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Simple Summary: Currently, patient-specific treatment plans and dosimetry calculations are not
routinely performed for radionuclide therapies. In external beam radiotherapy, it is quite the opposite.
As a result, a small fraction of patients receives optimal radioactivity. This conservative approach
provides “radiation safety” to healthy tissues but delivers a lower than indicated absorbed dose to
the tumors, resulting in a lower response rate and a higher disease relapse rate. Evidence shows that
better and more predictable outcomes can be achieved with patient-individualized dose assessment.
Therefore, the incorporation of individual planning into radionuclide therapies is a high priority
for nuclear medicine physicians and medical physicists alike. Internal dosimetry is used in tumor
therapy to optimize the absorbed dose to the target tissue. The main reasons for the difficulties in
incorporating patients’ internal dosimetry into routine clinical practice are discussed. The article
presents the prospects for the routine implementation of personalized radionuclide therapies.

Abstract: The article presents the problems of clinical implementation of personalized radioisotope
therapy. The use of radioactive drugs in the treatment of malignant and benign diseases is rapidly
expanding. Currently, in the majority of nuclear medicine departments worldwide, patients re-
ceive standard activities of therapeutic radiopharmaceuticals. Intensively conducted clinical trials
constantly provide more evidence of a close relationship between the dose of radiopharmaceutical
absorbed in pathological tissues and the therapeutic effect of radioisotope therapy. Due to the lack of
individual internal dosimetry (based on the quantitative analysis of a series of diagnostic images) be-
fore or during the treatment, only a small fraction of patients receives optimal radioactivity. The vast
majority of patients receive too-low doses of ionizing radiation to the target tissues. This conservative
approach provides “radiation safety” to healthy tissues, but also delivers lower radiopharmaceutical
activity to the neoplastic tissue, resulting in a low level of response and a higher relapse rate. The arti-
cle presents information on the currently used radionuclides in individual radioisotope therapies and
on radionuclides newly introduced to the therapeutic market. It discusses the causes of difficulties
with the implementation of individualized radioisotope therapies as well as possible changes in the
current clinical situation.

Keywords: radioligand therapy (RLT); theranostics; internal dosimetry; personalized radioisotope
therapy; molecular radiotherapy; radiopharmaceuticals

1. Introduction

Nuclear medicine uses radiopharmaceuticals, which are various molecules labeled
with radioactive isotopes, for diagnosis and therapy. Radiopharmaceuticals are sources of
radiation, and when introduced into the patient’s body (by injection, oral administration,
or inhalation), they target specific organs, tissues, or cells. Subsequently, the activity of
radiopharmaceuticals in tissues decreases due to their elimination from the body and
radioactive decay. Administration of the same activity of a given radiopharmaceutical to
different patients can distribute in their bodies differently, and therefore it is important
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to consider each patient individually. The determination of the total number of nuclear
disintegrations that occur in a particular organ allows calculating the mean energy absorbed
per kilogram of tissue. This parameter is known as the mean absorbed dose.

The knowledge of the absorbed ionizing radiation dose after administration of a
radioactive preparation is of great importance both for the patient’s safety and for the
proper course of diagnostics or radioisotope therapy. The activity of radioisotopes, admin-
istered to patients for diagnostic imaging studies, must ensure the correct image quality
while minimizing the dose that will be absorbed. Due to the increase in sensitivity of
modern gamma cameras, the reported diagnostic activities are low. However, in the case
of radioisotope therapy, the activity of the therapeutic radioisotope should be as high
as possible to effectively destroy tumor cells, and at the same time, low enough not to
damage critical organs. Therapy using radioactive isotopes is an extremely important
and rapidly developing part of nuclear medicine. Modern radioisotope treatments are
based on the idea of theranostics [1,2], according to which a diagnostic examination should
be performed with the use of a radiopharmaceutical with the same distribution as the
therapeutic radiopharmaceutical. Only when the result of the primary examination shows
a sufficiently high accumulation of diagnostic radiopharmaceutical is the patient eligible
for the treatment procedure.

