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Abstract

As metagenomic studies continue to increase in their number, sequence volume and complexity, the scalability of biological
analysis frameworks has become a rate-limiting factor to meaningful data interpretation. To address this issue, we have
developed JCVI Metagenomics Reports (METAREP) as an open source tool to query, browse, and compare extremely large
volumes of metagenomic annotations. Here we present improvements to this software including the implementation of a
dynamic weighting of taxonomic and functional annotation, support for distributed searches, advanced clustering routines,
and integration of additional annotation input formats. The utility of these improvements to data interpretation are
demonstrated through the application of multiple comparative analysis strategies to shotgun metagenomic data produced
by the National Institutes of Health Roadmap for Biomedical Research Human Microbiome Project (HMP) (http://
nihroadmap.nih.gov). Specifically, the scalability of the dynamic weighting feature is evaluated and established by its
application to the analysis of over 400 million weighted gene annotations derived from 14 billion short reads as predicted
by the HMP Unified Metabolic Analysis Network (HUMAnN) pipeline. Further, the capacity of METAREP to facilitate the
identification and simultaneous comparison of taxonomic and functional annotations including biological pathway and
individual enzyme abundances from hundreds of community samples is demonstrated by providing scenarios that describe
how these data can be mined to answer biological questions related to the human microbiome. These strategies provide
users with a reference of how to conduct similar large-scale metagenomic analyses using METAREP with their own sequence
data, while in this study they reveal insights into the nature and extent of variation in taxonomic and functional profiles
across body habitats and individuals. Over one thousand HMP WGS datasets and the latest open source code are available
at http://www.jcvi.org/hmp-metarep.
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Introduction

Several large scale metagenomic studies have been completed or

are underway to investigate the genetic composition of microbes in

their natural environment. Prominent efforts include the Global

Ocean Sampling [1–3], interrogations of a variety of diverse

environments [4–6] and more recently the human microbiome

[7,8]. Increasingly such work is planned and carried out as part of

larger consortia and funding efforts. Examples include MetaHIT

[7], the Earth Microbiome Project [9], http://www.terragenome.

org, and the HMP [10]. The HMP, represents an effort to

characterize the microbial communities associated with multiple

habitats across the human body, and is an excellent example of the

complexity, scale and nature of such projects and consortia. With

its focus on the resident bacteria of so called normal donors, this

project provides a critical baseline for future metagenomic studies

of the human microbiome including their associations with human

health and disease. As a multi-faceted community resource, the

HMP includes taxonomic marker studies of 16S rRNA gene

sequences [11] as well as a whole genome shotgun (WGS) data

survey [10,12–15]. This WGS metagenomic data survey has

examined the taxonomy and functional potential of microbial

communities from 741 samples taken from up to fifteen body

habitats of 108 healthy adult men and women generating in total

approximately 38 billion short read sequences (3.5 Tbp) of which

over 14 billion sequences were processed and analyzed as a part of

this study. This information is complementary to 16S rRNA gene

based organismal identifications and other taxonomic marker

sequences, however the task of annotating and characterizing large

collections of such data is similarly challenging.

To identify taxonomic and functional signatures, WGS

metagenomic data are curated by either directly annotating short

reads [16,17] or, as would be performed for the sequenced

genome of a single organism, annotated post assembly taking

advantage of the larger contigs [18]. Annotation of these data is a

computationally intensive activity, which requires extensive

BLAST-like homology searches that can be difficult both to

perform and store. Fortunately, billions of short sequence reads
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can be most usefully analyzed after condensing the data to

taxonomic, enzymatic, and/or pathway abundances, which can

subsequently be studied more efficiently.

To provide a computational framework within which to

perform such tasks, we have developed JCVI Metagenomics

Reports (METAREP), an open source tool for high-performance

comparative metagenomics [19]. The software utilizes a scalable

data warehouse solution that allows effective storage and dynamic

querying of annotation data that can be produced by various

annotation methods. The data model of METAREP version 1.3.1,

presented in this report, has been expanded to allow the direct

importation and analysis of results produced by two annotation

pipelines used in the HMP: (1) JCVI’s Prokaryotic Metagenomics

Annotation Pipeline (JPMAP) [18] used for the annotation of open

reading frames from assemblies and (2) HUMAnN [16] to

annotate short reads. In addition, frequencies of functional and

taxonomic attributes can be adjusted using custom annotation

weights. The scalability of such weighted frequency calculations

has been improved by utilizing distributed searches.

In this study, we present advancements to the METAREP

software focusing on the implementation of an extended data

model, improved scalability and analytical features which have

facilitated biological comparisons and interpretation of human

microbiome metagenomic data generated by the HMP across

multiple samples, body habitats and individuals. In particular, we

introduce several biological scenarios and hypotheses along with

appropriate analytical strategies designed to investigate these

questions as well as demonstrate important downstream, analytical

features of METAREP including: how to filter the data for

enzymatic markers, visualize marker composition across organisms

and human habitats, conduct hierarchical clustering analysis of

individual samples, and carry out non-parametric statistical

analyses to detect differentially abundant taxa and pathways in

oral habitats. The results of these scenarios provide templates of

analytical strategies for future users of METAREP that can be

applied to similar data. Further, the results of the current scenarios

have revealed new insights into the taxonomic and functional

relationships between multiple body habitats and individuals of the

human microbiome. Finally, we also provide specific descriptions

of software architecture improvements and results of tests designed

to benchmark performance response time of the software. Overall,

this work introduces an important software tool and strategies for

comparative analysis of large-scale metagenomic data generated

from complex experimental designs.

Results

Human Microbiome Case Study
For this case study, we have established a dedicated instance of

our software (version 1.3.1) to host HMP WGS annotations at

http://www.jcvi.org/hmp-metarep. The HMP METAREP in-

stance currently allows interactive data analysis of over 400 million

weighted gene annotations predicted from 14 billion short-reads

by HUMAnN as well as ORF-based annotations predicted from

over 700 assemblies by JPMAP (Table 1). Each annotation entry

may possess multiple attributes. Supported attributes range from

organismal information (NCBI taxonomy), to functional descrip-

tion, Enzyme Classification (EC), Gene Ontology (GO) [20] or

KEGG Orthology (KO) [21] as well as KEGG and MetaCyc [22]

pathway assignments. In addition, each annotation may be given a

weight to adjust its overall abundance (see Methods section for

dynamic weighting algorithm). Although outside the scope of the

software, for completeness a brief description of the HMP WGS

sequence generation, preprocessing, and annotation is summa-

rized in the Methods section. After successful installation of the

software, annotations can be imported and analyzed.

In this report, we focus on analytical functions available through

the METAREP Compare page which allows users to filter and

compare multiple datasets and visualize differences using ad-

vanced visualization tools (Figure 1). Compare options include the

Table 1. Summary of available datasets by body habitat sorted by the number of WGS reads.

