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Background. Hepatocellular carcinoma (HCC) is characterized by a poor prognosis. Inflammation has a vital role in the formation
and development of HCC. However, the prediction of HCC prognosis using inflammation-related genes (IRGs) remains elusive.
In this study, we constructed a new IRG risk model to predict the HCC prognosis. Results. HCC-related RNA expression profiles
and their corresponding clinical data were downloaded from TCGA and ICGC databases to explore the IRGs’ predicting ability.
Seven hundred thirty-seven IRGs from GeneCards were used as candidate genes to construct the model. The associations of
overall survival (OS) with IRGs were evaluated using the log-rank test and univariate Cox analysis, and 32 out of 737 IRGs
showed predicting the potential for HCC prognosis. These IRGs were further analyzed using the least absolute shrinkage and
selection operator (LASSO) and multivariate Cox analyses. Finally, 6 IRGs were included in an IRG risk model. Based on the
cut-off of the risk score calculated according to the IRG risk model, HCC samples were divided into the high-risk and the low-
risk groups. The OS of patients was lower in the high-risk group than in the low-risk group (P < 0:05). The area under the
receiver operating characteristic curve (AUC) of the risk score was 0.78 for 3-year survival. Univariate Cox and multivariate
Cox analyses revealed that the risk score was an independent risk factor for HCC prognosis. The KEGG and GO enrichment
analysis results further showed that the risk scores were closely related to inflammatory and immune pathways. In addition,
the ssGSEA demonstrated that several immune cells and some immune-related pathways were negatively correlated with the
risk score. Conclusions. The new IRG risk score was an independent risk factor for HCC prognosis and could be used to assess
the immune status of the HCC microenvironment.

1. Introduction

Liver cancer is one of the most common malignancies and
the fourth leading cause of cancer-related mortality world-
wide [1]. Each year, there are approximately 841,000 new
cases and 782,000 patient deaths from this disease, and these
numbers continue to rise [2]. As the most common form of
liver cancer [1, 3], hepatocellular carcinoma (HCC) is the
third-largest cause of cancer-related deaths worldwide [4].
Due to the high heterogeneity of HCC, diagnosis and prog-
nosis are challenging.

HCC is a prototypical inflammation-associated cancer
[5]. It has been estimated that 90% of HCC occurs from
the underlying chronic i4nflammation of the liver, the

induction of fibrosis, and subsequent cirrhosis [6]. The liver
has a strong self-repair ability. Differentiated liver cells can
reenter the cell cycle to repair the cells after acute liver injury
[7]. However, the persistence of inflammation, sustained cell
death, compensatory proliferation, activation of nonpar-
enchymal cells, and an altered immune response can pro-
mote liver fibrosis and, in turn, lead to tumorigenesis
[6–8]. Along with the occurrence of tumors, inflammatory
signals, cellular stress, epigenetic modifications [9], mito-
chondrial stress signaling [10], and the immune system
may change [11], thus posing significant challenges to the
treatment and prognosis evaluation of HCC.

Some studies have demonstrated that some inflamma-
tion markers are associated with the prognosis of HCC.
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The most common biomarkers for HCC are serological
parameters, including thrombocytosis, leukocytosis, hypo-
proteinemia, and plasma fibrinogen [12, 13]. Lin et al. [14]
have constructed an inflammation-related risk for prognos-
tic prediction in HCC. However, the AUC of the risk score
for 3-year survival was only 0.605. In this study, we con-
structed a new inflammation-related risk model based on
inflammation-related genes (IRGs) from the GeneCards to
more accurately predict the HCC prognosis.

2. Methods

2.1. Data Sets. IRGs were extracted from GeneCards (https://
www.genecards.org/), and 737 IRGs with a relevance score
> 3 were selected for further analysis. Three hundred
seventy-one HCC samples’ RNA sequencing data and
related clinical information were extracted from TCGA
database through the Genomic Data Commons (GDC) tool
(https://portal.gdc.cancer.gov). Another 231 HCC samples’
RNA sequencing data and clinical information were
obtained from the ICGC website (https://dcc.icgc.org/
projects/LIRI-JP). To confirm detection reliability, genes
with read counts equal to 0 in more than 25% of the samples
were removed from further analysis. Patients whose survival
time was <0.1 months or with incomplete survival data were
removed. Finally, 335 tumor samples from TCGA cohort
and 231 tumor samples from the ICGC cohort were enrolled
in this study.

2.2. Construction of the Inflammation-Related Genes Risk
Model. We firstly conducted univariate Cox regression and
log-rank test using the survival R package to identify IRGs
associated with the overall survival (OS) in TCGA cohort.
The IRGs with P < 0:05 in both two analyses were retained.
Next, data were analyzed by the least absolute shrinkage
and selection operator (LASSO) regression using the glmnet
R package. Subsequently, the multivariate Cox regression
analysis stepwise method was performed using the survival
package and My.stepwise R package to establish an optimal
IRG risk model. The risk score was computed as follows:
risk score =∑6

i Xi × Yi (X: coefficients, Y : gene expression
level). We used the survminer R package to determine the
optional cut-off value of the risk score. The HCC samples
were finally divided into high-risk and low-risk groups based
on the cut-off value.