In every clinical situation that requires the administration of a radioactive substance to
the patient, it is important to know the absorbed dose. Moreover, it is of special importance
when the activity is very high, as is the case with radioisotope therapies. Individualized
therapy plans, created based on images of a given patient, allow for the optimization of
therapy and the minimization of toxic effects [3–7].

Both nuclear medicine and external beam radiotherapy (EBRT) use ionizing radiation
to treat malignant tissue. EBRT requires advanced equipment that shapes the external
beam to conform to the tumor, and nuclear medicine uses radiopharmaceuticals that are
introduced directly into the body. Both treatment techniques should follow the guidelines
contained in COUNCIL DIRECTIVE 2013/5/EURATOM from 5 December 2013, concerning
the safety of patients diagnosed and treated with ionizing radiation [8]. In Article 56 of the
Directive, the following is written: “For all medical exposure of patients for radiotherapeutic
purposes, exposures of target volumes shall be individually planned, and their delivery
appropriately verified taking into account that doses to non-target volumes and tissues
shall be as low as reasonably achievable and consistent with the intended radiotherapeutic
purpose of the exposure.” This implies the necessity to personalize the treatment, i.e.,
the selection of the suitable pharmaceutical, in the right dosage and time. Individual
EBRT planning is a common practice that has been developed and used for many years.
Teams of physicists involved in treatment planning and clinical dosimetry for each and
every patient are the standard in radiotherapy centers. Radiation treatment planning is
performed with the use of advanced computer programs using computed tomography
(CT), magnetic resonance (MR), or positron emission tomography (PET) images. Modern
planning methods include the three-dimensional (3D) technique, which allows for the
spatial shaping of radiation beams and the protection of critical organs [9,10].

The situation in nuclear medicine is completely different. Few physicists work in
nuclear medicine departments, and radioisotope therapies are usually performed according
to standard clinical procedures. Individual calculations of radiopharmaceutical doses for
patients are not routinely performed in most nuclear medicine facilities across the world.
Nuclear medicine specialists most often use standard activities of radiopharmaceuticals
during therapy, considering the patient’s weight or body surface area.

In some cases, administration of standard radiopharmaceutical activities does not
provide a sufficiently high dose per tumor to destroy it. On the other hand, giving too
much activity could have harmful effects on critical organs. A small fraction of patients
receives optimal activity, while the vast majority receive lower doses. This conservative
approach provides “radiation safety” to healthy tissues, but also delivers a lower dose
than indicated to the neoplastic tissue, resulting in a low response rate and a higher rate of
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disease relapse. Individualized treatment planning would provide higher absorbed doses
to most patients without risking toxicity. “Personalized dosimetry is a must for appropriate
molecular radiotherapy”—this is the title of the article by Stabin (one of the pioneers of
internal dosimetry) et al. published in 2019 in the Medical Physics journal [11]. In this
article, the authors present the roots of the difficulties in introducing radionuclide therapy
dosimetry (radioisotope treatment planning dosimetry) into routine clinical practices.

2. Radionuclides for Therapies

Due to the intensive development of pharmacology, the number of new radiopharma-
ceuticals that can be used in therapy is increasing every year. A particular advantage of ra-
dioisotope therapies is that they can be used in situations where all other forms of treatment
have failed. For example, radiopharmaceuticals are administered locally to destroy brain
tumors that cannot be surgically removed, and they can be used to treat neuroendocrine
tumors spread throughout the body that are refractory to standard chemotherapeutic treat-
ments. Most radionuclides used in therapy emit β− particles, and rarely α particles, which
are highly potent. Table 1 contains information on the radionuclides used in radioisotope
therapies. Table 2, on the contrary, presents the radionuclides currently being tested, which
provides the evidence of the intensive development of this method of treatment.

Table 1. Radionuclides used in particular types of radioisotope therapies.