Habitat #HUMANnN #Reads #Weighted Annotations Sum of Annotation Weights #Assembly

Datasets [million] [million] [million] Datasets

Stool 68 6262 78 1563.8 151

Supragingival plaque 89 4192 112 1538.0 118

Buccal mucosa 116 1449 104 731.8 107

Tongue dorsum 23 1182 28 501.8 129

Right retroauricular crease 17 412 13.0 168.8 17

Posterior fornix 55 297 15 110.0 53

Anterior nares 91 164 38 38.5 87

Subgingival plaque 7 150 9 48.6 7

Left retroauricular crease 8 145 6 63.7 9

Palatine tonsils 6 135 6 54.7 6

Throat 6 129 6 53.1 7

Keratinized gingiva 2 45 2 23.9 6

Saliva 5 43 5 16.8 3

Vaginal introitus 3 6 1 1.8 3

Mid vagina 2 2 1 0.7 2

Total 498 14613 424 4916.0 705

Columns 2–5 refer to the HUMAnN datasets.
doi:10.1371/journal.pone.0029044.t001

Human Microbiome Case Study Analysis Using METAREP
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generation of absolute and relative count summaries, hierarchical

clustering, heatmaps, and multi-dimensional scaling plots, as well

as the execution of statistical tests. Plots can be exported as

publication ready PDF files while counts, distances matrices, and

statistical results can be exported as text files. In the following, we

describe three biological scenarios to highlight how these compare

functions can be used for exploratory analysis of the weighted

HUMAnN read based annotations.

Scenario 1: Enzymatic Markers Contrasted Across Body
Habitats and Taxa

Scenario 1 Introduction. Pyruvate is a key organic carbon

intermediate centrally positioned at the intersection of assimilatory

and dissimilatory pathways, and respiratory and fermentative

metabolism [23]. As such, it can be expected to be important in

the metabolism of the human microbiome. However, the specific

enzymatic processes used for its metabolism and taxonomic

membership are likely to vary across body habitats. To evaluate

this hypothesis, three major enzymes of pyruvate metabolism: 1)

pyruvate dehydrogenase complex (PDHC) [24] 2) pyruvate:ferre-

doxin oxidoreductase (PFOR) [25] and 3) pyruvate formate lyase

(PFL) [26] have been examined for their relative abundance by

taxonomic profiles and compared across multiple body habitats.

A common route of pyruvate metabolism is oxidative decar-

boxylation catalyzed by PDHC to yield the central intermediate

acetyl-coenzyme A (CoA), which can be further oxidized through

the TCA cycle, or used in anabolic pathways for synthesis of

essential cell components, or carbon and energy storage

compounds. The PDHC belongs to the family of 2-oxoacid

dehydrogenase which consists of multi-subunit complexes respon-

sible for the irreversible conversion of 2-oxoacids to their

corresponding acyl-CoA derivatives. The PDHC is composed of

three subunits, component E1, pyruvate dehydrogenase (1.2.4.1),

component E2, dihydrolipoyl transacetylase (2.3.1.12) and com-

ponent E3, dihydrolipoyl dehydrogenase (1.8.1.4) [27]. A key

enzymatic counterpart to the PDHC in energy metabolism under

anaerobic conditions is PFOR (1.2.7.1) which catalyzes a

reversible, CoA-dependent oxidative decarboxylation of pyruvate

yielding acetyl-CoA and CO2. As a reversible reaction, this

enzyme also mediates the main CO2 fixing reaction for

methanogens and a variety of photosynthetic organisms [28]. In

contrast, some bacteria are capable of fermentation in which

organic intermediates of metabolism such as pyruvate, serve as

Figure 1. Screenshot of the METAREP Compare Page. The Compare page allows users to filter, compare and visualize annotation attributes
across multiple datasets. As illustrated in the upper panel, the user can find and select datasets of interest (here pooled body habitats were selected).
The middle panel illustrates filter and compare options (here datasets were filtered for the pyruvate dehydrogenase complex and the heatmap plot
option was selected). The bottom panel shows the compare results and allows users to switch between annotation attributes and specify its level of
granularity (here the taxonomy attribute and phylum level were selected).
doi:10.1371/journal.pone.0029044.g001
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electron acceptors in the maintenance of overall redox balance;

while ATP needed for cell growth is derived from substrate-level

phosphorylation. PFL (2.3.1.54), a homodimer, catalyzes the

reversible reaction of pyruvate and CoA into acetyl-CoA and

formate [29].

Scenario 1 METAREP Analytical Methods. To undertake

a comparison of the distribution of these three enzymes across

body habitats, analytical functions available through the ME-

TAREP Compare page (Figure 1) were employed. To compare

the distribution of pyruvate metabolism by taxonomy we filtered

pooled datasets from 13 body habitats (n = 493 HUMAnN

datasets; 97 donors) for the three pyruvate metabolism enzymes

(PDHC, PFOR, PFL) and compared their abundance across

taxonomy at the phylum level (see Methods section for details of

the filter queries) with multiples distance metrics (Euclidean, Bray-

Curtis and Morisita-Horn) to examine the subsequent cluster

topologies for consistency. The absolute weighted count matrices

(phyla versus body habitats) for each marker enzyme can be found

in Table S1. For all of the distance metrics used consistent

dendrogram topologies were recovered for all 13 PFOR, 12

PDHC and 10 PFL filtered body habitats (Figure S1). Heatmap

plots with dendograms using the Morisita-Horn distance metric

are shown in Figure 2.

Scenario 1 Results. Results of the PDHC analysis recovered

a total of 39 phyla indicating the broad taxonomic distribution of

this enzyme complex across prokaryotes and eukaryotes. However,

the vast majority of the total abundance (94%) was contributed by

five phyla, Actinobacteria (29%), Firmicutes (27%), Proteobacteria

(24%), Bacteroidetes (12%) and Fusobacteria (2%). The remaining

6% of the total abundance was contributed by the remaining 34

phyla, with each classification contributing ,1% towards the total

abundance. The majority of oral habitats, especially the saliva,

palatine tonsils, and throat, along with the tongue dorsum,

keratinized gingivae, and buccal mucosa clustered together with

the posterior fornix to form a cluster driven by high relative

abundances of Firmicutes (range 66%–29%) and Proteobacteria

(range 12%–47%) (Figure 2a). The anterior nares was positioned

mostly closely to the right and left retroauricular crease in a cluster

with high abundance of Actinobacteria (range 59%–84%). The

subgingival and supragingival plaque formed a separate cluster

that was placed most closely to the anterior nares and skin cluster

due to variation in the abundance of several phyla, while stool was

the most distantly related habitat due to the high abundance of

Bacteroidetes (57%).

The analysis of PFL recovered 15 phyla in total, of which 97%

of the total abundance was contributed by six phyla, Firmicutes

(50%), Proteobacteria (26%), Bacteroidetes (10%), Actinobacteria

(7%), Fusobacteria (2%) and Cyanobacteria (2%). The remaining

3% of the total abundance was contributed by the remaining nine

phyla, with each classification contributing ,1% towards the total

abundance. A cluster of oral cavity habitats including palatine

tonsils, saliva, throat, tongue dorsum, supragingival and subgin-

gival plaque were recovered in which approximately 50% of the

abundance from the body habitat in question was attributed to

Firmicutes (range 43%–59%) and approximately one-third to

Proteobacteria (range 31%–35%) (Figure 2c). The remaining oral

cavity habitats (keratinized gingivae and buccal mucosa) clustered

most closely with the right and left retroauricular crease based

largely on increased abundance of Firmicutes in these habitats

(range 70%–88%). The posterior fornix clustered closest to the

skin based in part on a relatively high and similar abundance of

Firmicutes (60%) while the anterior nares and stool were the most

distantly related body habitats. Although they exhibited similar

abundances of Firmicutes (45% anterior nares, 46% stool) they

were separated from one another, and the remaining body

habitats based on the relatively high abundance of Actinobacteria

for anterior nares (32%, highest of all body habitats) and

Bacteroidetes in stool (26%, highest of all body habitats) along

with variation in other phyla.

