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ABSTRACT We report the draft genome sequence of a putative new genus and
species, Siliceabacter maunaloa, in the family Solirubrobacteraceae. The members of
this family of Actinobacteria are generally Gram positive and mesophilic. Found within
a Hawaiian lava tube, this microbe illuminates the types of prokaryotes inhabiting sec-
ondary minerals in subsurface basaltic environments.

Beneath Mauna Loa, the largest active volcano on the planet, lies a maze of basaltic
lava tubes (1, 2). A sample was collected in August 2019 (19°36.3929N, 155°

28.9939W) from a pink, gypsum-rich mineral deposit in a lava tube with sunlight expo-
sure. The sample was transported on ice and frozen at 280°C. Then, DNA was extracted
using the ZymoBIOMICS DNA/RNA miniprep kit. A DNA library was prepared using the
Illumina DNA prep kit, and shotgun sequencing was performed using the NovaSeq 6000
platform.

The reads were processed, assembled, and binned following the Atlas workflow
with default parameters (3). Duplicate reads were excluded using Clumpify v38.86 (4).
Adapters were removed, and the reads were filtered based on quality scores greater
than 10 and lengths greater than 51 bp using BBTools v38.86 (4). The merged, paired-
end reads were assembled using metaSPAdes v3.15 and mapped back to the assembly
using BBMap v38.86 and SAMtools v1.9 (5–7). Metagenome-assembled genomes (MAGs)
were binned using MetaBAT v2 and MaxBin v2.0, and the bins were combined using
DAS Tool v1.0 (8–10). Each sample’s unique set of genomes was found using dRep
v2.2.2, and the genomes were clustered into a set of nonredundant MAGs using Mash
v1.1.1 and MUMmer v3.23 (11–13).

This is a high-quality genome, according to the Genomic Standards Consortium,
predicted to be 96.01% complete and 0.43% contaminated, as assessed using
CheckM v1.1.2 (14, 15) (Fig. 1). It represents a putative novel species in the
Solirubrobacteraceae family, as assigned using GTDB-Tk v1.5 (17). Forty-six tRNA
genes and three rRNA genes were identified, for which similarity searches were per-
formed using online BLAST-based homology against the RefSeq database (18–22).
The closest 16S rRNA gene in the database is 97.94% similar and annotated as an
uncultured member of Actinobacteria, the phylum that contains Solirubrobacteraceae. The
23S and 5S rRNA genes are respectively 92.38% and 98.20% similar to those of
Conexibacter woesei, a species in the same order (Solirubrobacterales) (23). This genetic dis-
tance suggests that this species belongs to a new genus in the family Solirubrobacteraceae.

The ORFs were annotated using MetaPathways v2.5 with default settings (24, 25).
The sequences were queried against the following reference databases: MetaCyc
(accessed 10 August 2020) (26, 27), CAZy (accessed 1 June 2020) (28), RefSeq-NR
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(accessed 12 August 2020) (22), and UniProtKB/Swiss-Prot (accessed 12 August 2020)
(29).

ORFs for central enzymes of the reductive pentose phosphate pathway, including
RubisCO, suggest an ability to fix CO2 for energy storage and incorporation (30–32). An
ORF encoding carbon monoxide dehydrogenase suggests CO oxidation ability (33, 34).
Multiple ORFs for hydrogenase development and for [NiFe] hydrogenase and molyb-
dopterin oxidoreductase suggest that this microbe can perform hydrogen oxidation I
(aerobic) (35–38). This microbe is likely a facultative lithotroph, which have rarely been
reported living mixotrophically via aerobic hydrogen and CO oxidation and CO2 reduc-
tion (30). An ORF encoding a carotenoid may be responsible for the pink hue of the
sample, as actinobacteria are able to produce a wide range of pigments, including pink
(39).

Using Pathway Tools v24.5 with default settings, 133 metabolic pathways were predicted
for biosynthesis (54.89%), degradation (17.29%), energy metabolism (5.26%), detoxification
(2.26%), and other pathways (20.30%) (40). The predicted pathways confirmed aerobic respi-
ration and included arsenate detoxification, which may be critical for living in an arsenic-rich
volcanic environment (41).

The taxonomic and genomic profile of a novel facultative lithotroph such as this
one informs us of the types of microbes living in undercharacterized volcanic habitats
and how they may evolve functional potential as a consequence of the limited nutrient
availability.

Data availability. Sequencing data and information regarding this MAG are avail-
able under BioProject accession number PRJNA818798. Information about the cave
metagenome sample is available under BioSample accession number SAMN29624104.
The raw whole-genome sequencing (WGS) reads are available under Sequence
Read Archive accession number SRR19994649. The WGS assembly is available under
genome accession number JANDLV000000000. Information about this MAG is available
under BioSample accession number SAMN26879537. The ORFs (https://doi.org/10.6084/m9
.figshare.20387157), assembly (https://doi.org/10.6084/m9.figshare.20387154), and annota-
tions (https://doi.org/10.6084/m9.figshare.20387145) are also available on Figshare.

FIG 1 Visualization of the MAG in this study, with 6,042,029 reads mapped, 120 contigs, or
overlapping DNA segments, a median coverage of 245�, and 72.14% GC content. The genome is
4.64 Mbp with an N50 value of 62,108 bp. It contains 3,770 open reading frames (ORFs), of which
2,161 are annotated and 1,609 are hypothetical proteins, as found using Prodigal v2.6.3 with default
settings (16). The dark purple and dark green dots are ORFs with functional annotations, while the
light purple and light green dots are hypothetical proteins. The dark pink line denotes the rRNA
genes. The colored blocks represent contigs, which are ordered by size. Without a complete
assembly, the structure of the genome remains unknown.
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