Radionuclide
Basic Radiation

Type for
Therapy

Chemical and
Dosage Form Indications Administration

Route References

Iodine 131I β− Sodium iodide
Thyroid carcinoma

OralHyperthyroidism [12,13]

Iodine 131I β−
Pheochromocytoma

IntravenousIobenguane Paraganglioma [14–17]
Neuroblastoma

Carcinoid

Iodine 131I β− Apamistamab Leukemia Intravenous [18]

Iodine 131I β− Tositumomab non-Hodgkin’s lymphoma Intravenous [19,20]

Iodine 131I β− Lipiodol HCC, liver metastasis Intra-arterial
infusion [21,22]

Samarium 153Sm β− Lexidronam Painful skeletal metastases Intravenous [23]

Strontium 89Sr β− Strontium chloride Painful skeletal metastases Intravenous [24]

Yttrium 90Y β− Ibritumomabtiuxetan non-Hodgkin’s lymphoma Intravenous [25]

Yttrium 90Y
Therasphere

β− 90Y glass spheres
Unresectable HCC

Liver metastasis
Intra-arterial

infusion [26]

Yttrium 90Y
SIR-Spheres

β− 90Y resin spheres
Unresectable HCC

Liver metastasis
Intra-arterial

infusion [27]

Lutetium 177Lu or
Yttrium 90Y

β−

[177Lu]Lu-
DOTATATE

[90Y]Y or [177Lu]
Lu-DOTATOC

Unresectable or
metastasized NETs Intravenous [28,29]

Lutetium 177Lu or
Actinium225Ac

β−

α

[177Lu]Lu-PSMA Prostate cancer
Intravenous[225Ac]Ac-PSMA (mCRPC) [30,31]

Phosphorus 32P
Yttrium 90Y

Rhenium 186Re
β− Colloids Radiosynovectomy Intra-articular

injection [32]

Radium 223Ra A Radium dichloride Painful skeletal metastases Intravenous [33,34]

HCC: hepatocellular carcinoma; SSTR2: Somatostatin receptor type 2; PSMA: prostate-specific membrane antigen;
NET: neuroendocrine tumor; mCRPC: metastatic castration-resistant prostate cancer.
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Table 2. Radionuclides currently introduced into radioisotope therapies, at the stage of research.

Radionuclide Basic Radiation
Type for Therapy Indications References

Yttrium 90Y β− Breast cancer [35]

Lutetium 177Lu β− Pancreatic cancer [36,37]

Iodine 131I β− Neuroblastoma Central Nervous
System/Leptomeningeal Metastases [38]

Phosphorus 32P β− Pancreatic cancer [39]

Copper 67Cu β− Radioimmunotherapy [40]

Holmium 166Ho β− HCC, liver metastasis [29]

Indium 111In Auger e− GEP-NETs, lung and bladder cancer [41–43]

Tin 117mSn Internal conversion e− Painful skeletal metastases [44]

Bismuth 213Bi α Glioblastoma, prostate and bladder cancer [45–47]

Astatine 211At A Lung cancer, glioblastoma,
radioimmunotherapy [48–51]

GEP-NET: gastroenteropancreatic neuroendocrine tumor; EC: electron capture.

3. Therapeutic Effects of Implemented Internal Dosimetry

In many published scientific papers, the authors have shown a close relationship
between the absorbed dose of ionizing radiation and the therapeutic effect in various
types of cancer. Strigari et al. [3] evaluated 79 papers that contained dosimetric calcu-
lations and the relation of the absorbed dose and the therapeutic effect was found in
48 of them. Even if a significant correlation was found in many articles regarding different
radioisotope treatments, there is still a need for prospective clinical trials with many partic-
ipants. Below, we describe some currently well-established clinical benefits from applied
dosimetric calculations.