2.3. Performance Assessment Inflammation-Related Risk
Model. The Kaplan-Meier survival analysis and log-rank test
were performed using the survival and survminer R packages
to display and compare the OS of the high-risk and the low-
risk groups. Principal component analysis (PCA) was used
to examine the difference between the two risk groups. The
R package timeROC was used to establish a time-
dependent receiver operating characteristic curve (ROC) to
check the accuracy of the risk score in predicting the out-
comes of HCC patients. To explore the prognostic factors
of HCC, univariate and multivariate Cox analyses were
conducted.

2.4. Functional Enrichment Analysis of the DEGs between the
Two Risk Groups. We used DESeq2, edgeR, and limma R
packages to select differentially expressional genes (DEGs)
between high-risk and low-risk groups in TCGA cohort.
The screening criteria were ∣log 2Fold − Change ∣ >1 and P
< 0:05. Based on these DEGs, Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analy-
ses were performed using the ClusterProfiler package.

2.5. Comparison of the Immune Status between Two Risk
Groups. The ESTIMATE R package was used to calculate
the immune score, stromal score, and ESTIMATE score,
reflecting the tumor purity and the characteristics of the
tumor microenvironment (TME) [15]. The gsva R package
was utilized to conduct the single-sample gene set enrich-
ment analysis (ssGSEA) to calculate the scores of infiltrating
immune cells and evaluate immune-related pathways’ activ-
ity in TCGA and ICGC cohorts.

2.6. Acquisition of Immunotherapeutic Cohorts and
Collection of Clinical Information. To understand whether
the risk score could be used to predict the efficacy of immu-
notherapy, we found the IMvigor210 cohort (http://
research-pub.Gene.com/imvigor210corebiologies) after a
systematic search of the public databases. The IMvigor210
cohort investigated the effectiveness of anti-PD-L1 antibody
(pembrolizumab) in patients with advanced urothelial can-
cer. The complete transcriptome data and detailed clinical
information were enrolled.

2.7. Statistical Analysis. One-way ANOVA and Kruskal-
Wallis tests were used for multiple comparisons [16]. The
Wilcoxon test was used to test the significant difference
between the two groups. The Kaplan-Meier survival analysis
was used to generate survival curves, and the significance of
differences was compared using the log-rank test. Hazard
ratios (HRs) and 95% confidence interval (CI) were calcu-
lated using univariate Cox and multivariate Cox analyses.
Two-sided P < 0:05 was considered statistically significant.
The R 4.1.1 software was used to perform all data processing.

3. Results

3.1. Clinical Cohorts. The workflow chart of this study is
shown in Figure 1. A total of 566 HCC patients and 348
patients with advanced urothelial cancer were included in
the analysis. Data of 335 HCC patients from TCGA data-
base, data of 231 HCC patients from the ICGC database,
and 348 patients with advanced urothelial cancer from the
IMvigor210 cohort were included in the analysis. TCGA
cohort was used to construct the IRG risk model, and the
ICGC cohort was used for validation. The IMvirgor210
cohort was used to evaluate the predictive value of the risk
model for immunotherapy efficacy. The detailed clinical
information of HCC patients are shown in Table 1, and
the clinical information of patients in the IMvirgor210
cohort are shown in Table 2.

3.2. Conduction and Validation of the Inflammation-Related
Genes Risk Model. Using univariate Cox analysis and log-
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rank test, 32 out of 737 IRGs showed predicting prognosis
ability in HCC (Figures 2(a) and 2(b)). Then, the 32 IRGs
were screened by the LASSO regression analysis, and 13
IRGs were obtained for further analysis (Figures 2(c) and
2(d)). To increase model stability, multivariate Cox analysis
was performed by stepwise method. Finally, six IRGs were
selected to form the IRG risk model (Figure 2(e)); three IRGs

(SSP1, ADAMTS5, and EPO), with HRs > 1, were associated
with increased risk, while the other three IRGs (CXCR3,
TNFRSF13C, and CRYAA) were protective genes with HRs
< 1 in TCGA cohort. The risk score was estimated as fol-
lows: risk score = (0.11026×expression level of SPP1) + (-
0.18773×expression level of CXCR3) + (0.30501×expression
level of ADAMTS5)+ (0.12363×expression level of

Inflammation genes
(Genecards)

TCGA
(Samples = 424)

Tumor (n = 374)

Tumor (n = 335)
737 inflammation related genes

Kaplan–meier (P < 0.05)
& univariate cox (P < 0.05)

(32 genes)

LASSO regression analysis
(13 genes)

Multivariate cox regression analysis
(6 genes)

Inflammation–related risk model

Survival time < 0.1 months (n = 35)
Incomplete survival information (n = 1)
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Inflammation genes
(Relevance score > 3)

888 genes
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Validate the inflammation related

risk model

Performance assessment of the risk
model

Functional enrichment analysis of the
DEGs between two risk groups

Comparison of the immune status
between two risk groups

Assessment of the predictive value of
the risk score for the efficacy of
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Figure 1: The workflow chart.
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EPO)+ (-0.29483×expression level of TNFRSF13C) + (-
0.38391×expression level of CRYAA).

