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Abstract: The fracture behavior of polymeric materials has been widely studied in recent years,
both experimentally and numerically. Different numerical approaches have been considered in the
study of crack propagation processes, from continuum-based numerical formulations to discrete
models, many of the latter being limited in the selection of the Poisson’s coefficient of the considered
material. In this work, we present a numerical and experimental analysis of the crack propagation
process of polymethylmethacrylate beams with central and eccentric notches subjected to quasi-static
three-point bending tests. The developed discrete numerical model consists of a regular triangu-
lar lattice model based on axial and normal interaction springs, accounting for nearest-neighbor
interactions. The proposed model allows solving the above mentioned limitation in the selection of
Poisson’s coefficient, incorporating a fracture criterion defined by a bilinear law with softening that
includes the fracture energy in the formulation and allows considering a progressive damage. One of
the main objectives of this work is to show the capacity of this lattice to simulate quasi-static fracture
problems. The obtained results show that the proposed lattice model is capable of providing results
close to the experimental ones in terms of crack pattern, peak load and initial stiffening.

Keywords: crack propagation; three-point bend; PMMA; lattice model; discrete method; numerical
simulation; experimental testing

1. Introduction

Polymeric materials have been widely used in automotive, aerospace and many
other industries during the last decades because of its outstanding mechanical properties,
exhibiting a proper compromise between their impact strength and low density and
cost. Moreover, thermoplastic polymers have also shown its potential to be used as
substitute for metals in a wide range of technical procedures [1,2], and some of them
can also be considered as replacements for glass due to their optical properties, such as
transparency [3,4]. Within these polymeric materials, polymethyl methacrylate (PMMA) is
becoming an increasingly popular material, being used in a very diverse range of fields:
electrotechnics, biomedicine, nanotechnology or architecture and furniture [5–10].

The fracture behavior of polymeric materials has been extensively studied in last
years, in either polycarbonate (PC) [11–13], poly-ether-ether-ketone (PEEK) [14,15], PMMA
and many others [16–18] including new materials obtained by additive manufacturing
techniques [19]. Those analysis have been carried out both in dynamic [20–22] and quasi-
static [23–27] regimes, from an experimental, numerical and analytical point of view,
the latter approach being the one in which fractal models are being recently used to
investigate the fracture behavior of polymers [28–32]. Many of these works focus on the
specific problem of the study of crack propagation direction, pointing out that one of the
main disadvantages of PMMA is its susceptibility to break in a brittle or quasi-brittle way,
especially when notches, cracks or holes appear [33]. For this reason, the convenience
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of considering in this work notched specimens with different notch lengths and notch
eccentricities is evident.

Due to this growing interest, many studies have addressed the analysis of the crack
propagation direction in PMMA, both from an experimental and numerical point of view.
Traditionally, numerical models used to study crack propagation have been based on
continuum-based numerical formulations, including the Finite Element Method (FEM),
or meshless methods [34]. Its major disadvantage is the high computational cost involved
in reproducing crack propagation, using techniques such as element removal, re-meshing,
cohesive elements or the Extended Finite Element Method (XFEM) [35].

With the clear objective of reducing the aforementioned high computational cost of
finite element models, discrete models have been presented as an alternative in which
it is not necessary to define the basis function (also called shape functions) on reference
elements. Discrete models are those formed by a series of individual points linked through
linear elements, so that the total system is shaped like a mesh or grid. The way in which
the interaction elements are defined is what distinguishes each discrete model. Included in
this category, it is important to mention: molecular dynamics models [36–39], focusing
on the simulation of the movement of atoms and molecules through the definition of
atomic potentials; peridynamic models [21,40], a nonlocal form of continuum mechanics in
which the equation of motion is replaced by an integro-differential equation where spatial
derivatives are removed, the peridynamic bonds transfer forces between connected points
and their failure is used to establish damage at a certain point; and finally, the Lattice
Models (LMs) [41–44], which are composed of one-dimensional mechanical elements that
connect a set of nodes that may be regularly or irregularly distributed, being their main
advantage the simplicity in the description of the propagation of cracks by eliminating the
mechanical interaction between nodes.