In contrast to PDHC and PFL, the analysis of the PFOR

recovered a more variable clustering of body habitats within major

body regions and very different taxonomic patterns (Figure 2b). In

this analysis, 14 phyla were recovered in total of which 95% of the

total abundance was contributed by seven phyla, Firmicutes

(27%), Euryarchaeota (25%), Crenarchaeota (20%), Proteobac-

teria (10%), Thermotogae (9%), Actinobacteria (2%) and Dictyo-

glomi (2%). The remaining 5% of the total abundance was

contributed by the remaining seven phyla, with each classification

contributing ,1% towards the total abundance. The majority of

the oral cavity sites, saliva, palatine tonsil, throat, buccal mucosa

and supragingival plaque along with stool form one cluster with

the highest abundance from Firmicutes and higher abundances of

Thermotogae (range 7%–10%) relative to the remaining body

habitats. The remaining body habitats revealed the highest

abundances in Euryarchaeota and to a lesser extent Crenarch-

aeota. The left and right retroauricular crease samples were most

distantly related to all other body habitats and were dominated by

members of the Crenarchaeota (81% and 73%, respectively).

Scenario 1 Discussion. The abundances and taxonomic

distributions recovered between these three enzymes varied across

body habitats; however certain habitats were more likely to be

found clustered together and this result was consistent regardless of

distance metric used, suggesting closer taxonomic and functional

relationships between them. The palatine tonsils and throat which

are in close physical proximity within the oral cavity, along with

saliva which contacts the entire oral cavity [15], were most

consistently clustered together (e.g., have the shortest distances

between them) and were most consistently clustered with other

habitats from the oral cavity. The subgingival and supragingival

plaque which are both biofilms associated with teeth, and the right

and left retroauricular crease which are physically disparate from

one another, but represent the same skin type [15], were also

clustered closest to one another (with the exception of the plaque

samples in the PFOR analysis). However their topological

positions relative to other habitats from the same body region

(oral cavity and anterior nares, respectively) were not consistent

regardless of distance metric or clustering algorithm used.

The remaining oral cavity (keratinized gingivae, buccal mucosa,

tongue dorsum), stool, anterior nares and posterior fornix

exhibited the most variable placement in terms of cluster topology.

Taken together, these results suggest that metabolic function can

vary across regions of the body and that physical proximity

(whether close or separated by relatively greater distances) is not

necessarily the most important indicator of taxonomic profile

similarity based on the use of functional gene abundance as a

biomarker. Instead different habitats can exist within and between

body regions that exhibit variable community structure. The

exploration of more refined definitions of habitat may be necessary

to improve our understanding of microbial biogeography in

humans.

In all cases, the taxonomic profiles revealed that the majority of

the relative abundance was recovered within a few phyla (5–6).

Conversely, more lineages were recovered with low abundance

including at least one phylum from the Domain Eukaryota in each

example presented. This finding when using functional genes as

biomarkers has to our knowledge not been established previously

in investigations of the human microbiome. An unusual finding

from the examination of the PFOR profiles was the relatively high
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abundance of Crenarchaeota and Euryarchaeota recovered from

the skin habitats as there are few reports of archaea associated with

the skin and to our knowledge has not been reported previously

using a metabolic marker. The PFOR profile also revealed the

presence of lineages less well studied in terms of their associations

with humans such as the Thermotogae.

Collectively, these results suggest important new biological

insights including: a) the clustering patterns of taxonomic

abundance derived from functional genes are not always consistent

even when body habitats from similar regions of the body are

considered b) the presence of relatively high abundance of

Crenarchaeota and Euryarchaeota associated with skin as

determined by a metabolic marker (PFOR) and c) that although

many lineages (e.g. Thermotogae and the Archaea) may be less

prevalent in terms of total abundance within the human

microbiome they nonetheless represent an important reservoir of

genetic diversity.

Scenario 2: Sample Variation of Body Habitats and
Individuals Across Taxa and Pathways Over Time

Scenario 2 Introduction. The nature and extent of variation

within and between individuals and body habitats over time is an

important topic of study in human microbiome research [30].

Previous studies based on 16S rRNA gene based taxonomic

surveys have suggested that microbial community taxonomic

profiles were determined largely by body habitat however,

interpersonal variability was high within body habitats [31]. More

recently, from a metagenomic survey of the human gut

microbiome it was suggested that individuals can be grouped

based on primarily taxonomic composition and to a lesser extent,

functional profiles [7]. Data sets produced by the HMP provide an

important opportunity to continue these investigations. Here we

hypothesize that although taxonomic and functional composition

is expected to vary between samples from different individuals and

over time, those samples taken from the same body habitats will be

more similar to one another.

Scenario 2 METAREP Analytical Methods. The software

provides several options to quantify and visualize sample variation

that can be used to test this hypothesis. To examine this question

and to highlight the hierarchical clustering functionality of

METAREP, the variation of taxonomic and pathway composition

within and across body habitats and individual donors over two

time points was investigated. Data sets from 37 donors (24 males,

13 females) over two sampling time points and 15 body habitats

were investigated (84 first and second visit sample pairs, n = 168).

A full complement of first and second visits from all 37 individuals

across all body habitats was not available. Therefore, certain body

sites have a greater contribution of donors with two visits. A

breakdown per body site can be found in Table S2.

Datasets were clustered based on taxonomy at the Family level,

and function using KEGG pathways. Dendrograms were

produced using the Morisita-Horn distance metric in combination

with the average linkage clustering algorithm. Initially all samples

were clustered in order to visualize the overall patterns produced

from these data sets (Figures S2 and S3). For easier visualization of

the significant trends determined from the larger data set, a subset

of samples (24 first and second visit sample pairs, n = 48) was also

clustered (Figure 3). This subset consisted of two sampling time

points from 12 males and 12 females taken from five body habitats

(Table S2).

Scenario 2 Results. The resulting dendrograms (Figure 3,

Figures S2 and S3) showed that the majority of samples cluster

together based on body habitat using both the taxonomy and

functional data sets. The dendrogram topology by taxonomy

(Figure 3a, Figure S2) was relatively more consistent in grouping

samples from identical or similar body habitats compared to that

recovered by function (Figure 3b, Figure S3) in that oral sites were

closest to one another followed by samples from the anterior nares,

skin and finally vagina and stool. In contrast, the stool, anterior

nares and posterior fornix samples produced more variable

clustering by function (Figure 3b, Figure S3).

