, we use the
learned tree to predict the output states for the testing set and
pick the model that gives the lowest error. An alternative
approach is one in which complexity parameters17 with
multifold cross-validation can be used. In the context of
analyzing the output of clustering algorithms, however, this is
not necessary.
One of the most common extensions to decision trees is the

concept of random forests (RF).17 Here, multiple trees are
generated from a random subset of the data, after which each
tree votes over the outcome of new unseen data. Due to the
greedy search strategy employed in parametrizing eq 1, DTs
can potentially produce very different sequences of cuts upon
even small perturbations in the data. RFs reduce this variance
by letting individual trees survey a bootstrapped sample of the
original data set. RFs are trivially parallelizable, can handle large
amounts of data quite easily, and can provide upper and lower
bounds on the importance of individual features.
Recent work by Schwantes et al.23 and Perez-Hernandaz et

al.24 have used time-structure independent components analysis
(tICA) to find the slowest decorrelating degrees of freedom in
the automatic construction of MSMs. In principle, we can
perform similar order parameter selection by looking at the
degrees of freedom that are the most correlated with the
eigenvectors of the transition matrix or the independent
components. Analyses of this nature are limited to the dynamic
eigenvectors of the Markov models, and it is not immediately
clear how this approach can be extended to arbitrary
combinations of states. Clustering based feature selection has

Figure 1. Toy example that highlights the advantage of using a decision tree over correlation metrics (mutual information (MI) and Pearson
correlation (r)). The image on the left depicts a two state model (red and blue dots) with the learned decision boundaries in black and white. To the
right are the equations that define the two comparison metrics. H(F) is the entropy of a given feature, H(S) is the state entropy, and H(F,S) is the
joint entropy. N, F̅, and S ̅ represent the total number of examples, the mean value of the feature, and the mean value of the state, respectively. The
table lists the values obtained from both the Pearson correlation and the mutual information on each of those features with the corresponding state.
The details of these calculations are given in the Supporting Information.
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the ability to work outside the Markov framework with arbitrary
clustering methodologies. Insights about the partitioning can be
drawn from the tree structure itself (Figure 1 and Figure 2d).
Moreover, calculating the correlation of a single feature against
dominant eigenvectors or independent components would
suffer from its inability to model higher order additive effects−
similar to calculating a single mutual information data point.
The toy example in Figure 1 highlights the difficulties that arise
from a symmetric interaction effect. A DT can readily model
the additive affects to find the relevant features in the data.
Projecting the resulting decision boundaries back onto the
original space gives the state boundaries one would intuitively
expect. Correlation based metrics such as mutual information
(MI) and Pearson correlation (r) are incapable of modeling this
effect and incorrectly show no association between either of the
features and the output state. The details of how to calculate
the mutual information and Pearson correlation of a target
feature against the output state are given in the SI.
Feature selection methods are not without limitations. Most

ignore correlated variables in the data, which is often
considered a strength. This can, however, be a concern in the
context of biological systems. The features that best explain the
data here are not necessarily biologically relevant. In practice,
such a situation might never arise given enough sampling,
through use of an ensemble classifier, and from sparsity in the
underlying model. However, we recommend the use of this
method to generate starting points in the interpretation of
clustered MD trajectories rather than as a solution.

Feature Vector Generation. DTs and other classification
methods require a vector representation of the individual
protein conformations. These features can be a subset or an
exhaustive combination of several metrics like backbone
dihedrals, α-carbon distances, hydrogen bond networks, or
the root mean squared deviation (RMSD) of secondary
structure elements. The choice of the features depends on
our prior knowledge about the system.
All the DTs and RFs used here were built with the Scikit-

learn library25 in Python. The Markov models and vector
representations of MD data were generated using the MDTraj
library in the MSM builder software.26

■ RESULTS AND DISCUSSION

Alanine Dipeptide Model. As a proof of concept, we
applied DT classifier to identify the important degrees of
freedom of the alanine dipeptide model system. A four state
macrostate model was built from the backbone RMSDs of the
heavy atoms (Figure 2b). The trajectories were then vectorized
using the Φ and Ψ backbone dihedrals (relevant features),
along with eight normally distributed noisy features. This was
done to quantify the degree to which the noise contributes to
the analysis. Using the macrostate labels as a target variable, a
single decision tree classifier was trained on 25,048
conformations that represent 50% of each state within our
data set. The maximum depth of the decision tree classifier was
increased until the test error on the previously unseen 50% data
set was less than 1% (max depth = 4). The learned boundaries
and the Gini importance of the input features was then