The above-mentioned lattice models present restrictions on the selection of the Poisson
ratio, being this one of the main obstacles to modeling and analyzing a wide range of materi-
als with this type of models. In some LM, the restrictions are related to problems of instabil-
ity caused by obtaining negative stiffness for certain values of the Poisson coefficient [41,45],
while in other models Poisson’s coefficient must be exactly equal to 0.25, in order to ensure
consistent equivalence between the discreet and the continuous isotropic [42].

In this work, a 2D lattice model based on Born elastic potential is presented and
validated with experimental results carried out on PMMA pre-notched specimens under
quasi-static conditions. This model allows to solve the mentioned limitation in the selection
of the Poisson’s coefficient, incorporating also a fracture criterion defined by a bilinear
model with softening that includes the fracture energy in the formulation and allows to
consider a progressive damage. It is important to highlight that vast majority of discrete
models present in scientific literature employ fracture criteria based in models without
considering the progressive damage of the material, due to the extra difficulty that rep-
resents relating the model parameters to the fracture energy. The authors have already
proved in previous works [46–48] the viability of the presented model to study dynamic
crack propagation and branching problems.

This paper is organized as follows: In Section 2, the experimental set-up is shown
defining the mechanical properties of PMMA, the geometry of the specimens and the tests
methodology. Then, the formulation of the lattice model is presented, taking into account
the general equations and the constitutive model, and describing its implementation
in order to reproduce the experimental results. In Section 3, the comparison between
experimental and numerical results is exhibited, demonstrating the predictive capacity of
the proposed discrete model and its accuracy.

2. Materials and Methods
2.1. Experimental Procedure

In this work, both characterization and fracture tests have been carried out, in order
to analyze the fracture behaviour of PMMA. The mechanical properties, used as inputs in
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the numerical implementation, are obtained from uni-axial tension and fracture toughness
tests following the standard ASTM D 50545 [49]. The developed experimental set-ups
are shown in Figure 1, for both conducted tests, carried out in an computer-controlled
INSTRON 8516 universal testing machine and using a 100 kN load cell.

(a) (b)

Figure 1. Experimental set-up for (a) uniaxial tension test and (b) fracture toughness test.

The true stress-true strain curves obtained from the uniaxial tension test are repre-
sented in Figure 2, from where the values of Young’s Modulus and tensile strength are
obtained. These mechanical properties are in agreement with the experimental results
reported by other authors [23,50–52].
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Figure 2. Stress-strain curves obtained from uniaxial tension load.

The fracture energy G f is calculated as a function of the critical strees intensity factor
KIC, the Young’s modulus E and the Poisson ratio ν:

G f =
KIC

E(1− ν2)
. (1)

KIC is defined from the peak load PQ obtained form the fracture toughness experimental
test. Table 1 shows the values of the peak load obtained for each specimen, while Table 2
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presents the global results from uniaxial and fracture tests and some properties obtained
from the data presented in [23].

Table 1. Fracture toughness test results.

Test PQ KIC

01 214.3 N 1.61 MPa
√

m
02 229.2 N 1.73 MPa

√
m

03 206.3 N 1.51 MPa
√

m

Table 2. Mechanical properties of polymethyl methacrylate (PMMA).

Properties Values

Density [23] 1190.0 Kg/m3

Young’s modulus 2842 MPa
Poisson ratio [23] 0.401
Tensile strength 56.8 MPa
Fracture energy 775.37 N/m

Once the characterization of the material has been performed, three-point-bending
tests have also been carried out, using PMMA notched beams submitted to quasi-static
loading conditions. As in the case of those characterization tests, these three-point-bending
tests were performed on a computer-controlled INSTRON 8516 universal testing machine
under displacement-control mode at normal conditions of pressure and temperature.

Figure 3 shows a schematic representation of the geometry and boundary conditions
of the experimental tests. The beam dimensions were 100 mm in width (L), 20 mm in high
(B), and a thickness of 10 mm, while the distance between supports (s) was 80 mm.

Figure 3. Geometry and boundary conditions of the experimental set-up.

Three different initial notch lengths (a = 6, 8, and 10 mm) and four notch eccentricities
(d = 0, 10, 20, and 30 mm) were considered. In order to obtain statistical results, three
specimen for each configuration were tested.

The beams were obtained from a plate of PMMA cut with laser technique, and notched
using a diamond sawing wire, creating a 0.28 mm notch-tip radius. Figure 4 shows a
centered notch specimen during an ongoing three point bending test.
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Figure 4. Three point bending test during crack propagation process.