However, exceptions to consistent clustering of samples by body

habitat were found within both the taxonomic and functional

analyses. For example, the oral cavity sites are dominated by two

large clusters, one for supragingival plaque (Figure 3a SP Cluster

1, Figure 3b SP Cluster 2, Figures S2 and S3) and a second for

buccal mucosa (Figure 3a BM Cluster 1, Figure 3b BM Cluster 2,

Figures S2 and S3). However, in both conditions, there are

examples of buccal mucosa samples which cluster with the

supragingival plaque and vice versa (Figure 3a SP Cluster 1,

Figure 3b SP Cluster 2, Figure 3a BM Cluster 1, Figure 3b BM

Cluster 2, Figures S2 and S3) In the dendrogram by function, the

anterior nares samples were placed in several locations, including

clusters closest to supragingival plaque, (Figure 3b AN Cluster 2),

stool (Figure 3b AN Cluster 3) and posterior fornix (Figure 3b AN

Cluster 4). Stool samples were broken into three clusters (Figure 3b,

ST Cluster 3, ST Cluster 4, ST Cluster 5) with the majority in

clusters closest to the anterior nares and posterior fornix (Figure 3b,

ST Cluster 4, ST Cluster 5), while two of the samples (Figure 3b

ST Cluster 3) were placed closest to anterior nares and buccal

mucosa (Figure 3b AN Cluster 3, BM Cluster 2). For the oral

cavity body sites with low representation (throat, palatine tonsils,

saliva, subgingival plaques, and tongue dorsum) in general it was

more difficult to determine the robustness of sample placement

within the oral cavity. However, the subgingival plaque samples

were always clustered with supragingival plaque in both the

taxonomy and functional dendrograms (Figures S2 and S3).

Examination of the temporal component in the dendrograms

revealed that for both taxonomy and function in the majority of

instances, the first and second time point from a particular

individual and body site were not the closest samples to one

another. However, these samples were generally found within

the same cluster. Data based on the 48 pairwise Morisita-Horn

differences strongly supported that differences between first and

second time points were significantly lower when compared to

all pairwise distances (one sided Wilcoxon rank-sum test p-

valuev0:00001). Nevertheless there were notable exceptions.

For example, in both the taxonomy and function dendrogram

the placement of the posterior fornix sample from the first time

point from individual 159227541 (Figure 3a PF Cluster 1,

Figure 3b PF Cluster 3) is closest to stool samples (Figure 3a ST

Cluster 1, ST Cluster 2, Figure 3b Cluster ST 3), while the

second time point from this habitat and individual is closet to

other posterior fornix samples (Figure 3a PF Cluster 2, Figure 3b

PF Cluster 4, PF Cluster 5). In both the taxonomy and function

dendrogram, the first and second time points from the anterior

Figure 2. Heatmap plots of three enzymatic markers. Marker abundance is contrasted across phyla (columns) and body habitats (rows) using
Morisita-Horn distances in combination with the average linkage clustering method. Colors encode the relative abundance of the selected feature-
dataset combination (dark red 0% to white 100%) while the dendograms at the top and left show annotation feature and dataset differences,
respectively.
doi:10.1371/journal.pone.0029044.g002
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nares from individual 765560005 are not placed closest to one

another. In fact, while the first time point is grouped with other

anterior nares samples in the function dendrogram, (Figure 3a

AN Cluster 1) the second time point is closer to a posterior

fornix and stool samples. (Figure 3b Cluster AN 4). In contrast,

by taxonomy, although both samples were not closest to one

another, they were placed in a cluster of anterior nares samples

(Figure 3a AN Cluster 1).

Figure 3. Hierarchical cluster plots of 48 samples taken from 12 females and 12 males at two different time points. Hierarchical
clustering analysis of a random subset of human microbiome samples taken from five human body regions clustered by NCBI taxonomy at the family
level (a) and by KEGG pathways (b). Clusters were generated by the average linkage clustering method using the Morisita-Horn index to generate a
distance matrix (shown on the x-axis). Dataset labels encode the following information [donor ID]-[habitat]-[gender]-[time point]-[sample ID]-
[annotation-type]. For example, the dataset label 159814214-an-m-2-SRS047225-mtr encodes a sample from a male donor (ID 159814214) taken from
the anterior nares site at time point 2 with sample ID (SRS047225) annotated by the metabolic reconstruction (HUMAnN) pipeline (mtr). The dotted
line represents the level at which the tree was cut for analysis. The resulting clusters are labeled as follows: AN (anterior nares), BM (buccal mucosa),
SP (supragingival plaque), ST (stool), and PF (posterior fornix).
doi:10.1371/journal.pone.0029044.g003
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Scenario 2 Discussion. In this scenario, taxonomic and

functional compositions varied across individuals, body habitats

and time although variation within a body habitat was generally

less than between habitats as evidenced by the generally consistent

clustering of samples by habitat. Exceptions were found which

suggest that groups of individuals may exist in which microbiome

compositions are more similar to one another and that discrete

groups of such individuals could be recovered with taxonomic or

functional data. This finding requires more investigation but has

important implications concerning the ability to use taxonomic

and functional profiles to group individuals. The topology

recovered was more variable for function compared to taxonomy.

Further, these results suggest that with some notable exceptions,

there is generally modest variation in both taxonomy and function

in the microbiome within an individual over time. These results

could be influenced by technical factors such as some differences in

sample coverage, or the relatively greater difficulty of accurately

assigning ORFs to pathways compared to taxonomic classifica-

tions. Collectively, these results suggest important new biological

insights including a) that taxonomy and function are not

necessarily coupled, b) that the microbiome can vary across

individuals, habitats and time and c) although variation between

individuals tends to be higher than between body habitats it may

be possible to use taxonomic and functional profiles to group

individuals.

Scenario 3: Detection of Differentially Abundant Taxa and
Function between Three Oral Habitats

Scenario 3 Introduction. The human oral cavity consists of

a variety of surfaces and environments which are colonized by

distinct communities of microbial organisms [32]. In the HMP,

body habitats sampled from the oral cavity include the buccal

mucosa which is the epithelial lining of the cheek and lips, the

tongue dorsum, or papillated surface of the tongue, and

supragingival plaque which is a biofilm on the tooth surface

above the dentogingival junction [10,15]. Surveys of diversity

based on 16S rRNA gene based taxonomic profiles have indicated

that over 600 taxa at the species level are found extensively in the

human microbiome [33]. Metagenomic data from the HMP now

provides an opportunity to extend these analyses beyond 16S

rRNA gene based surveys to examinations of taxonomic and

functional profiles of distinct habitats from the normal oral cavity.

As suggested in previous studies of the oral cavity, and results from

Scenarios 1 and 2 in this study, we hypothesize that statistically

significant differences in microbial diversity and function are

present in HMP metagenomic data from the oral cavity.

Scenario 3 METAREP Analytical Methods. To test this

hypothesis an analysis was undertaken to determine statistically

significant differences in pathways and their associated taxonomic

distributions. Specifically, three oral habitats were investigated: 1)

buccal mucosa (n = 116), 2) the tongue dorsum, (n = 23) and 3)

supragingival plaque (n = 89). These three oral body habitats were

selected since they have the greatest representation of WGS data

sets in the oral cavity and together constitute more than one fourth

of all HMP metabolic reconstruction datasets (Table 1).