3.1. Treatment of Liver Malignancies with Microspheres

One of the most prominent examples is the use of dosimetry in the treatment of liver
malignancies with microspheres (90Y glass or resin microspheres). When the activity to be
injected is based on dosimetric evaluations, there are high clinical success rates for safe and
effective therapy [52–56]. Microspheres are permanently implanted in the tumor via the
hepatic artery, which means that there is no biological clearance and, therefore, the calcula-
tion can be obtained from a single tomographic scan. Prior to the treatment, simulation with
99mTc-macroaggregates of albumin enables to optimize therapeutic effects by predicting
the absorbed dose to lesions and non-tumoral liver. It allows to choose the activity of a
single treatment that is effective and safe, and, usually, multiple administrations are not
performed. The multivariate analysis of radioembolization in hepatocellular carcinoma
presented by Garin et al. in 2017 [57] showed that the dose absorbed by the lesion (larger
than 205 Gy) was the only factor associated with the increase of overall survival. It is still
discussed whether patient dosimetry should be based on efficacy thresholds or on toxicity
thresholds. Chiesa et al. stated that dosimetric prediction for non-tumoral liver is more
accurate than lesions [58]. They determined a safety cut-off for non-tumoral liver at 50 or
90 Gy—for bilirubin more or less than 1.1 mg/dL.

3.2. Radioiodine Therapy of Thyroid Cancer

Differentiated thyroid cancer is carcinoma deriving from the follicular epithelium
and it consists of the majority of thyroid carcinomas. Radioactive iodine therapy can be
used after thyroidectomy as an adjuvant therapy for eradication of thyroid remnants or,
in patients with advanced metastatic disease, as a curative or palliative treatment. In
terms of radioiodine therapy of thyroid cancer, there are two dosimetric approaches: pre-
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therapeutic and peri-therapy dosimetry [59]. The former aims to assess the activity prior to
the treatment, which allows ablation of the remaining malignant tissue and avoids reaching
a predetermined threshold for absorbed doses in organs at risk, and the latter assess doses
after the treatment, which can help to navigate the number of administrations. Since
the treatment of thyroid cancer has been used for decades, attempts have been made to
improve its efficacy. The optimal radioactivity of iodine 131I administered in the treatment
of differentiated thyroid cancer has been controversial since its first use in the 1950s. It
has been shown that there are clinical benefits of applied dosimetry in [60–62]. Dosimetry-
guided radioactive iodine 131I treatment allows administration of the maximum possible
absorption dose to achieve the maximum therapeutic benefit. The maximal safe dose
calculated based on bone marrow irradiation provides an effective means of treatment in
patients who failed to adequately respond to conventional fixed-dose therapy. Dosimetric
methods of determining 131I activities for the treatment of recurrence or metastasis in
differentiated thyroid carcinoma are based on the estimation of the 131I uptake in tumor or
blood. Jin Lee et al. reported that 40–50 Gy delivered to a metastatic lesion is likely to be
effective [61]. In the case of the safety approach, which aims to decrease the likelihood of an
adverse bone marrow effect, the absorbed dose to blood has been reported to be 2 Gy [60].

There is also a growing number of studies concerning the use of 124I PET/CT, which is
more sensitive in detecting metastatic disease than 131I SPECT/CT, for lesion dosimetry [63,64].

