OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs

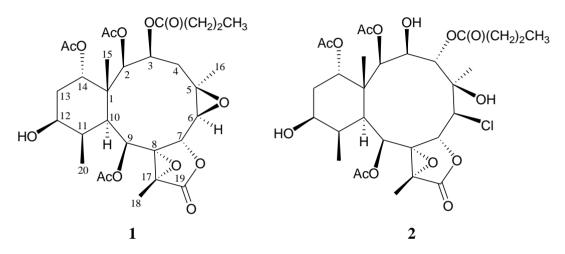
Article

Excavatoids O and P, New 12-Hydroxybriaranes from the Octocoral *Briareum excavatum*

Ping-Jyun Sung ^{1,2,3,4,5,*}, Gung-Ying Li ^{1,2}, Yin-Di Su ^{2,4}, Mei-Ru Lin ², Yu-Chia Chang ^{2,6}, Ting-Hsuan Kung ², Chan-Shing Lin ^{4,5,6}, Yung-Husan Chen ², Jui-Hsin Su ^{1,2}, Mei-Chin Lu ^{1,2}, Jimmy Kuo ^{1,2}, Ching-Feng Weng ³ and Tsong-Long Hwang ⁷

- ¹ Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan; E-Mails: johnny9210014@hotmail.com (G.-Y.L.); x2219@nmmba.gov.tw (J.-H.S.); jinx6609@yahoo.com.tw (M.-C.L.); jimmy@nmmba.gov.tw (J.K.)
- ² National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan; E-Mails: gobetter04@yahoo.com.tw (Y.-D.S.); linmeiru@hotmail.com (M.-R.L.); jay0404@gmail.com (Y.-C.C.); sevenapril@nmmba.gov.tw (T.-H.K.); tony_chen72001@yahoo.com.tw (Y.-H.C.)
- ³ Department of Life Science and the Institute of Biotechnology, National Dong Hwa University, Hualien 974, Taiwan; E-Mail: cfweng@mail.ndhu.edu.tw (C.-F.W.)
- ⁴ Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan; E-Mail: shinlin@mail.nsysu.edu.tw (C.-S.L.)
- ⁵ Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- ⁶ Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- ⁷ Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan;
 E-Mail: htl@mail.cgu.edu.tw (T.-L.H.)
- * Author to whom correspondence should be addressed; E-Mail: pjsung@nmmba.gov.tw; Tel.: +886-8-882-5037; Fax: +886-8-882-5087.

Received: 7 September 2010; in revised form: 23 September 2010 / Accepted: 9 October 2010 / Published: 12 October 2010


Abstract: Two new 12-hydroxybriarane diterpenoids, designated as excavatoids O (1) and P (2), were isolated from the octocoral *Briareum excavatum*. The structures of briaranes 1 and 2 were established on the basis of extensive spectral data analysis. Excavatoid P (2) is the first metabolite which possesses a 6β -chlorine atom in briarane analogues.

Keywords: excavatoid; briarane; octocoral; Briareum excavatum

1. Introduction

In our research on the chemical constituents of the marine invertebrates collected in Taiwan waters, a series of briarane-type diterpenoid derivatives had been isolated from various octocorals belonging to the genus *Briareum* (family Briareidae), *Ellisella*, and *Junceella* (family Ellisellidae), and the compounds of this type were proven to possess various interesting bioactivities [1-3]. Recently, our further chemical examination of *Briareum excavatum* has resulted in the isolation of two new highly oxidized briarane-type diterpenoids, excavatoids O (1) and P (2) (Scheme 1). The structures of compounds 1 and 2 were established by spectroscopic methods.

2. Results and Discussion

Excavatoid O (1) was obtained as a white powder and had a molecular formula $C_{30}H_{42}O_{13}$, as determined by HRESIMS ($C_{30}H_{42}O_{13}$ + Na, m/z found 633.2519; calculated 633.2523) indicating 10 degrees of unsaturation. The presence of hydroxy, lactone, and ester groups in **1** were evidenced by the IR absorptions at 3512, 1793, and 1741 cm⁻¹. It was found that the ¹H and ¹³C spectra of **1** in CDCl₃ revealed mostly broad peaks when measured at 25 °C. In order to make more reliable assignments of NMR signals of the stabilized conformers, the ¹H and ¹³C NMR spectra of **1** were measured at 0 $^{\circ}$ C in CDCl₃. In the ¹³C spectrum of **1**, five ester carbonyl resonances appeared at $\delta_{\rm C}$ 173.6, 170.8, 170.1, 169.5, and 169.3 (5 × s) (Table 1). In the above carbonyl carbons, three were identified as acetate carbonyls by the presence of three methyl resonances in the ¹H NMR spectrum at $\delta_{\rm H}$ 2.18, 2.12, and 1.96 (each 3H × s) and one was identified as *n*-butyrate carbonyl by the presence of seven contiguous protons at $\delta_{\rm H}$ 0.95 (3H, t, J = 7.2 Hz), 1.64 (2H, m), and 2.23 (2H, m) (Table 1). On the basis of the unsaturation data overall, 1 was concluded to be a briarane diterpenoid molecule possessing five rings. A tetra-substituted epoxide containing a methyl substituent was elucidated from the signals of two oxygenated quaternary carbons at $\delta_{\rm C}$ 72.6 (s, C-8) and 63.3 (s, C-17); and further confirmed by the proton signal of a methyl singlet at $\delta_{\rm H}$ 1.57 (3H, s, H₃-18). In addition, a tri-substituted epoxide containing a methyl substituent was deduced from the signals of an oxymethine ($\delta_{\rm H}$ 3.11, 1H, d, J = 8.8 Hz, H-6; $\delta_{\rm C}$ 63.0, d, C-6), a quaternary oxygen-bearing carbon ($\delta_{\rm C}$ 62.1, s, C-5), and a methyl singlet at $\delta_{\rm H}$ 1.35 (3H, s, H₃-16).