The C-index for TCGA and ICGC cohorts was 0.753 and
0.680, respectively. In TCGA cohort, the risk score’s optimal
cut-off value (0.230) was determined by the survminer R
package (Figure 2(f)). Based on the cut-off value, 335 tumor
samples were divided into the high-risk and the low-risk
groups. In the same way, 231 tumor samples from the ICGC

cohort were also divided into two risk groups, and the cut-
off value was -5.10.

In TCGA and ICGC cohorts, the proportion of dead
patients was higher, and the survival time was shorter in
the high-risk group than in the low-risk group
(Figures 3(a) and 4(a)). The OS of patients was significantly
lower in the high-risk group than in the low-risk group
(P < 0:05) (Figures 3(b) and 4(b)). PCA based on the six

Table 1: The clinical information of the HCC patients.

TCGA ICGA Total
Alive Death Alive Death Alive Death

(N = 246) (N = 89) (N = 189) (N = 42) (N = 435) (N = 131)
Sex

Male 171 (69.5%) 51 (57.3%) 144 (76.2%) 26 (61.9%) 315 (72.4%) 77 (58.8%)

Female 75 (30.5%) 38 (42.7%) 45 (23.8%) 16 (38.1%) 120 (27.6%) 54 (41.2%)

Age (years)

Mean (SD) 59.5 (12.8) 64.5 (13.3) 67.3 (10.3) 67.2 (9.55) 62.9 (12.4) 65.4 (12.3)

Median [min, max]
61.0

[17.0, 85.0]
66.0

[24.0, 88.0]
69.0

[31.0, 89.0]
68.5

[37.0, 83.0]
65.0

[17.0, 89.0]
67.0

[24.0, 88.0]

Missing 1 (0.4%) 1 (1.1%) 0 (0%) 0 (0%) 1 (0.2%) 1 (0.8%)

Age group

Younger 132 (53.7%) 33 (37.1%) 44 (23.3%) 11 (26.2%) 176 (40.5%) 44 (33.6%)

Older 113 (45.9%) 55 (61.8%) 145 (76.7%) 31 (73.8%) 258 (59.3%) 86 (65.6%)

Missing 1 (0.4%) 1 (1.1%) 0 (0%) 0 (0%) 1 (0.2%) 1 (0.8%)

Stage

I 128 (52.0%) 38 (42.7%) 35 (18.5%) 1 (2.4%) 163 (37.5%) 39 (29.8%)

II 61 (24.8%) 16 (18.0%) 88 (46.6%) 17 (40.5%) 149 (34.3%) 33 (25.2%)

III 44 (17.9%) 20 (22.5%) 56 (29.6%) 15 (35.7%) 100 (23.0%) 35 (26.7%)

IV 1 (0.4%) 3 (3.4%) 10 (5.3%) 9 (21.4%) 11 (2.5%) 12 (9.2%)

Missing 12 (4.9%) 12 (13.5%) 0 (0%) 0 (0%) 12 (2.8%) 12 (9.2%)

Family history

No 143 (58.1%) 37 (41.6%) NA NA 143 (32.9%) 37 (28.2%)

Yes 66 (26.8%) 45 (50.6%) NA NA 66 (15.2%) 45 (34.4%)

Missing 37 (15.0%) 7 (7.9%) NA NA 226 (52.0%) 49 (37.4%)

Inflammation grade

G1 36 (14.6%) 11 (12.4%) NA NA 36 (8.3%) 11 (8.4%)

G2 119 (48.4%) 40 (44.9%) NA NA 119 (27.4%) 40 (30.5%)

G3 82 (33.3%) 30 (33.7%) NA NA 82 (18.9%) 30 (22.9%)

G4 7 (2.8%) 5 (5.6%) NA NA 7 (1.6%) 5 (3.8%)

Missing 2 (0.8%) 3 (3.4%) NA NA 191 (43.9%) 45 (34.4%)

Time (months)

Mean (SD) 21.1 (23.0) 24.4 (24.5) 29.1 (13.1) 17.8 (14.0) 24.6 (19.7) 22.3 (21.8)

Median [min, max]
12.3

[0.100, 123]
18.5

[0.300, 109]
29.0

[3.00, 72.0]
16.0

[0.333, 48.0]
20.0

[0.100, 123]
17.0

[0.300, 109]

Risk score

Mean (SD) -0.141 (0.828) 0.389 (0.843) -3.86 (2.28) -2.44 (2.55) -1.76 (2.46) -0.517 (2.07)

Median [min, max]
-0.0897

[-2.99, 1.74]
0.320

[-2.34, 1.95]
-4.03

[-8.86, 5.30]
-2.83

[-7.04, 3.73]
-0.884

[-8.86, 5.30]
0.0940

[-7.04, 3.73]

Risk group

Low risk 160 (65.0%) 37 (41.6%) 66 (34.9%) 3 (7.1%) 226 (52.0%) 40 (30.5%)

High risk 86 (35.0%) 52 (58.4%) 123 (65.1%) 39 (92.9%) 209 (48.0%) 91 (69.5%)
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IRGs showed that patients in two risk groups were distrib-
uted in different regions (Figures 3(c) and 4(c)).