3.3. Peptide Receptor Radionuclide Therapy of Neuroendocrine Tumors

Peptide receptor radionuclide therapy (PRRT) is a method of treatment of metastasized
or nonresectable neuroendocrine tumors (NETs) that uses labeled somatostatin analogues
([90Y]Y/[177Lu]Lu-DOTATOC or [177Lu]Lu-DOTATATE). The results of the randomized
phase III NETTER-1 trial, published in 2017, demonstrated the efficacy of PRRT in patients
with NETs [28]. Some papers present the significant correlation between absorbed dose and
tumor reduction [65,66]. Based on the literature analysis performed by Cremonesi et al. [67],
dosimetry results in PRRT reveal large interpatient variability in absorbed doses to normal
organs and tumors, emphasizing the need for personalized dosimetry. The toxicity of the
standard four-cycle therapy is not high [68], and therefore there is the potential to increase
the number of cycles and, by doing so, increase the clinical effect of the therapy. Sandstrom
et al. found that 2–10 cycles of [177Lu]Lu-octreotate could be administered before the
upper dose limit for the individual patient is reached [69]. During PRRT, the main organs
at risk are the kidneys and the bone marrow [70–72]. The related toxicity is the major
factor limiting the number of treatment cycles administered. It was already found in 2005
by Barone et al. [7] that radiation nephrotoxicity after [90Y]Y-DOTATOC therapy is dose-
dependent. Garske-Román et al., in the prospective observational study of 200 patients
treated with [177Lu]Lu-DOTA-octreotate, investigated the impact of a dosimetry-guided
study protocol on the outcome and toxicity [73]. Each cycle had 7.4 GBq and they were
repeated until the absorbed dose reached 23 Gy to the kidneys, 2 Gy to the bone marrow,
or there were other reasons for stopping the therapy. They found that kidney dosimetry
predicts patient outcome—patients in whom the absorbed dose to the kidneys reached
23 Gy had longer overall survival than those in whom it did not.

3.4. PSMA-Based Therapy of Metastasized Castrate-Resistant Prostate Cancer

[177Lu]Lu-labeled PSMA ligands are a novel therapy for progressive metastasized
castrate-resistant prostate cancer (mCRPC) [74]. Prior to the treatment, imaging with
[68Ga]Ga-PSMA PET/CT is necessary, which enables accurate detection of lesions. There
are many published studies that estimate the absorbed dose for tumor and organs at
risk (kidneys, salivary glands, lacrimal glands, liver, bone marrow) [75–83]. Most of the
data show high variability and the need for dosimetric calculations. Calculated radiation-
absorbed doses per GBq in case of organs at risk were reported as 0.72–0.88 Gy/GBq
for kidneys, 0.21–1.17 Gy/GBq for parotid glands, and 0.02–0.03 Gy/GBq for bone mar-
row [80,82,83]. Therefore, the critical absorbed dose reported for the kidneys (23 Gy) was
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not reached in any of these studies. Moreover, in most cases, the organ-absorbed doses did
not differ significantly between cycles. Okamoto reported that tumor lesions received a
mean absorbed dose per cycle of 3.2 ± 2.6 Gy/GBq (range, 0.22–12 Gy/GBq) [80]. However,
doses absorbed by tumor lesions gradually decreased in each cycle [80]. Accumulated doses
for malignant lesions are much higher than those of other organs. In a study performed
by Fendler et al. [75], the dose delivered to the tumor was 6–12 times higher than that
to critical organs. In a different study, the dose absorbed by parotid glands was higher
than that by kidneys [76]. Kabasakal et al. [82] evaluated pre-therapeutic dosimetry and,
similar to the others, suggested that dose-limiting organs are the parotid glands rather than
kidneys and bone marrow.

3.5. Others

Established clinical benefits from applied dosimetric calculations are not limited to
the therapies listed in the previous sections. In the case of neuroblastoma treated with
[131I]I MIBG, it was found that the patients who received a tumor-absorbed dose of ≥70 Gy
had a higher partial response rate than those receiving less [84]. For bone pain palliation
with [153Sm]153Sm-EDTMP, the mean absorbed dose was positively related to tumor
volume reduction, and patients who had disease stabilization had received at least a 21 Gy
mean absorbed dose in the study of Senthamizhchelvan et al. [85]. When the [186Re]Re-
HEDP was used, a significant correlation between the whole-body-absorbed dose and
hematological toxicity was found in [86]. In patients treated with [131I]131I-tositumomab
for refractory B-cell lymphoma, the equivalent uniform dose correlated with response in
the study reported by Dewaraja et al. [87]. They found that at a threshold of 2 Gy, both
mean absorbed dose and equivalent uniform dose had a positive predictive value for a
partial and complete response.