The results of these three-point bending tests will be shown in Section 3, together with
the results obtained from the numerical model proposed in the present work.

2.2. Description of the Lattice Model

The motion equation used in this work is developed in [46] and implemented in other
works [47,48]. For the sake of completeness, we briefly outline here the general framework
and the final formulation of involved equations.

The equation of elasticity which govern the displacement field u in a linear elastic
homogeneous material [53] is given by

ü = c2
t∇2u + (c2

l − c2
t )grad div u , (2)

where the transverse ct and longitudinal cl speeds of sound are material properties related
to mass density ρ, Young’s modulus E, and Poisson’s ratio ν. In the plane strain case,
as considered in this work, the expressions for the transverse and longitudinal wave
speeds are

ct =

√
E

2ρ(1 + ν)
, cl =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
. (3)

The model proposed in [46] is based on a decomposition of the displacement field in
normal (un) and transversal (ut) components. Hence, the differential equation of motion is
obtained as

ü = c2
l∇2un + c2

t∇2ut . (4)

On the other hand, the discretization method fully developed in [46] yields to Equation (5),
for the case of plane strain conditions and a regular triangular lattice of spacing α (see Figure 5),

üi =
2c2

l
3α2

6

∑
j=1

un
ij +

2c2
t

3α2

6

∑
j=1

ut
ij , (5)

where un
ij = (uij · nij)nij is the vector of normal displacement, and ut

ij is the vector of
transversal displacement, which can be obtained as ut

ij = uij − un
ij, being nij the initial

normal unitary vector pointing from particle i to particle j. Note that Equation (5) is stable
for the entire range of values of Poisson’s ratio.
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Figure 5. Regular triangular lattice of spacing α.

The equations of the model are assembled by enforcing the second Newton’s law at
every node. This procedure results in the subsequent system of equations

Mü + F(t)− P(t) = 0 , (6)

where u represents the vector of generalized nodal displacements, M the mass matrix,
F(t) the vector of internal nodal forces and P(t) the vector of the external nodal loads.
The Equation (6) is integrated in the time domain with the Verlet algorithm [54]. To ensure
numerical errors do not increase dramatically, time increment is defined according to
Courant–Friedrichs–Lewy criterion [55].

Figure 6 shows the stress-strain curve which defines the constitutive model imple-
mented in this work, following the same procedure proposed in [47], where the strain
tensor γkl to each node i is calculated as [41,46–48,56–58]

(γkl)i =
1

6α

6

∑
j=1

(uj − ui)nij + nij(uj − ui) . (7)

Figure 6. Schematic representation of the bilinear constitutive law adopted to each interaction ij.

Thus, the strain tensor which defines each interaction ij is approximated as the mean
value between i and j node tensors.

The damage variable D, for a bilineal problem with linear softening law, is given
by [59]

D(γ̄) = 1− γ0

γ1 − γ0

(
γ1

γ̄− 1

)
, (8)

where γ̄ is the effective strain, while γ0 and γ1 are parameters which define the strain at
the peak stress and at the complete softening stage respectively. The damage variable D
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can assume values between 0 to 1 (D = 0 represents the state of non-damage and D = 1
represents the onset of fracture). The effective strain is defined as

γ̄ =
√
〈γp1〉2 + 〈γp2〉2 , (9)

where γp1 and γp2 are the principal strains and 〈·〉 is the Macaulay bracket.
In order to define the constitutive model, we applied the same methodology that the

classical formulation of the Element Deletion Method (EDM) implemented in FEM [59].
Figure 7 represents the way a crack was treated with FEM and LM. In the first method,
the crack advanced through elements, while in LM the crack crossed interaction bonds.
Note that when a bond was broken the equivalent portion of real cracked material corre-
sponds to the area of influence of the interaction.

(a) (b)

Figure 7. Representation of a crack by deleting (a) elements in finite element method and (b)
interactions in discrete model.

In discrete models as well as in EDM, it was necessary to define a relation between
the surface energy of a crack passing through parallel elements, and the energy associated
to the constitutive model (Figure 6). This energy consistency defined the objectivity of the
constitutive model with respect to the mesh size.