The METAREP Compare page (Figure 1) offers two non

parametric tests, the Wilcoxon rank-sum test and Metastats, a

modified non parametric t-test [34]. Both tests can be used to

identify significant differences for a certain annotation attribute

between two sample populations. For this scenario, all possible

pair wise comparisons between habitats were compared based on

taxonomic designations at the phylum level and metabolic

functions at the pathway level (Figure 4). A filtering step was

applied to this analysis in which ORFs classified as Chordata were

removed to eliminate ORFs most likely associated with the human

host. This amounted to 0.5% of the three pooled oral habitat

datasets. The ability to easily filter using a variety of data set

variables demonstrates one of the strengths of METAREP. The

statistically significant phyla and pathways determined from both

tests were exported as text files(Bonferroni corrected (adj.) p-

value,0.05, 10000 Metastats permutations, Table S3 and S4).

Scenario 3 Results. Pair wise comparisons of the three oral

habitats revealed two significant trends in taxonomic profiles

supported by both statistical tests (adj. p-value,0.01). Significant

differences were determined in the abundances of the Firmicutes,

with this phyla being most abundant in the buccal mucosa,

followed by the tongue dorsum, and least abundant in the

supragingival plaque habitats. The second significant trend could

be seen in the abundance of Actinobacteria. The data supported a

decrease in the abundance of Actinobacteria from its highest value

in the supragingival plaque, followed by tongue dorsum, to its

lowest value in the buccal mucosa (Wilcoxon adj. p-value,0.01).

This trend was also supported at the same level of significance by

Metastats except for the comparison of buccal mucosa versus

tongue dorsum (Metastats adj. p-value = 0.113). In addition to

these trends, both tests indicated that Bacteriodetes were

significantly less abundant (adj. p-value,0.01) in buccal mucosa

when compared to the other habitats. No significant difference in

the abundance of Bacterioidetes could be observed between the

tongue dorsum and supragingival plaque, however (Wilcoxon adj.

p-value = 0.733; Metastats adj. p-value = 0.097).

Pair wise habitat comparisons of pathway attributes revealed

differences in their distribution and abundance. In general fewer

pathways revealed statistically significant differences in abundance

using the Metastats versus the Wilcoxon rank-sum tests, respec-

tively. Supragingival plaque had the highest overall number of

enriched pathways (Table 2).

Among the key differences supported by both statistical tests

were those determined in the abundance of metabolic functions

related to antibiotic biosynthesis, pathogenesis and N-glycan

biosynthesis (Table 3). For example, the abundances of KEGG

pathways related to tetracycline biosynthesis (ko00253), penicillin

and cephalosporin biosynthesis (ko00311), and butirosin and

neomycin biosynthesis (ko00524) was enriched in buccal mucosa

relative to supragingival plaque, conversely biosynthetic pathways

related to vancomycin group antibiotics (ko01055), streptomycin

biosynthesis (ko00521) and novobiocin were elevated in the

supragingival plaque relative to the buccal mucosa. Several

differences in pathways related to pathogenesis were also revealed.

For example, the pathway describing Staphylococcus aureus infection

(ko05150) was found to be significantly enriched in the buccal

mucosa relative to the supragingival plaque, while epithelial cell

signaling in Helicobacter pylori infection (ko05120) was elevated in

the tongue dorsum relative to supragingival plaque. N-linked

protein glycosylation biosynthesis (ko00510) was enriched in

supragingival plaque versus buccal mucosa.

Scenario 3 Discussion. Based on the number of pathways

which differ in abundance, results from this investigation suggest

that the metabolic potential of the buccal mucosa and tongue

dorsum are more similar to one another, relative to the supragingival

plaque. These differences are also generally consistent with the

significant trends determined in the pair wise comparisons of

taxonomic profiles in which changes in abundance in Firmicutes and

Actinobacteria were greatest between buccal mucosa and tongue

dorsum relative to supragingival plaque. These findings may in part

be due to the differences in body habitat, for example, the buccal

mucosa and tongue dorsum represent microbial communities

associated with epithelial cells which are shed over time from soft
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Figure 4. Screenshots of METAREP statistical result panels. List of phyla and pathways that are differentially abundant between the buccal
mucosa (n = 116) and supragingival plague (n = 89) habitats. Taxonomic differences reported by Metastats with confidence intervals (m̂m+s:e:(m̂m))
shown in (a), differences in KEGG pathway abundance detected by the Wilcoxon rank-sum test are shown in (b).
doi:10.1371/journal.pone.0029044.g004

Table 2. Number of pathways that are differentially abundant for each statistical test and oral habitat combination.

Wilcoxon Buccal Mucosa Tongue Dorsum Supragingival Plaque Total (redundant)

buccal 0 39 52 91

tongue 122 0 22 144

plaque 193 123 0 316

Metastats Buccal Mucosa Tongue Dorsum Supragingival Plaque Total (redundant)

buccal 0 41 62 103

tongue 54 0 28 82

plaque 133 113 0 246

Rows indicate the habitat in which pathways were significantly overrepresented. Columns indicate the habitat in which pathways were significantly underrepresented.
For example, the Wilcoxon rank-sum test found 39 pathways to be enriched in buccal mucosa when compared with tongue dorsum.
doi:10.1371/journal.pone.0029044.t002
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tissue while the supragingival plaque represents a biofilm adhered to

a non-shedding hard surface [35], however this is a result which

warrants further investigation.

The differences in pathway distribution determined in this

analysis further provide new insights into additional biological

drivers related to host-microbial interactions that may play a role

in the functional and taxonomic profiles of the microbiome

recovered within and between these habitats. First, these results

suggest that the ability to synthesize a variety of antibiotics is a

function present in the oral microbiome; however this pattern

differs between the body habitats examined. The interplay

between antibiotic synthesis and resistance in microbial commu-

nities has been described as biological warfare where specific

antibiotic activity is opposed by resistance determinants and the

state of microbial metabolism plays a role in antibiotic suscepti-

bility [36]. Thus, antibiotic production is an important control

factor of the colonization and maintenance of microbial commu-

nity membership, and metabolic function. Next, these results

further suggest that even in the oral cavity of normal adult

individuals as examined in the HMP, pathways associated with

pathogenesis are present in a range of abundances by habitat.

These pathways in general share general functions such as surface

attachment and invasion of epithelial cells indicating the possible

presence of opportunistic pathogens and more generally the

presence of microbial mechanisms for colonization of habitats in

the human host.

Finally, the glycosylation of proteins is an important, conserved

posttranslational modification in eukaryotic organisms including

secretory and membrane proteins [37]. Originally described as

exclusive to eukaryotes, recent studies have determined their

presence in all domains of life [38]. In this study, this pathway

revealed a wide taxonomic distribution across eukaryotes (14 phy-

la) and prokaryotes (19 phyla) however the vast majority (87%) of

the abundance of this pathway was determined to be prokaryotic

in origin. In bacteria these pathways have been best studied in

pathogens where it has been suggested that they are involved in

adherence and invasion of eukaryotic cells [39]. The mechanism

of N-linked glycosylation is known to occur largely on surface

exposed glycoproteins, therefore other functions for these proteins

suggested include protection against proteolytic cleavage, en-

hancement of protein stability or signals for cellular sorting [38].