4. Why Are the Vast Majority of Nuclear Medicine Therapy Prescriptions Still Not
Patient-Specific Dosimetry-Based?

For a nuclear medicine therapy to be considered personalized, treatment planning is
essential, including the activity chosen individually for a given patient. The first step in
individual planning of radioisotope therapy is to perform a series of diagnostic images,
which allows visualizing the distribution and measuring how the activity decreased in
time in different organs. The next step is to perform dosimetric measurements. It provides
information on the degree of uptake of an administered radiopharmaceutical in pathological
tissues and critical organs. The obtained dosimetric report is the foundation for planning
the maximum activity on tumors, with a safe level of irradiation of critical organs in a
given patient. The last step is to obtain a series of images of the patient recorded after the
administration of the therapeutic radiopharmaceutical. Post-therapeutic image analysis is
used to verify the individual treatment plan and monitor the effects of radioisotope therapy.

Why is internal dosimetry not routinely practiced in most nuclear medicine facilities?
Dosimetric imaging and analysis are technically challenging. Some radionuclides used
in therapy are difficult to image with a gamma camera. In such a case, to take a series
of diagnostic and dosimetric images, the patient should be administered an appropriate
radiopharmaceutical surrogate, which has the same biodistribution as the therapeutic
radiopharmaceutical. There are some well-known theranostic pairs, such as 123I and 131I
or 68Ga and 177Lu [88], but intensive research is being conducted to find new ones. For
example, in 2019, Dos Santos et al. [89] employed 212Pb in the PSMA-seeking ligands
(CA009 and CA012) and used diagnostic [203Pb]Pb-CA012 and its biodistribution for
dosimetric calculations, which were then extrapolated to therapeutic [212Pb]Pb-CA012.

Another difficulty is given by imaging and performing dosimetric calculations in
patients treated with alpha-emitters. Measuring the biodistribution of alpha-emitters
in patients is challenging due to the low administered activities and low probability of
emission photon energies suitable for imaging, it is not impossible though. For example,
Pacilio et al. calculated the absorbed dose to bone metastases after the administration of
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223Ra with the aid of the [99mTc]Tc-MDP scan, which enabled better lesion delineation [90].
In a different case, when treating mCRPC patients with 225Ac, Kratochwil et al. [91] used a
series of [177Lu]Lu-PSMA scans to generate time–activity curves (TACs), which were then
extrapolated to the physical half-life of 225Ac.

Taking a series of quantitative diagnostic or post-therapeutic images requires the
patient’s availability, additional acquisitions, and therefore, additional work time of the
single-photon emission computed tomography/CT (SPECT/CT) camera. The series of
recorded scintigraphic images should then be analyzed by trained medical physicists,
using dedicated software for internal dosimetry. Commercial dosimetry programs are a
significant financial expense for departments and hospitals. The lack of trained medical
physicists to perform internal dosimetry is another important problem. In the absence
of dosimetry software integrated with the gamma camera, the medical physicist should
perform the necessary calibrations for external dosimetric programs. There is still no general
recommendation on how to perform quantitative SPECT/CT (QSPECT/CT) calibration
and quantification in the best way. A lot of studies showed the need for harmonization of
QSPECT/CT scanners across centers [92,93]. Moreover, dosimetric analysis of a series of
scintigraphic images requires time-consuming segmentation (contouring) of the patient’s
tissues and organs on reconstructed sections through the patient’s body. Measurement
uncertainties of the obtained results of absorbed doses are relatively large. It was estimated
that with manual segmentation of tissue contours on SPECT images, the measurement
uncertainty of the determined amount of the absorbed dose for an object with a volume of
33 mL is as high as 40% and increases exponentially with the decrease in the volume of the
measured tissue [94].

The weakest links in individual dosimetry are the accuracy of the input data and
the suitability of the radiobiological models used. In general, there is a clear distinction
between diagnostic and therapeutic dosimetry in a given patient. In some cases, when
justified by the physical and biokinetic parameters of radiopharmaceuticals, consideration
should be given to including in dosimetric calculations, in addition to therapeutic activity,
the activity of the diagnostic radionuclide used for SPECT/CT imaging after or before
radioisotope therapy. The new recommendations issued by the International Commission
on Radiation Units and Measurements in Report 96 [95] include reporting both therapeutic
and diagnostic activities of radiopharmaceuticals administered to a patient.