Hence, we needed to equalize the energy dissipated due to the failure of a real portion
of material, with the energy associated to the stress–strain law (shown in Figure 6):

G f hij = g f Ωij , (10)

where G f is the fracture energy, hij is a characteristic dimension, and g f is the specific
energy (energy per unit volume) dissipated during the deformation process:

g f =
∫ ∞

0
σdγ . (11)

In a uni-axial deformation process g f would be, for a given point, the area under the
stress–strain curve at that point. We can rewrite Equation (10) as:

G f hij =
1
2

Eγ0γ1Ωij . (12)

Therefore, we can calculate the critical strain γ1 as:

γ1 =
2G f

Eγ0

hij

Ωij
, (13)
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where G f is the fracture energy and Ωij is the area of influence of the interaction ij
(see Figure 8), given by

Ωij =
α2

2
√

3
. (14)

Figure 8. Influence area of each interaction.

In EDM implemented in FEM no information about the orientation of the crack
surface generally is included [60]. Instead, the use of square or nearly square elements
is common, where the characteristic dimension is adopted equal to the length of the side
of the elements [59]. For simplicity in this work we adopt the parameter hij to be the
minimum dimension of the area of influence to the interaction, as

hij =
α

2
√

3
. (15)

From Equation (13) it is possible to define a coefficient K as the relation between γ1
and γ0

K =
γ1

γ0
=

2G f

Eγ2
0

hij

Ωij
, (16)

where it is necessary to verify that K ≥ 1 to ensure the consistency of the model (γ1 ≥ γ0).
In this way, we can calculate the characteristic length, αcr, which preserves the stability of
the constitutive model as

αcr =
2G f

Eγ2
0

. (17)

In this way, we considered the objectivity by modifying the constitutive law as a
function of cell size.

The numerical model was developed through Matlab software, defining all nodes
positions and connectivities, reproducing the specimen geometry shown in Figure 3.

Figure 9 presents a more detailed view of the lattice model around the notch area,
where it can be seen that the notch is modelled by deleting the nodes localized into it.
The beam is discretized using a cell size of α = 0.25 mm which is defined after a mesh
sensitive analysis, being lower than the characteristic length αcr given by Equation (17).

Notch 
tip

Figure 9. Representation of the lattice discretization near of the beam notch.
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The external load applied on the beam was modelled as an imposed constant velocity
of v = 1 mm/s at the central nodes of the upper face, while the vertical displacement of
the nodes located on the supports was restricted.

In order to guarantee the quasi-static experimental load condition, the adopted velocity
v verify that the maximum kinetic energy is lower than the 5% of the total strain energy,
for all time increments.

3. Results and Discussion

To accomplish the validation of the proposed lattice model for fracture behavior of
PMMA, the experimental measurement of applied force versus displacement was compared
with the reaction force predicted by the numerical simulations. The initial stiffness, peak
loads and crack propagation paths were analyzed and consequent relative errors between
experimental and numerical results were calculated.

Figures 10–13 present the experimental and numerical results, in terms of load-
displacement curves, for all tested specimens with centered and eccentric notches. We can
see that in all cases the curves were described by a bilinear behavior, with a brittle fracture,
both numerically and experimentally. Moreover, it can be stated that numerical predic-
tions were in good agreement with the experimental results assuming the experimental
dispersion obtained for some specific cases.

Table 3 contains the experimental mean values and the standard deviation of the
initial stiffness obtained for each configuration. In this table are included the numerical
results and their percent error. The initial stiffness was calculated by means of a least
square regression line on pre-peak load-displacement zone curve. It can be observed that
the lattice model predicted the initial stiffness with a maximum percent error of 14.2%,
being the average error of all cases around 5.6%. The experiments and the numerical
results showed that the initial stiffness increased with eccentricity and decreased with
notches length.
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Figure 10. Load-displacement curves for centered notch specimens predicted for different notch
lengths a (a) a = 6 mm, (b) a = 8 mm, (c) a = 10 mm.
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Figure 11. Load-displacement curves for a notch eccentricity of d = 10 mm predicted for different
notch lengths a (a) a = 6 mm, (b) a = 8 mm, (c) a = 10 mm.
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Figure 12. Load-displacement curves for a notch eccentricity of d = 20 mm predicted for different
notch lengths a (a) a = 6 mm, (b) a = 8 mm, (c) a = 10 mm.
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Figure 13. Load-displacement curves for a notch eccentricity of d = 30 mm predicted for different
notch lengths a (a) a = 6 mm, (b) a = 8 mm, (c) a = 10 mm.