Next, time-dependent ROC analysis was applied to eval-
uate the sensitivity and specificity of the risk model. The area
under the ROC (AUC) of the risk score was 0.82 for 1-year,
0.78 for 2-year, and 0.78 for 3-year survival in TCGA cohort
(Figure 3(d)). In the ICGC cohort, the AUC was 0.71 for 1-
year, 0.71 for 2-year, and 0.65 for 3-year survival
(Figure 4(d)). Besides, in TCGA cohort, the AUC of the risk
score for 3-year survival was larger than that of other clinical
features (the AUC of other clinical features for 3-year sur-
vival was less than 0.60) (Figure 3(e)). In the ICGC cohort,
the AUC of the risk score for 3-year survival was similar to
the AUC of tumor stage (the risk score: 0.65, tumor stage:
0.66), and higher than that of other clinical features (the
AUC of other clinical features for 3-year survival were less
than 0.60) (Figure 4(e)).

Then, we extracted patients’ clinical information from
TCGA cohort (age, gender, family history, inflammation
grade, and tumor stage) and the ICGC cohort (age, gender,
and tumor stage). In order to learn the independent prog-
nostic value of the risk score, clinical information was ana-
lyzed in combination with the risk score by univariate and
multivariate Cox regression analyses. In univariate Cox anal-
ysis, the risk scores of both cohorts were significantly corre-
lated with OS (TCGA cohort: HR = 2:718,
95%CI = 2:064 − 3:58, P < 0:001; ICGC cohort: HR = 1:159,
95%CI = 1:080 − 1:242, P < 0:001) (Figures 3(f) and 4(f)).
After adjustment for confounding factors, the multivariate
Cox analysis showed that the risk score was an independent
prognostic factor for OS (TCGA cohort: HR = 2:660, 95%

CI = 1:850 − 3:830, P < 0:001; ICGC cohort: HR = 1:180, 95
%CI = 1:040 − 1:340, P = 0:012) (Figures 3(g) and 4(g)).

3.3. Correlation of the Risk Score with Clinicopathologic
Features. The boxplot was used to display the relationship
of the risk score with the different clinical features. Patients
aged < 62 years (median age of the patients in TCGA cohort)
were defined as younger patients. The differences of the risk
score in different age groups, genders, and family histories
were not statistically significant in TCGA cohort (all P >
0:05, Figures 5(a)–5(c)). However, the risk scores were sig-
nificantly correlated with inflammation grades and tumor
stages and elevated with increasing inflammation grades
and tumor stages in TCGA cohort (all P < 0:05)
(Figures 5(d) and 5(e)); the same results were obtained in
the ICGC cohort (P < 0:05) (Figures 5(f)–5(h)).

To explore the relationship of the risk score with the OS
in patients with different clinical features, we conducted the
Kaplan-Meier analysis and log-rank test. The results showed
that the OS of the patients with different ages (Figures 6(a)
and 6(b)), genders (Figures 6(c) and 6(d)), family histories
(Figures 6(e) and 6(f)), inflammation grades (Figures 6(g)
and 6(h)), and tumor stages (Figures 6(i) and 6(j)) was neg-
atively correlated with the risk score. The OS of the patients
was lower in the high-risk group than in the low-risk group
of TCGA cohort (P < 0:05). In the ICGC cohort, the rela-
tionship of the risk score with the OS of patients with differ-
ent ages, genders, and tumor stages was similar to those in
TCGA cohort. Although the P values in the younger group
and the stages III-IV were above 0.05, this may be due to
the small sample size (Figures 6(k)–6(p)). Overall, these

Table 2: The clinical information of the patient in the IMvirgor210 cohort.

Characteristics
Alive Death Total

(N = 116) (N = 232) (N = 348)
Sex

Male 95 (81.9%) 177 (76.3%) 272 (78.2%)

Female 21 (18.1%) 55 (23.7%) 76 (21.8%)

Response

CR 24 (20.7%) 1 (0.4%) 25 (7.2%)

PR 39 (33.6%) 4 (1.7%) 43 (12.4%)

SD 23 (19.8%) 40 (17.2%) 63 (18.1%)

PD 23 (19.8%) 144 (62.1%) 167 (48.0%)

Missing 7 (6.0%) 43 (18.5%) 50 (14.4%)

Time

Mean (SD) 18.0 (5.82) 6.35 (5.05) 10.2 (7.66)

Median [min, max] 20.1 [0.197, 24.5] 5.03 [0.230, 21.2] 8.05 [0.197, 24.5]

Risk score

Mean (SD) 2.31 (0.814) 2.58 (0.816) 2.49 (0.824)

Median [min, max] 2.36 [0.0690, 4.25] 2.63 [-0.331, 4.67] 2.47 [-0.331, 4.67]

Risk group

Low risk 55 (47.4%) 75 (32.3%) 130 (37.4%)

High risk 61 (52.6%) 157 (67.7%) 218 (62.6%)

Note: CR: complete response, PR: partial response, SD: stable disease, PD: progressive disease.