The presence of differentially abundant pathways of antibiotic

production, pathogenesis and N-linked protein glycosylation

biosynthesis as determined in this scenario, reveal potentially

important control factors of colonization and maintenance of

microbial community membership, metabolic function and host

interaction in oral habitats. Collectively, these features described

here, may in part act as drivers of microbiome community

Table 3. Selection of KEGG pathways found to be differentially abundant in three oral habitats sorted by the ratio of the median
abundances.

Ko ID Pathway %Median A %Median B
Median Ratio
A/B

Wilcoxon adj.
p-value

Metastats adj.
p-value

A = buccal mucosa (n = 116) B = supragingival plaque (n = 89)

05150 Staphylococcus aureus infection 0.2851 0.1232 2.314 ,0.000001 0.0282

00311 Penicillin and cephalosporin biosynthesis 0.063 0.036 1.75 ,0.000001 0.0282

00253 Tetracycline biosynthesis 0.2699 0.1888 1.43 ,0.000001 0.029

00524 Butirosin and neomycin biosynthesis 0.0647 0.0532 1.216 ,0.000001 0.0284

00521 Streptomycin biosynthesis 0.3746 0.4651 0.805 0.000299 0.0284

05120 Epithelial cell signaling in Helicobacter pylori infection 0.1034 0.1338 0.773 ,0.000001 .0.05

01055 Biosynthesis of vancomycin group antibiotics 0.0873 0.1276 0.684 ,0.000001 0.029

00510 N-Glycan biosynthesis 0.0179 0.0637 0.281 ,0.000001 0.0299

A = buccal mucosa (n = 116) B = tongue dorsum (n = 23)

05150 Staphylococcus aureus infection 0.2851 0.1232 2.314 ,0.000001 0.028

00311 Penicillin and cephalosporin biosynthesis 0.063 0.036 1.75 ,0.000001 0.0282

00253 Tetracycline biosynthesis 0.2699 0.2083 1.296 ,0.000001 0.0289

01055 Biosynthesis of vancomycin group antibiotics 0.0873 0.0993 0.879 0.00598 0.0289

00521 Streptomycin biosynthesis 0.3746 0.4651 0.805 0.000299 0.0282

05120 Epithelial cell signaling in Helicobacter pylori infection 0.1034 0.1338 0.773 ,0.000001 0.028

00510 N-Glycan biosynthesis 0.0179 0.0362 0.494 ,0.000001 0.0299

A = supragingival plaque (n = 89) B = tongue dorsum (n = 23)

00510 N-Glycan biosynthesis 0.0637 0.0362 1.76 ,0.000001 0.0299

01055 Biosynthesis of vancomycin group antibiotics 0.1276 0.0993 1.285 ,0.000001 0.029

00521 Streptomycin biosynthesis 0.5414 0.4651 1.164 ,0.000001 0.0284

05120 Epithelial cell signaling in Helicobacter pylori infection 0.0969 0.1338 0.724 ,0.000001 0.0283

05150 Staphylococcus aureus infection 0.0676 0.1232 0.549 0.000004 .0.05

doi:10.1371/journal.pone.0029044.t003
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structure and as such contribute to differences in the taxonomy

and function between body habitats.

Software Architecture & Improvements
The software integrates several open source tools and database

systems to facilitate the analysis of large volumes of metagenomic

annotation data via a web interface [19] (Figure 5). METAREP

1.3.1, adds a programmatic interface to access locally stored

data, supports weighted annotations, distributed weighted

searches, and functionality to import HUMAnN and JPMAP

annotations (see Methods section). New analysis features include

browsing, searching and comparing KEGG pathways based on

KOs, enhanced clustering via multiple distance matrix options

(Morisita-Horn, Jaccard, Bray-Curtis and Euclidean) for gener-

ating and visualizing hierarchical clustering, heatmap, and multi-

dimensional scaling outputs, and integration of GO slims to

summarize GO annotations. The data interface currently

supports three annotation formats (Figure 5). The most generic

format is a tab-delimited file with rows representing annotation

entities (read, transcript, contig, gene, etc.) and columns

representing 17 predefined categorical and quantitative annota-

tion attributes (Table 4). The new version, allows users to specify

KEGG orthologs and a weight for each annotation to integrate

quantitative information. The data backend consists of a MySQL

relational database and a non-relational Solr/Lucene full-text

search server. The relational database is used to store hierarchi-

cal data (NCBI taxonomy, GO, KEGG/MetaCyc pathways,

enzyme classification), and dataset and project meta-data

information as well as user account information. The Solr/

Lucene platform provides fast access to imported annotation data

and is used to summarize annotation attribute frequencies. Its

faceting functionality is used for unweighted annotations while

the statistical component is used for weighted annotations (see

Methods section). The R statistical package supports statistical

tests and the generation of high resolution PDF plots. The web

interface logic is implemented in PHP using the CAKEPHP

framework to separate the data access layer from the data

representation layer via controller logic (Model View Controller

paradigm). Web 2.0 elements are implemented in JavaScript

using the jQuery and jQuery UI libraries. Data communication

between the PHP controller logic and the Solr/Lucene backend

utilizes the light-weight JSON data-interchange format for

optimal data transfer. The software includes Perl modules that

allow users to automatically download up-to-date versions of the

hierarchical data, import annotations, and programmatically

access data stored in the Solr/Lucene index files. The latest open

source code licensed under the MIT license is available at

https://github.com/jcvi/METAREP.

Scalability
To measure the impact of weighting annotations, the query

response time performance was benchmarked using datasets from

the buccal mucosa habitat, a collection of 100 samples, each

having 1 million entries. Two alternative weighted search

approaches were considered, one to search the pooled dataset

and one to search the individual datasets in parallel. Thus the

overall search volume was kept consistent at 100 million entries.

For each search approach, the weighted query response times were

recorded for 10 queries that return between 1 and 100 million

entries using 10 replicates each. As a baseline, unweighted search

times were recorded as well and linear regression analyses were

carried out (Figure 6, Table S5). The benchmark was carried out

using the hardware as specified in the Methods section. Under the

constraints of the hardware and test data, we observed the

following. While unweighted searches resulted in response times of

less than 52 milliseconds for increasing number of matching

entries with slopes not significantly different from 0, the weighted

search was proportional to the number of matching entries with

response times of up to 62 seconds indicating a time complexity of

O(n) (blue and red dotted regression lines, R-squared 0.999).

However, weighted results show that given our hardware the

distributed search resulted in a 7.9 fold reduction of query

response time for any query when compared to the undistributed

search (based on the proportion of the two slopes) with a

maximum response of 8 seconds.

Discussion

As sequencing technologies progress, computational methods

are constantly being developed or improved to cope with increased

throughput and to accommodate changes in the nature of the

data. Short read annotation is a special challenge that was

accurately addressed by the HUMANnN methodology as part of

the HMP project [16]. Given the volume of the data, exploratory

analysis and visualization is similarly challenging. In the present

study, we show that the current version of our software, has been

adapted to handle weighted annotations, and can be used to

simultaneously search, compare, cluster, and functionally charac-

terize hundreds of metagenomic samples comprising annotations

derived from billions of WGS sequence reads. Other scenarios for

integrating weighted annotation schemes include weighting

annotations by the number of assembled reads per ORF predicted

from assemblies, or quantifying molecules in metatranscriptomics

or metaproteomics studies. Our benchmarks indicate that response

time increases linearly with an increasing number of weighted

entries (we observed an increase of 6.0 seconds per 10 million

additional entries). However, for this release of the software we

have added functionality to support weighted distributed searches

which can significantly improve scalability on multi-core server

systems. For our hardware configuration, we observed an increase

of 0.8 seconds per 10 million additional entries.