Figure 2. A) Terminally capped alanine dipeptide with the two central dihedrals marked. B) ϕ vs ψ scatter plot of the Markov macrostate
assignment, based on the heavy atom RMSD as the clustering criterion. C) The Gini importance of the features with the two dihedrals marked.
Features 2 to 9 are Gaussian and uniform in noise. D). Recreation of plot B) by training a single classifier on the system dihedrals and employing the
classifier to predict the Markov states of an unseen test data set. The contour lines going from white to black represent the decision boundaries
learned on the data set. The plot contains half the data points of B since the first half was used to train the model. Protein images were generated
using Visual Molecular Dynamics (VMD).27 The code used to generate these plots can be found online at https://github.com/msultan/alanine_
tree.
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computed using this model (Figure 2c and Figure 2d). The
plots highlight the ability of the Gini importance to find the key
backbone dihedrals without assigning significance to the noise
variables. The Supporting Information contains Web links for
the data set and Python scripts that were used to generate the
images shown in Figure 2.
Ubiquitin. We tested the performance of CB-FS in the

context of a biological system and analyzed the dynamics of
human ubiquitin−a signaling hub protein that connects
multiple cellular pathways.28,29 Its misregulation has been
implicated in numerous pathologies, including neurodegenera-
tion and tumor progression. A two state model was generated
from an aggregate 100 μs of simulation data using a hidden
Markov model formalism.30 It discerns two distinct con-
formations of a functionally selective loop (Figure 3a inset) and
provides us with insights into the degrees of freedom that
correspond to this conformational change. 800 structures were
randomly pulled from the two states and further analyzed with
CB-FS. Two different vectorized representations, dihedral
angles and hydrogen bond networks, were used to break
down the states. Two random forest classifiers with 40 trees
each and a maximum depth of 4 for the dihedrals features and a
maximum depth of 7 for hydrogen bond networks were trained.
The results are shown in Figure 3. The H-bond random forest
revealed two important interactions. A backbone hydrogen
bond between K10 and T6 breaks as the system switches to
state 2 (orange). The H-bond network (Figure 3c) also
revealed the functionally important interaction between the
side chains of K10 and E33. The finding is in line with previous
work that experimentally validated the significance of the K10-

E33 contact.29 The mutation of K10 into a neutral residue gives
a markedly increased pKa of E33. Further work by Wickliffe et
al.31 and Bremm et al.32 showed that this noncovalent
interaction is important for orienting the K10 in a position
suitable for selection by the Ube2s enzyme via substrate-
assisted catalysis.

Src Kinase. Kinases are a family of proteins responsible for
catalyzing the transfer of the gamma phosphate group of ATP
to a target substrate. They are key regulators of cell signaling
and are therapeutic targets for a wide spectrum of diseases. The
Src tyrosine kinase is involved in the cellular signaling pathways
associated with cell proliferation. Its signaling has been
implicated in uncontrolled cancerous growth.33 Understanding
the atomic level interactions involved in the activation pathways
of Src and other kinases can potentially help in the design of
better and more selective drugs, which has given rise to
significant research activity over the past decade.12,34,35

Recently we generated a four state model for Src that was
built using a combined 500 μs of sampling on the Folding@
home distributed computing platform.36 The simulation data
was extensively analyzed in recent work,12 and serves as a large
test case for the CB-FS analysis of the Src kinase activation
pathway.37 An activation trajectory consisting of 20,000 frames
was generated from the Markov model. Using the dihedral
degrees of freedom as the feature space and the four MSM
macrostates as the target variable, feature selection was
performed using a random forest classifier comprising of 20
DTs.
The key results and their biological interpretation are

summarized in Figure 4. The Src kinase activation is a

Figure 3. A) Results from building a random forest classifier on a two state hidden Markov model of human ubiquitin. The fifth and 12th dihedrals
correspond to up and down conformations of the loop and the error bars are from the different DTs in the ensemble. B) Two state behavior of fifth
ψ dihedral in the two states. C) The two H-bonds that stabilize the loop in the up (red) state. D) Histogram showing the length of the H-Bond
between Glu33 and Lys10.
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sequential two step process in which the activation loop (A-
loop, shown in red in Figure 4c) unfolds before the C-helix
(shown in orange in Figure 4c) which then swings inward
toward the core of the protein to form a critical Glu-Lys ion
pair. Projecting the 20,000 frames onto these two degrees of
freedom shows this two step process in Figure 4b. CB-FS
selected the key dihedrals that are involved in this sequential
activation mechanism (Figure 4a). For example, residues 410−
420 are part of the activation loop (A-loop, shown in red in
Figure 4c) that needs to unfold for the system to activate
(Figure 4b). The CB-FS method also highlighted the
importance of H384 that forms a part of the regulatory spine
critical for catalysis and E310 which switches from interacting
with R409 in the inactive state to K295 in the active state
(Figure 4b-d).12,35

■ CONCLUSIONS

We present a clustering based feature selection approach for the
analysis and interpretation of large scale simulations of
biological systems. An information gain criterion is used to
build decision trees and can also be employed to find important
contacts, hydrogen bonds, salt bridges, etc. that uniquely
identify the functional states of proteins. Since feature selection
methodologies can ignore certain degrees of freedom when
they correlate with other variables, it is desirable to use random
forest classifiers, which can be built from bootstrapped samples
of the training data. Human ubiquitin and Src kinase served as
test cases and demonstrate the scalability of CB-FS, its ability to
break down the steps within activation pathways, and the
potential to provide key targets for mutation studies and
protein engineering. Our work presents a step forward in the
unbiased analysis of Markov models and related clustering
methodologies of large scale molecular dynamics trajectories.
Future work will focus on extensions to the metric space and on
application of the method to systems with increasingly complex
functional dynamics.
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