5BioMed Research International



26 32 43

Log rank Uni cox

(a)

Coef HR PGene

ANXA5

SPP1

CXCR3

PGF

ZAP70

DNAH5

MMP3

CXCL5

MPZ

CD8A

CXCL8

UROD

ADAMTS5

UCN

EREG

ANGPT2

AP1S3

SLC11A1

ADM

DNASE1L3

TBX21

EPO

MMP1

TREM1

KRT17

TNFRSF13C

CD68

MAPT

CRYAA

CST3

CCR7

0.126

–0.2

0.194

–0.675

0.146

0.208

–0.224

0.121

0.232

0.2

0.15

–0.296

–0.137

0.151

0.215

0.213

0.205

0.119

0.183

0.273

0.284

0.107

–0.164

0.099

0.088

0.253

0.155

–0.2

0.117

–0.161

0.121

0.256

TNFRSF11B

1.292 (1.086–1.37)

1.129 (1.065–1.198)

0.851 (0.726–0.999)

1.124 (1.006–1.255)

0.819 (0.692–0.969)

1.168 (1.049–1.301)

1.288 (1.109–1.496)

1.093 (1.011–1.181)

1.104 (1.005–1.212)

0.849 (0.743–0.97)

1.113 (1.027–1.207)

1.328 (1.052–1.676)

1.314 (1.137–1.519)

1.201 (1–1.441)

1.127 (1.007–1.261)

1.227 (1.047–1.439)

1.238 (1.039–1.475)

1.24 (1.081–1.423)

1.163 (1.019–1.326)

0.872 (0.777–0.979)

0.744 (0.584–0.948)

1.161 (1.063–1.269)

1.221 (1.093–1.365)

1.261 (1.126–1.411)

1.129 (1.015–1.255)

0.799 (0.648–0.986)

1.231 (1.056–1.436)

1.158 (1.028–1.304)

0.509 (0.305–0.85)

1214 (1.004, 1.467)

0.819 (0.694–0.966)

1.134 (1.024–1.255)

0.004⁎⁎

<0.001⁎⁎⁎

0.048⁎

0.039⁎

0.02⁎

0.005⁎⁎

0.001⁎⁎⁎

0.025⁎

0.039⁎

0.016⁎

0.009⁎⁎

0.017⁎

< 0.001⁎⁎⁎

0.049⁎

0.038⁎

0.012⁎

0.017⁎

0.002⁎⁎

0.025⁎

0.021⁎

0.017⁎

0.001⁎⁎⁎

< 0.001⁎⁎⁎

< 0.001⁎⁎⁎

0.026⁎

0.037⁎

0.008⁎⁎

0.016⁎

0.01⁎⁎

0.045⁎

0.018⁎

0.016⁎

(b)

Figure 2: Continued.
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findings suggested that the IRG risk model was stable and
could be used to predict the OS of HCC patients with differ-
ent clinical characteristics.

3.4. Functional Enrichment Analysis of the DEGs between
Two Risk Groups in TCGA Cohort. To further explore the
differences in the gene functions and pathways between the
two risk groups, we used the DESeq2, edgeR, and limma R
packages to select the DEGs according to specific criteria
(∣log 2Fold − Change ∣ >1 and P < 0:05). The results revealed
that 167 DEGs were upregulated (Figure 7(a)), and 99 genes
were downregulated (Figure 7(b)) in the high-risk group.
PCA based on the DEGs showed patients in two risk groups
were distributed in different regions (Figure 7(c)). The heat-
map suggested that the expression levels of the DEGs were
obviously different (P < 0:05, Figure 7(d)).

The KEGG pathway demonstrated that these DEGs were
enriched in the inflammation, immune, and stromal-related
signaling pathways, such as “primary immunodeficiency,”
“chemokine signaling pathway,” “cytokine-cytokine receptor
interaction,” and “ECM-receptor interaction” (Figure 7(e)).
The enriched GO terms were divided into the biological pro-

cess (BP), cell component (CC), and molecular function
(MF) ontologies. The GO analysis revealed the DEGs were
enriched in BPs, including “extracellular matrix organiza-
tion,” “extracellular structure organization,” “chemokine-
mediated signaling pathway,” “response to chemokine,”
and “cellular response to chemokine.” For CC, DEGs were
enriched in the “external side of plasma membrane”, “apical
part of cell,” “collagen-containing extracellular matrix,”
“apical plasma membrane,” and “plasma membrane raft.”
In addition, MF analysis also displayed that the DEGs were
enriched in “signaling receptor activator activity,”
“receptor-ligand activity,” “chemokine receptor binding,”
“CXCR chemokine receptor binding,” and “chemokine
activity” (Figure 7(f)).