To highlight key functionality of the software, we presented

several scenarios designed to analyze the human microbiome. We

showed how to analyze a selection of functional markers across

taxonomic classifications and body habitats, cluster multiple

datasets by functional and taxonomic attributes, and demonstrated

how to identify differentially abundant features using statistical

tests. We point out that METAREP further possesses many

additional features that are not discussed in depth here but provide

increased capability to analyze and compare large and complex

metagenomic data sets. For example, the Browse Pathways page

allows users to visualize enzyme or KEGG ortholog abundances

on top of KEGG pathway maps and restrict the results to certain

taxa or functions, statistical tests can be applied to a subset of the

data, such as enzymatic markers, as well as be used to compare

other annotation attributes including MetaCyc, enzyme or the

newly implemented GO slim classifications [13]. All analysis

features and data including 700 assembly datasets not analyzed in

this article are available as a community resource at http://www.

jcvi.org/hmp-metarep.

The scenarios presented in this study, while not exhaustive in

their scope, have nonetheless highlighted important insights into

the human microbiome and generated additional hypotheses for

further investigation. Among the key insights we have identified is

that first, examination of enzyme profiles by taxonomy provides a

mechanism to identify differential abundance of an enzymatic

function coupled with the microorganisms contributing the

function in question. In this study (Scenario 1), we used this
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Figure 5. Software architecture overview. The METAREP software integrates several open source tools to import, store and analyze
metagenomics annotations. Users can analyze stored data using a variety of web based tools. A subset of the web functionality is available via a
programmatic access module which allows data retrieval directly from the MySQL database and Lucene index files.
doi:10.1371/journal.pone.0029044.g005

Table 4. Column descriptions of the METAREP tab delimited import format.

Column Field Name Description JPMAP HUMAnN

1 peptide_id unique entry ID JCVI_PEP_1234123 ptr:453118

2 library_id dataset ID SRS011061 SRS011061

3 com_name functional description sugar ABC transporter, periplasmic sugar-
binding protein

LGMN; legumain; K01369 legumain
[EC:3.4.22.34]

4 com_name_src functional description source Uniref100_A23521 ptr:453118

description assignment

5 go_id Gene Ontology ID GO:0009265 GO:0001509

6 go_src Gene Ontology source PF02511 K01369

assignment

7 ec_id Enzyme Commission ID 2.1.1.148 3.4.22.34

8 ec_src Enzyme Commission source PRIAM ptr:453118

9 hmm_id HMM ID PF02511 NA

10 blast_tree NCBI taxonomy ID 246194 9598

11 blast_evalue BLAST E-Value 1.78E-20 median

12 blast_pid BLAST percent identity 0.93 median

13 blast_cov BLAST sequence coverage 0.82 N/A

14 filter filter tag repeat N/A

15 ko_id KEGG Ortholog ID N/A K01369

16 ko_src KEGG Ortholog Source N/A ptr:453118

17 weight Weight to adjust abundance of
assignments

1 43.23

doi:10.1371/journal.pone.0029044.t004
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strategy to identify microorganisms that are not abundant across

the human microbiome in total such as the Crenarchaeota and

Euryarchaeota that nonetheless, revealed an association with skin.

These results further suggest that the low abundant taxonomic

classifications serve as an important reservoir of genetic diversity in

the human microbiome. Next, the variation of taxonomic and

functional profiles within body sites is generally less than variation

between body sites. Relatively speaking, greater variation occurs

across body habitat, individual and time although it may be

possible to use taxonomic and functional profiles to group

individuals. Further, the link between taxonomic and functional

profiles between body habitats is not always coupled. This finding

is illustrated particularly in the comparisons of dendrograms based

on taxonomic and functional profiles of the PFOR enzyme

(Scenario 1) and the examination of metabolic pathways across

HMP donor samples (Scenario 2). Finally, examination of the

Figure 6. Comparison of query response time for two weighted search approaches. Each data point marks the query response time (y axis)
for a query that returned x number of entries (x axis). The blue line indicates the linear fit for the weighted search approach while the red line
indicates the linear fit for the distributed weighted search approach. Parameter estimations for the linear regression models are given in the boxes
above the fitted lines.
doi:10.1371/journal.pone.0029044.g006
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differential abundance of metabolic pathways across three

contrasting oral body habitats (Scenario 3) suggests that there

are pathways, including many that participate in central interme-

diary metabolism, which reveal no statistically significant differ-

ence between them. This finding implies that there may be

common pathways central to the metabolic potential of the oral

microbiome. However, there are differences between oral body

habitats including antibiotic biosynthesis, pathogenesis and protein

glycosylation as identified in this study which may be biological

drivers important in the oral microbiome colonization and

maintenance, and that contribute to alterations in taxonomic

and functional profiles. Collectively, the results of this study

indicate the challenge of studying metagenomic data from the

human microbiome as it can be influenced by technical artifacts

related to sampling, sequencing, and annotation biases, however

the application of sophisticated tools for data filtering, analysis and

visualization as presented in the METAREP software fundamen-

tally enhance our ability to explore, characterize and interpret

these complex data sets.

Methods

Ethics Statement
As a part of a multi-institutional collaboration, the Human

Microbiome Project human subjects study was reviewed by the

Institutional Review Boards at Baylor College of Medicine under

IRB Protocol H-22895, the Washington University School of

Medicine under protocol number HMP-07-001 (IRB ID #
201105198) and at the J. Craig Venter Institute under IRB

Protocol Number 2008-084. All study participants gave their

written informed consent before sampling and the study was

conducted using the Human Microbiome Project Core Sampling

Protocol A. Each IRB has a federalwide assurance and follows the

regulations established at 45 CFR Part 46. The study was

conducted in accordance with the ethical principles expressed in

the Declaration of Helsinki and the requirements of applicable

federal regulations.

Sequence Generation, Preprocessing, and Annotation
DNA was extracted from 108 samples followed by Illumina and

454 sequencing [13]. Low quality regions at the beginning and end

of each read were trimmed followed by the removal of sequencing

artifacts and human contaminated sequences [13]. Next, prepro-

cessed sequences were assembled by the SOAP de novo assembler

into three distinct types of assemblies, Pretty Good Assemblies

(HMP Build 1.0 HMASM), Hybrid Assemblies (HMP Build 1.0

HMHASM), and body habitat specific assemblies. ORFs were

identified by MetageneMark and annotated using JPMAP [18].

For each predicted peptide, the pipeline ranks and chooses the best

evidences obtained by several homology searches including a

BLASTP search against UniRef100 [40] and a HMMER3 search

against a collection of TIGRFAM and PFAM Hidden Markov

models (HMM) [41]. The open source code is available at https://

github.com/jcvi/JCVI_HMP_metagenomic_pipeline. The pipe-

line can be run within Ergatisl [42], a workflow tool that supports

compute grid executions. Unassembled reads were annotated by

the HUMAnN pipeline [16] which characterizes short reads using

an accelerated version of the BLASTX algorithm against a

collection of functionally annotated protein databases including

KEGG [21] and MetaCyc [22], among others. The software is

available at http://huttenhower.sph.harvard.edu/humann.