Table 3. Comparison of the initial stiffness obtained from experimental and numerical analysis.

d [mm] a [mm] Experimental [N/mm] Numerical [N/mm] Error [%]

6 765.9 ± 14.7 821.5 7.3
0 8 695.0 ± 18.2 661.7 4.8

10 502.3 ± 34.4 485.3 3.4

6 818.1 ± 35.8 913.4 11.6
10 8 727.6 ± 63.6 746.5 2.6

10 565.8 ± 82.6 597.9 5.7

6 990.6 ± 43.1 1030.9 4.1
20 8 899.1 ± 37.4 938.4 4.4

10 798.0 ± 26.7 814.0 2.0

6 1214.0 ± 19.1 1386.0 14.2
30 8 1146.4 ± 11.4 1081.0 5.7

10 1026.0 ± 23.8 1043.3 1.7

Table 4 presents the mean peak loads and their standard deviation obtained from
the experiments. Furthermore, as in the previous analysis, the experimental data were
compared with the numerical results and the percent error was presented. Again, it can be
seen that the obtained average percent error considering all analyzed cases was about 7.7%,
with a maximum of 17%. Furthermore, the numerical model captured the same tendency
of the experiments, where the peak load increased with eccentricity and decreased with
notches length.
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Table 4. Comparison of the peak loads obtained from experimental and numerical analysis.

d [mm] a [mm] Experimental PQ [N] Numerical PQ [N] Error [%]

6 370.5 ± 17.6 345.8 6.7
0 8 353.4 ± 26.3 292.8 17.1

10 219.5 ± 9.0 216.6 1.3

6 411.3 ± 19.0 458.6 11.5
10 8 387.2 ± 46.9 356.6 7.9

10 247.6 ± 61.3 266.0 7.4

6 674.5 ± 73.6 699.0 3.6
20 8 522.8 ± 59.7 542.0 3.7

10 393.1 ± 50.9 406.5 3.4

6 1359.9 ± 111.5 1440.4 12.4
30 8 1125.7 ± 55.7 970.8 12.9

10 743.7 ± 40.3 781.1 5

With regard to the crack propagation patterns, Figure 14 compares the patterns ob-
tained with the numerical model and the experimental results, for each notch length and
position. The coloured area represents the envelope of the experimental crack patterns
obtained for each configuration, while the dash line type corresponds with the numeri-
cal results.

(a) (b)

(c)

Figure 14. Crack trajectory obtained with the lattice model (in dashed line) and the envelope area
of the experimental crack patterns for different initial notch lengths a, i.e., green: a = 6 mm, red:
a = 8 mm and blue: a = 10 mm and different notch eccentricity d (a) d = 10 mm, (b) d = 20 mm, (c)
d = 30 mm.
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The obtained results show that the numerical model was able to capture the crack
pattern in the initial fracture process. The difference between the numerical model and
experimental results increased when the crack progressed. However, the experimental
results showed dispersion increased with the crack advance.

Moreover, in order to present a deeper analysis of the results provided by the proposed
model, the initial crack inclination angle θ0 obtained in the crack propagation process for
each and every one of the studied geometries was compared with our own experimental
results and those obtained by other authors. This initial angle was derived from the values
of the stress intensity factor (SIF) in mode I and II.

Munz and Fett [61] defined an analytical expression to calculate these SIFs for the
geometry and boundary conditions studied in this work. The geometrical functions of the
stress intensity factor can be calculated as:

KI = σYI
√

a , (18)

KI I = σYI I
√

a , (19)

being

σ =
2
3

s
dB2 F , (20)

where a, s, B and d are the geometrical parameters defined in Figure 3, F is the ap-
plied load, and YI and YI I are the normalized geometrical functions extracted from [61].
Table 5 presents the values of the SIF for each test specimen.