3.5. Comparison of the Immune Status between Two Risk
Groups. We used the ESTIMATE algorithm to evaluate the
immune, stromal, and ESTIMATE scores of TME [15]. In
TCGA cohort, the results showed that the immune score
was significantly lower in the high-risk group than in the
low-risk group (P < 0:05). Yet, the differences in the stromal
scores and ESTIMATE scores between the two risk groups
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Figure 2: Construction of the inflammation-related genes risk model in TCGA cohort. (a) Venn diagram used to display the 32 IRGs with
predicting prognosis ability. (b) Results of the univariate Cox analysis of 32 IRGs. (c) Plots for LASSO expression coefficients of 32 IRGs. (d)
Cross-validation for tuning the parameter selection in the LASSO regression. (e) The relationship between 6 IRGs and HCC prognosis, ∗

P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001. (f) The optimal cut-off point to dichotomize risk score into low-risk and high-risk groups was
determined by the survminer R package. The optimal cut-off point was 0.23.
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Figure 3: Performance assessment of the inflammation-related genes risk model in TCGA cohort. (a) Distribution of patients based on the
risk score and the survival status (low-risk group: on the left side of the dotted line; high-risk group: on the right side of the dotted line). (b)
The Kaplan-Meier curves for the OS. (c) The PCA plot for the HCC patients based on the six inflammation-related genes used to construct
the risk model. (d) The ROC curve was used to display the predictive efficiency of the risk score for patient survival. (e) The ROC curve was
used to display the predictive efficiency of the risk score and other clinical information for patient 3-year survival. (f) The univariate Cox
analysis of the risk score and other clinical information in TCGA cohort. (g) The multivariate Cox analysis of the risk score and other
clinical information in TCGA cohort.
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Figure 4: Validation of the inflammation-related genes risk model in the ICGC cohort. (a) Distribution of patients based on the risk score
and the survival status (low-risk population: on the left side of the dotted line; high-risk population: on the right side of the dotted line). (b)
The Kaplan-Meier curves for the OS. (c) The PCA plot for the HCC patients based on the six inflammation-related genes used to construct
the risk model. (d) The ROC curve was used to display the predictive efficiency of the risk score for patient survival. (e) The ROC curve
displayed the predictive efficiency of risk score and other clinical information for patient 3-year survival. (f) The univariate Cox analysis
of the risk score and other clinical information for the ICGC cohort. (g) The multivariate Cox analysis of the risk score and other
clinical information for the ICGC cohort.
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were not statistically significant (P > 0:05, Figure 8(a)). In
the ICGC cohort, the immune scores were also lower in
the high-risk group, although the difference was not statisti-

cally significant (P > 0:05). Also, the stromal score and ESTI-
MATE score were comparable between the two risk groups
(Figure 8(b)).
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Figure 5: Correlation of the risk score with clinicopathologic features. (a–e) The differences in risk scores between different age groups,
genders, family histories, inflammation grades, and tumor stages in TCGA cohort. (f–h) The differences in risk scores between different
age groups, genders, and tumor stages in the ICGC cohort. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, ns: P > 0:05.
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Next, we compared the immune cells and pathways
between the two risk groups. In TCGA cohort, the high-
risk group generally had significantly lower levels of infiltra-
tion of immune cells, including B cells, natural killer (NK)
cells, CD8+ T cells, T helper cells, tumor-infiltrating lympho-
cytes (TIL), and neutrophils cells than the low-risk group (all
P < 0:05, Figure 8(c)). Also, cytolytic activity, inflammation,
the type I IFN response, T cell costimulation, T cell coinhi-
bition, and HLA were lower in the high-risk group than in

the low-risk group (P < 0:05) (Figure 8(d)). When assessing
the scores of the immune cells and pathways between the
two risk groups in the ICGC cohort, similar results were
obtained (Figures 8(e) and 8(f)).

3.6. Assessment of the Predictive Value of the Risk Score for
the Efficacy of Immunotherapy. The above results showed
that immune cells levels and immune signaling pathways
were lower in high-risk groups than in low-risk groups.
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Figure 6: Survival analysis for different clinical features in the two risk groups. (a–j) Survival analysis for different clinical features in the two
risk groups in TCGA cohort. (k–p) Survival analysis for different clinical features of the two risk groups in the ICGC cohort.
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These findings suggested that the risk score might predict
the effect of immunotherapy. Therefore, we used the IMvir-
gor210 cohort to assess the predictive value of the risk score
for the efficacy of immunotherapy [17]. The survminer R
package also determined the cut-off value (2.292). The low-

risk group showed a significant clinical benefit and obviously
prolonged survival (Figure 9(a)). (P < 0:05) Patients with
partial response (PR) exhibited a higher risk than patients
with complete response (CR), although the difference was
not significant (P > 0:05). Yet, patients with progressive
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Figure 7: Identification and function enrichment analysis of the DEGs between two risk groups in TCGA cohort. (a) The overlapping
upregulated DEGs were screened by the DESeq2, edgeR, and limma R packages. (b) The overlapping downregulated DEGs were screened
by the DESeq2, edgeR, limma R packages. (c) The PCA plot for the HCC patients based on the DEGs. (d) The heatmap showed the
expression levels of the DEGs; the redder indicates higher gene expression; the bluer indicates lower gene expression. The blue section of
the annotation bar represents the low-risk group, and the red section the high-risk group. (e) The barplot graph for KEGG pathways.
The left bar means the pathways associated with the downregulated DEGs, and the right bar represents the pathways related to the
upregulated DEGs. The longer bar means the differences were more obvious. (f) The bubble graph for GO enrichment. The bigger
bubble represents the more genes enriched, and the increasing depth of red means the differences were more obvious.
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disease (PD) exhibited a higher risk than patients with stable
disease (SD) (P < 0:05, Figure 9(b)). We also observed that
the percentage of the patients with PD was higher in the
high-risk group than in the low-risk group (60% vs.
49.6%), although the difference was not statistically signifi-
cant (P > 0:05, Figure 9(c)). These findings suggested that
the risk score could be used to assess the efficacy of
immunotherapy.