METAREP 1.3.1 Installation
To use the software, the METAREP source code and

dependent software have to be installed on a Linux based

operating system. We recommend users to start with a minimal

CentOS 5.5 installation and use the CentOS YUM package

installer to install the 3rd party tools. A complete list of YUM

packages and detailed information on the installation process can

be found on the METAREP WIKI page at https://github.com/

jcvi/METAREP/wiki/installation-guide-v-1.3.1. Users can down-

load the METAREP 1.3.1 source via GitHub at https://github.

com/jcvi/METAREP/zipball/1.3.1-beta and configure the ME-

TAREP instance by editing the application and database

configuration files. After successful configuration of the software,

users can import annotation data. Import and update scripts can

be found under the scripts/perl directory. Example annotations

can be found in the data directory.

Importation of HUMAnN Annotations
We downloaded MBLASTX results against KEGG for 498

datasets from the HMP Data Analysis and Coordination Center

(DACC, http://www.hmpdacc.org) and ran HUMAnN v0.8 using

its METAREP output format option. The files contain a KEGG

gene ID, its median BLAST E-value over all reads, median

BLAST percent identity, median read length, and a weight

indicating the genes’ relative abundance in the sample. All

medians are calculated per gene over all BLAST hits matching

it, and weights represent normalized read counts adjusted for

individual alignment quality and gene length (comparable to

Reads per Kilobase per Million (RPKM) for RNA-seq [43]). We

observed a Spearman correlation of 0.94 between the number of

reads and sum of the weights for pooled body habitat datasets. For

details of the weighting and normalization process mapping reads

to genes and orthologous families, see [16]. Example output files

can be found in the METAREP installation under the data/

humann directory. Next, 498 HUMANnN output files were

imported into METAREP using the import script metarep_loa-

der.pl. As part of the HUMANnN indexing process additional

KEGG annotation attributes including species name, functional

description, KO, EC and GO assignments are fetched from a

SQLite database. The database can be created based on

downloaded KEGG FTP data (license is required) using the

metarep_update_database.pl script.

Importation of JPMAP Annotations
We downloaded JPMAP annotations for 15 hybrid and 690

pretty good assemblies from the DACC. Next, we loaded the

annotations into the HMP METAREP instance using the import

script metarep_loader.pl. Example JPMAP output files can be

found under the data/jpmap directory.

Importation of Generic Annotations
To import annotations from other pipelines, data needs to be

formatted according to the METAREP tab delimited format

specified in Table 4. Examples of tab delimited annotation files

can be found under the data/tab directory. Files can be imported

using the annotation import script metarep_loader.pl.

Dynamic Weighting of Annotations
If annotation weights are supplied, absolute frequencies are

calculated as the sum of weights of annotation entries that contain

a certain annotation attribute. This is accomplished by applying

the Solr/Lucene StatsComponent using the weight field as the

stats field parameter. Relative frequencies are calculated as the
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sum of weights of annotation entries that contain a certain feature

divided by the sum of all annotation weights. For example, let us

assume there are 100 entries in total with weights encoding

annotation quality. 80 entries with the KEGG ortholog field

(column 15) set to ‘K00849’ (galactokinase). 70 entries out of the

80 have the weight field (column 16) set to ‘89 while the remaining

10 entries have it set to ‘49. In addition, there are 20 entries for

‘K00856’ (adenosine kinase), another KEGG ortholog with the

weight field set to 20 (high annotation confidence). The relative

frequency for feature ‘K00849’ would be 80% if the weights were

all equal. Using the new weighting feature the relative frequency is

dynamically adjusted to 60%:

p(K00849)~
X

weightK00849=
X

weighttotal~

(8|70z10|4)=(8|70z4|10z20|20)~

600=1000~0:60

Scenario Filter Queries
METAREP allows users to filter annotations using the Lucene

query language. A query element is specified by the field name to

be followed by the value separated by a colon. For example, the

query ‘ec_id:1.2.7.19 retrieves pyruvate synthase entries. Support-

ed search fields are given in column 2 of Table 4. In scenario 1, to

filter pooled body habitats for the pyruvate dehydrogenase

complex, we searched for ‘ec_id:1.2.4.1 OR ec_id:2.3.1.12 OR

ec_id: 1.8.1.49. Alternatively, the KO attribute can used to filter

for the enzyme as well: ‘ko_id:K00161 OR ko_id:K00162 OR

ko_id:K00163 OR ko_id:K00627 OR ko_id:K00382’. Filter

queries for pyruvate-ferredoxin oxidoreductase and pyruvate-

formate lyase were ‘ec_id:1.2.7.19 and ‘ec_id:2.3.1.549 respective-

ly. For scenario 3, we filtered the pooled oral habitats for the

NCBI taxon Chordata using ‘NOT blast_tree:7711’.

Hardware
The HMP METAREP instance runs on a single server with two

multi-threaded Xeon X7560 2.26GHz processors with a total of

16 cores (32 threads), 256G RAM, and 4 terabyte of disk space.

Supporting Information

Figure S1 Impact of distance matrix selection on
enzymatic marker based body habitat clustering. Marker

abundance for PDHC (a-c), PFOR (d-f), and PFL (g-i) is

contrasted across phyla (columns) and body habitats (rows) using

Morisita-Horn, Bray-Curtis and Euclidean distance matrices in

combination with the average linkage clustering method.

(PDF)

Figure S2 Hierarchical cluster plot of 84 first and
second visit sample pairs clustered by NCBI taxonomy.
Hierarchical clustering analysis of human microbiome samples

with first and second visits (n = 168) taken from 15 human body

habitats clustered by NCBI taxonomy at the Family level. Clusters

were generated by the average linkage clustering method using the

Morisita-Horn index to generate a distance matrix (shown on the

x-axis). Dataset labels encode the following information [donor

ID]-[habitat]-[gender]-[time point]-[sample ID]-[annotation-

type].

(PDF)

Figure S3 Hierarchical cluster plot of 84 first and
second visit sample pairs clustered by KEGG pathways.
Hierarchical clustering analysis of human microbiome samples

with first and second visits (n = 168) taken from 15 human body

regions clustered by KEGG pathway. Clusters were generated by

the average linkage clustering method using the Morisita-Horn

index to generate a distance matrix (shown on the x-axis). Dataset

labels encode the following information [donor ID]-[habitat]-

[gender]-[time point]-[sample ID]-[annotation-type].

(PDF)

Table S1 Enzymatic marker counts across phyla and
body habitats.
(XLS)

Table S2 Body habitat and gender statistic for 168
samples with 1st and 2nd visits.
(XLS)

Table S3 Differentially abundant phyla (buccal mucosa
vs. tongue dorsum).
(XLS)

Table S4 Differentially abundant pathways (buccal
mucosa vs. tongue dorsum).
(XLS)

Table S5 Query response benchmark statistics.
(XLS)
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