Table 3 summarizes the most important difficulties in introducing individual planning
of radioisotope therapies into routine clinical practice.

Table 3. Main reasons for the difficulties in clinical implementation of dosimetric imaging
and analysis.

Technical Causes

Dosimetric imaging and analysis are technically challenging.

Lack of general recommendation on how best to perform QSPECT/CT calibration and
quantification.

Lack of integrated, accessible software, which is commercially available (works in progress).

The necessity of multiple patient acquisitions.

Questionable accuracy, uncertainty.

Other Problems

Shortage of medical physicists trained and employed to perform internal dosimetry.

Difficulty to image some therapy radionuclides (surrogates needed).

Additional complications with alpha-emitters.

Lack of awareness of healthcare professionals of the increased effectiveness of radioisotope
therapies performed using dosimetric calculations.
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Difficulties with the clinical implementation of individual planning of radioisotope
therapies were reflected in the publication of the European Association of Nuclear Medicine
(EANM) in January this year, entitled “EANM position paper on article 56 of the Council
Directive 2013/59/Euratom (basic safety standards) for nuclear medicine therapy” [8]. The
EANM strongly encourages fostering research that eventually leads to individual treatment
planning for all types of radionuclide therapies. However, if a nuclear medicine facility
is unable to routinely perform individual dosimetry prior to treating patients, EANM
recommends standard therapeutic activities for most procedures. In the publication from
October this year, Flux and Buscombe [96], on behalf of the Officers and Council of the
British Nuclear Medicine (BNMS), advocate that radionuclide therapies should have the
status held by EBRT, for which radiation dosimetry is an integral aspect of clinical practice.
BNMS calls for infrastructural and economic changes in nuclear medicine departments to
introduce individual planning of radioisotope therapies.

5. Trends in Personalized Internal Dosimetry

Most of the listed dosimetric problems should be solved within the next few years, and in-
tensive work is currently being undertaken on simplifying the internal dosimetry techniques.

The first simplification concerns the number of necessary scans performed on one
patient. The question arises if performing multiple patient acquisitions is necessary and
how many of them should be carried out for individual dosimetric calculations. Freedman
et al. [97] propose to decrease the series of four standard acquisitions to two post-treatment
scans for PRRT with [177Lu]Lu-DOTATATE. However, the authors emphasize the need
for further research, as they are concerned that the methods of estimating absorbed doses
based on only two scans would be even more user-dependent and require careful analysis
of the volumes of interest (VOIs) in images. In a number of papers, published both many
years ago and recently [98–108], the authors propose to limit the number of imaging
tests performed for dosimetric purposes to one single SPECT/CT acquisition. It is under
debate if such simplified dosimetry, based on one measurement, could work properly at
all. From a mathematical point of view, there is a lack of measured data to estimate the
dose absorbed in a patient’s tissue. However, missing data can be filled with empiric
data on the biokinetics of used radiopharmaceuticals. The single time-point dosimetry
method requires knowledge about population averages for tracer kinetic parameters. If
the biokinetics of the radiopharmaceutical in the analyzed organ and the shape of the TAC
have been previously determined based on studies of a given patient population, only one
quantitative measurement of the activity at the time corresponding to approximately 1.5 Teff
is sufficient (where Teff is the effective elimination half-life of the radiopharmaceutical
from the organ) [101,104]. Accuracy analysis of the absorbed dose estimation showed
that, for the vast majority of patients, measurement errors were less than 10% [109]. The
solution to underestimated or overestimated measurement results could be the creation of
databases on the biokinetics of the radiopharmaceutical used in the population. Therefore,
in addition to using results of clinical dosimetry measurements to optimize the treatment of
individual patients, the obtained data on the biodistribution of used radiopharmaceuticals
should also be used to build pharmacokinetic databases on the biokinetics of various
radiopharmaceuticals. This population biodistribution should soon become an integral
part of programs for simplified, individual internal dosimetry.