4. Discussion

Inflammation is closely related to liver cancer, especially
chronic hepatitis, which is one of the crucial factors in liver
cancer formation. Chronic inflammation damages liver epi-
thelial cells, leading to substantial cell proliferation [18]. At
the same time, inflammation induces reactive oxygen species
(ROS) and the damage of deoxyribonucleic acid (DNA),
which increases the frequency of DNA mutations. When
the rate of cell proliferation increases, along with DNA

mutations, the incidence of malignant transformation
increases accordingly [18]. However, so far, only a few stud-
ies have reported on the characteristics of IRGs in liver can-
cer tissues. In the present study, we constructed a new IRG
risk model to predict HCC prognosis.

The IRG risk model was constructed using 6 IRGs,
including secreted phosphoprotein 1(SSP1), C-X-C motif
chemokine receptor 3 (CXCR3), ADAM metallopeptidase
with thrombospondin type 1 motif 5 (ADAMTS5), erythro-
poietin (EPO), TNF receptor superfamily member 13C
(TNFRSF13C), and crystallin alpha A (CRYAA).

SPP1 is expressed in most human tissues, including the
brain, vascular tissue, kidney, and liver [19, 20], and has
been reported to regulate cancer cell proliferation through
the activation of the MAPK pathway. It can also mediate
HCC metastasis by inducing MMP-2 production/activation
and NF-κB translocation [21, 22].

EPO is a hypoxic-reactive cytokine [23]. Hypoxia is a
common feature of TME, which increases the activity of a
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Figure 8: Correlation of the risk score and the immune cells. (a) Comparison of stromal scores, immune scores, and ESTIMATE scores
between two risk groups in TCGA cohort. (b) Comparison of stromal scores, immune scores, and ESTIMATE scores between two risk
groups in the ICGC cohort. (c) Comparison of ssGSEA scores of the immune cells between the two risk groups in TCGA cohort. (D)
Comparison of ssGSEA scores of the immune pathways between the two risk groups in TCGA cohort. (e) Comparison of ssGSEA scores
of the immune cells between the two risk groups in the ICGC cohort. (f) Comparison of ssGSEA scores of the immune pathways
between the survival analysis of two groups of risk patients with different clinical characteristics and the two risk groups in the ICGC
cohort. The blue box represents the low-risk group, and the red box represents the high- risk group, ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001,
ns: P > 0:05.

28 BioMed Research International



Su
rv

iv
al

 p
ro

ba
bi

lit
y

St
ra

ta

0

Number at risk

10 15

Time in months

20 25

0.00

0.25
p = 0.014

0.50

0.75

1.00

Ri = low risk

Ri = high risk

5

Strata

Ri = low risk

Ri = high risk

0

130 70

86

88

135

50

69

24

42

0

0218

10 15

Time in months

20 255

p = 0 014

(a)

Figure 9: Continued.

29BioMed Research International



hypoxia-inducible factor (HIF) binding to a cis-acting DNA
hypoxia response element (HRE) to activate EPO transcrip-
tion [23, 24]. EPO can involve in the development of tumors
by promoting tumor angiogenesis and the growth of tumor
cells [25].

The exact role of ADAMTS5 in HCC remains unclear. Li
et al. [25] have reported that low expression of ADAMTS5
protein is associated with HCC progression and poor prog-
nosis. However, multiple online sites show high ADAMTS5
expression as an independent risk factor for the develop-
ment of HCC [26]. Furthermore, Zhu et al. [26] confirmed
that ADAMTS5 might promote tumor metastasis through
biological processes affecting the extracellular matrix
(ECM). These data are consistent with our findings.

CRYAA, also known as HspB4, is a well-known antia-
poptotic protein [27, 28]. Studies have shown that its role
in tumors depends on the type of tumor [29–32]. Some stud-
ies have suggested that HSPB4 can promote retinoblastoma
and sebaceous adenocarcinoma progression through antia-
poptotic effects [33, 34]. In contrast, HspB4 is expressed at
a moderate level in the normal pancreas and significantly
downregulated in pancreatic cancer [30]. It can delay the
progression of the tumor by regulating the activity of ERK

MAP kinase [35]. However, further experiments are needed
to verify the role of HSP4 in the formation and development
of HCC.

CXCR3 is a chemokine receptor that is mainly expressed
on CD4+ and CD8+ T cells and partly expressed on other
cells, including epithelial cells [36, 37]. In the CD4+ subpop-
ulation, CXCR3 is most abundant in proinflammatory Th1
cells [38–41]. Thus, the expression level of CXCR3 is related
to the abundance of immune cell infiltration in TME [42].

TNFRSF13C, also known as B-cell activating factor
receptor (BAFF-R), is expressed almost exclusively on B cells
[43]. It is a key receptor involved in B cells’ successful sur-
vival and maturation, which determines that its expression
levels are closely correlated with the abundance of B cells
in TME [44]. A recent study has found a significantly lower
percentage of B cells expressing BAFF-R in HBV-associated
HCC patients than non-HCC patients, suggesting an impor-
tant role for BAFF-R in developing HCC in HBV-infected
patients [45].