Table 5. Stress intensity factor in mode I and II.

d [mm] a [mm] YI YI I KI [MPa
√

m] KI I [MPa
√

m]

6 0.0058 - 2.195 ± 0.102 -
0 8 0.0067 - 2.252 ± 0.175 -

10 0.0074 - 1.634 ± 0.067 -

6 1.5114 0.1391 1.445 ± 0.032 0.133 ± 0.003
10 8 1.6895 0.1703 1.114 ± 0.159 0.131 ± 0.019

10 2.0086 0.1988 1.825 ± 0.461 0.108 ± 0.030

6 1.0062 0.1414 1.397 ± 0.153 0.252 ± 0.028
20 8 1.1235 0.1740 1.576 ± 0.180 0.244 ± 0.028

10 1.3343 0.2019 1.911 ± 0.226 0.247 ± 0.029

6 0.5172 0.1314 1.282 ± 0.105 0.530 ± 0.043
30 8 0.5690 0.1688 1.544 ± 0.022 0.548 ± 0.008

10 0.6719 0.1986 1.545 ± 0.081 0.457 ± 0.024

As stated before, Figure 15 compares the initial crack inclination angles θ0 obtained in
this work, with own experimental results and those presented by other authors [62–65].
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Figure 15. Comparative analysis of the initial crack inclination angle as a function of the mixed
fracture mode.

The angle is presented as a function of the dimensionless parameter Me defined as:

Me =
2
π

tan−1
(

KI
KI I

)
. (21)

Note that this parameter is 0 for a pure mode II, and 1 for a pure mode I. Furthermore,
in Figure 15 is presented the analytical curve obtained from the maximum tangential stress
(MTS) criterion developed by Erdogan and Sih [66]:

sen θ0 =
KI I
KI

(1− 3 cos θ0) , (22)

then

θ0 = tan−1

−3KI I

(√
8K2

I I + K2
I + KI

)
3K2

I I + KI

√
8K2

I I + K2
I

 , (23)

The experimental results showed a maximum dispersion of the inclination angle of
about 20◦. Note that this dispersion agreed with the results reported by other authors [67].
Moreover, the numerical results obtained with our model had a good correlation with the
MTS criterion presented by Erdogan and Sih [66]. The experimental data obtained in this
work were lower than the analytical predictions, this difference increased when the Me

parameter decreased.
Therefore, in view of the results shown, it can be concluded that the lattice model

was able to adequately predict the initial stiffness and peak loads, with average percent
errors lower than 8%, and the crack propagation patterns and initial angles on pre-notched
PMMA beams subjected to quasi-static three-point bending tests.

4. Conclusions and Observations

This paper presents experimental and numerical analysis of the quasi-static fracture
behaviour for PMMA, by means of three-point bending tests on specimens with different
initial notch lengths and notch eccentricities.
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A numerical model consisting in a 2D lattice model based on the Born potential has
been developed and validated. The implemented model considers a bilinear constitutive
model, with a linear softening law, considering a progressive damage in the material and
allowing to overcome the limitation in the selection of the Poisson’s coefficient, present in
some other discrete models in the scientific literature.

The validation of the proposed model has been carried out in terms of initial stiffness,
peak load, crack propagation patterns and initial crack inclination angle obtained in the
conducted three-point-bending tests. The numerical results provide an average error of
about 5.6% in the value of initial stiffness, and an average error of about 7.7% in the
value of peak load, for all the tested specimens, showing a good agreement with the
experimental results. With regard to the crack propagation patterns, the numerical model is
able to capture them in the initial fracture process, while the difference between numerical
and experimental results increases as the crack progresses, being also the dispersion
obtained in the experimental results so much greater at these stages. Finally, with regard to
the values of the initial crack propagation angle, the values obtained with the proposed
model have a good correlation with the MTS criterion presented by Erdogan and Sih, being
the experimental data obtained in this work slightly lower than the analytical predictions.

It can be concluded that in view of the results shown, we have developed a lattice
model which allows to select any value of Poisson’s coefficient and is able to predict the
initial stiffness, peak load, crack propagation pattern and initial crack inclination angle of
PMMA specimens with different initial notch lengths and notch eccentricities subjected to
three-point bending tests under quasi-static load conditions.

Future works are required to include a parametric study with the proposed model.
In this way, we can study an upper range of the dimensionless parameter Me and their
effect on the crack inclination angle. Moreover, it could be interesting to include the
plasticity in the constitutive model of the proposed discrete LM, incorporating also strain
rate dependency. Furthermore, the random nature of the material can be studied by using
an aleatory distribution of mechanical properties associated with each bond. Additional
work is also required to extend the proposed model to a general three-dimensional case or
to validate the capability of the lattice model to predict the crack propagation velocities.
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