The second simplification aims to overcome the difficulties of accurately segmenting
organs in SPECT images. Since they have significantly limited resolution, the VOI con-
taining all the accumulated activity is difficult to outline. Moreover, since it is generally
larger than the organ itself, the determination of the VOI based on CT images cannot be
used because it would not contain all the activity accumulated in the organ. Based on
the assumption that the activity in the critical organ is relatively evenly distributed, it
has been proposed to evaluate the cumulative dose in the organ based on a “small” VOI
placed inside the organ itself [69,110,111]. Since the positioning of this VOI can be difficult
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and cause differences in dose assessment, an automatic segmentation method has been
proposed that eliminates these difficulties [112].

Computer scientists and physicists are developing more and more universal and
accessible software for internal dosimetry [113–117].

Due to the rapid development of radiopharmacy, new radiopharmaceutical surrogates
can be expected for therapeutic radiopharmaceuticals, which cannot be imaged with
the gamma camera [118–120]. Radiation dosimetry assessment is often initiated with
measuring biodistribution of new radiopharmaceuticals in small animals. To study the
biological distribution of radiopharmaceuticals in the human body, it is necessary to find
the biological distribution in the rodent body and then the results can be generalized to
humans. Preclinical dosimetry studies using small animals are an indispensable step in
the pathway from in vitro experiments to clinical implementation of new radioisotope
therapies. A lot of studies have shown the practicality of using animal distribution as a
model for estimating the absorbed dose in humans [121–125].

Due to the growing awareness of the importance of dosimetry, the Internal Atomic
Energy Agency conducts training in that field for doctors and medical physicists. For
several years, The European School of Multimodality Imaging and Therapy (ESMIT) has
been operating within EANM, the aim of which is to educate specialists at three educational
levels, both online and in-person [126,127]. The Dosimetry Project Group, operating within
ESMIT, organizes advanced courses for the practical application of clinical dosimetry in
radioisotope therapy. The courses enable direct contact with dosimetry experts, exchange
of experiences, and cooperation of clinicians, implementing individual internal dosimetry
in nuclear medicine facilities around the world. These activities are also related to the
existing need for standardization and harmonization of internal clinical dosimetry tools.

6. Summary

Radioisotope therapies not preceded by individual dosimetry constitute treatment of
a lower standard than EBRT. Currently, clinical internal dosimetry is carried out mainly in
nuclear medicine centers, combining clinical activities with scientific research. Therefore,
the implementation of the standard procedure for routine, individual dosimetry in nuclear
medicine is a priority in that field.

What could chiefs of departments do to implement internal dosimetry for individual
planning of radioisotope treatment? Above all, they should employ medical physicists
who, due to their education and experience, will make use of the available computational
techniques for the preparation of a routine dosimetric calculation tool. Currently, sev-
eral commercial computer programs for internal dosimetry are already available on the
market. Unfortunately, the prices of these programs are quite high. However, due to the
very rapid development of information technologies in medicine, there is a high proba-
bility that dosimetry programs will soon become an integral part of the standard gamma
camera software.

Rapid progress and development of radioisotope therapies are due to the introduction
of new radiopharmaceuticals, which in the future can be used for targeted therapy of
other cancers, such as, for example, breast, prostate, and brain tumors. Therefore, new
imaging surrogates will also be needed. These surrogates will be used to implement a treat-
ment planning approach to radioisotope therapy with alpha- and beta-emitters, enabling
prediction of the absorbed radiation dose and treatment to the maximum tolerated one.

Individual planning of radioisotope therapies has a great chance of becoming a medical
standard in the world. To do so, the most crucial aspect is to provide sufficient scientific
evidence of the superiority of personalized radioisotope therapy over treatment with
standard radionuclide activities.
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