In summary, CXCR3 and TNFRSF13C were associated
with immune cell abundance in TME, while ADAMTS5
was closely related to the change of stromal components in
TME. SPP1 and EPO promote tumor progression in a
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variety of ways. The mechanism of CRYAA in liver cancer
has not been reported, which also provides a new direction
for further understanding of the development of HCC.

The risk score calculated by the IRG risk model in our
study was identified as an independent risk factor for HCC
prognosis. The higher the risk score, the worse the prognosis
and the lower the OS. Lin et al. [14] also reported an IRG
risk model with eight IRGs used for prognostic prediction
(the risk score =0.118×expression level of SLC7A1
+0.114×expression level of RIPK2+0.113×expression level
of NOD2+0.022×expression level of ADORA2B
+0.058×expression level of MEP1A+0.051×expression level
of ITGA5+0.016×expression level of P2RX4+0.018×expres-
sion level of SERPINE1). However, the risk model in Lin
et al.’s study was constructed based on 8 IRGs, compared
to 6 IRGs used in this study. In addition, compared to the
new risk model built in this study, the AUC of the risk model
built by Lin et al. was relatively low. The AUC of Lin et al.’s
risk score was only 0.685 for 1-year, 0.626 for 2-year, and
0.605 for 3-year survival in TCGA cohort. Moreover, in
the ICGC cohort, the AUC of Lin’s risk score was 0.649
for 1-year, 0.649 for 2-year, and 0.681 for 3-year survival.
In the present study, the AUCs of a risk score for 1-year sur-
vival, 2-year survival, and 3-year survival were above 0.750
in TCGA cohort; in the ICGC cohort, the AUCs of the risk
score for 1-year survival and 2-year survival were above
0.700, and the AUC of the risk score for 3-year survival
was 0.650, which is similar to the risk score in Lin et al.’s
study. These findings indicated that the risk model in our
study had a higher predicting value for HCC than the risk
model presented by Lin et al.

Besides, the results of KEGG and GO enrichment analysis
based on the DEGs between two risk groups revealed the
DEGs were associated with inflammation, immune, and
stromal-related pathways. These findings suggested that
TME, including immune and stromal, was different in the
high-risk group compared to the low-risk group. TME is
defined as the cellular and physical environment surrounding
the primary tumor, which has cellular components like
inflammatory and immune cells, stromal components like
ECM proteins, soluble cellular factors, etc. [46, 47] In TME,
tumor purity is a concept closely related to the immune cells
and stromal cells, which refers to the proportion of the tumor
cells in the tumor tissue [48]. Yoshihara et al. [15] used an
ESTIMATE method to deduce the tumor purity. ESTIMATE
score is the combination of stromal score and immune score,
the primary basis for predicting tumor purity [15]; the lower
ESTIMATE score, the higher tumor purity [48]. In the present
study, the tumor purity was similar between the two risk
groups, but the immune score was lower in the high-risk
group than in the low-risk group. And most of the immune
cells and immune-related pathways were reduced in the
high-risk group, suggesting low immune levels. The same
results were obtained in the ICGC cohort. It is well known that
some immune cells have important roles in antitumor immu-
nity, such as CD8+ T cells [49], NK cells [50], and B cells [51].
The decrease in immune response was closely related to the
poor prognosis of HCC, which may also be one reason for
the poor prognosis of patients in the high-risk group [52].

Since the risk score was closely associated with the low
immune infiltrating, we sought to further explore whether
the risk model could be used to assess the immunotherapy
efficacy in tumor patients [17]. We used the risk score to
analyze the tumor patient in the IMvigor210 cohort. The
risk score was closely associated with patient prognosis,
and in the high-risk group, 60% of patients suffered disease
progression. These results suggested that risk scores can
partly predict the efficacy of tumor immunotherapy. The
higher the risk score, the worse the efficacy of immunother-
apy. Therefore, it is necessary to actively monitor the
patients with high-risk scores and combine multiple treat-
ments to achieve a better antitumor effect.

Our study has significant clinical application values. The
inflammation-related risk score could be used as an inde-
pendent risk factor for predicting the outcomes of HCC
patients. This model can be applied to identify tumors with
low immune levels and indicate the efficacy of immunother-
apy. Strengthening the study of these six IRGs may advance
the understanding of tumorigenesis.

However, this study also has several limitations. First,
this risk model was not confirmed by the prospective exper-
imental data. Second, we failed to validate the predictive
value of the risk model for the immunotherapy efficacy in
an HCC-related immunotherapy cohort due to the fewer
data on the HCC-related immunotherapy cohort.

5. Conclusions

The IRG risk model consisting of 6 IRGs is closely related to
the prognosis of HCC, which could predict the HCC prog-
nosis more accurately than Lin et al.’s risk model. Therefore,
the evaluation of patients with the risk model was a more
practical approach that furthered our understanding of the
status of immune infiltration in tumor tissue. This approach
can also help us to better evaluate the efficacy and to guide
immunotherapy. In our future study, we plan to further val-
idate the expression of 6 IRGs in tumor tissues and validate
the clinical application value of this risk model in a prospec-
tive cohort.
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