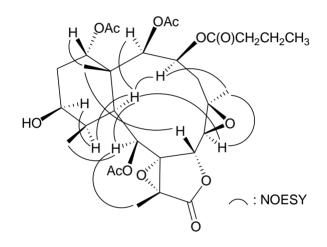
1			2		
Position	$\frac{1}{1}$	¹³ C ^{<i>b</i>}	$\frac{\mathbf{r}}{\mathbf{H}^{c}}$	¹³ C ^{<i>d</i>}	
1		43.3 (s) ^{f}		44.0 (s)	
2	5.81 d (2.0) ^{<i>e</i>}	69.3 (d)	4.62 s	88.2 (d)	
3	5.13 br s	69.9 (d)	5.07 d (11.6)	68.8 (d)	
4	2.25 m (2H)	33.7 (t)	5.82 s	70.9 (d)	
5		62.1 (s)		77.8 (s)	
6	3.11 d (8.8)	63.0 (d)	4.29 s	65.9 (d)	
7	4.69 d (8.8)	78.3 (d)	5.26 s	75.7 (d)	
8		72.6 (s)		67.5 (s)	
9	5.76 s	68.5 (d)	5.36 d (8.4)	66.0 (d)	
10	2.18 br s	45.3 (d)	3.52 dd (8.4, 4.4)	39.5 (d)	
11	2.32 br s	34.5 (d)	2.54 m	37.3 (d)	
12	3.96 br s	69.3 (d)	4.13 m	66.9 (d)	
13	1.92 m (2H)	34.8 (t)	1.83 m (<i>α</i>)	30.3 (t)	
			1.96 m (β)		
14	5.16 br s	73.0 (d)	4.84 br s	80.8 (d)	
15	1.52 s	18.2 (q)	0.86 s	18.2 (q)	
16	1.35 s	21.1 (q)	1.55 s	22.3 (q)	
17		63.3 (s)		60.6 (s)	
18	1.57 s	11.1 (q)	1.63 s	10.0 (q)	
19		170.8 (s)		170.0 (s)	
20	1.19 d (7.2)	16.3 (q)	1.11 d (7.6)	9.0 (q)	
OH-3			3.18 d (11.6)		
OH-5			2.36 s		
OH-12	n.o. ^{<i>g</i>}		2.17 br s		
2-OAc		169.5 (s)		172.0 (s)	
	2.12 s	21.1 (q)	2.03 s	21.1 (q)	
9-OAc		169.3 (s)		170.4 (s)	
	2.18 s	21.2 (q)	2.43 s	21.4 (q)	
14-OAc		170.1 (s)		170.3 (s)	
	1.96 s	21.1 (q)	2.17 s	21.3 (q)	
3-OCOPr		173.6 (s)			
	2.23 m (2H)	35.6 (t)			
	1.64 m (2H)	17.8 (t)			
	0.95 t (7.2)	13.6 (q)			
4-OCOPr				173.9 (s)	
			2.33 t (7.6) (2H)	36.3 (t)	
			1.66 m (2H)	18.4 (t)	
			0.98 t (7.6)	13.7 (q)	

Table 1. ¹H and ¹³C NMR data for diterpenoids 1 and 2.

^{*a*}: Spectra were recorded at 400 MHz at 0 °C; ^{*b*}: Spectra were recorded at 100 MHz at 0 °C; ^{*c*}: Spectra were recorded at 400 MHz at 25 °C; ^{*d*}: Spectra were recorded at 100 MHz at 25 °C; ^{*e*}: *J* values (in Hz) in parentheses; ^{*f*}: Multiplicity deduced by DEPT and HMQC spectra and indicated by usual symbols; ^{*s*}: n.o. = not observed.

From the ¹H-¹H COSY experiment of **1** (Table 2), it was possible to establish the separate spin systems that map out the proton sequences from H-2/H-3/H₂-4, H-6/H-7, and H-9/H-10. These data, together with the HMBC correlations between H-2/C-1, -4; H-3/C-4; H₂-4/C-3, -5, -6; H-7/C-5, -6; H-9/C-1, -7, -8, -10; and H-10/C-1, -2, established the connectivity from C-1 to C-10 in the 10-membered ring (Table 2). The methyl group at C-5 was confirmed by the HMBC correlations between H₃-16/C-4, -5, -6. The methylcyclohexane ring, which is fused to the 10-membered ring at C-1 and C-10, was elucidated by the ¹H-¹H COSY correlations between H-10/H-11/H-12/H₂-13/H-14 and H-11/H₃-20 and by the HMBC correlations between H-2/C-14; H-9/C-11; H-10/C-11, -12, -14; H-11/C-10, -20; H₂-13/C-1; H-14/C-1, -2; and H₃-20/C-10, -11, -12. The ring junction C-15 methyl group was positioned at C-1 from the HMBC correlations between H-2/C-15; and H₃-15/C-1, -2, -10, -14. In addition, the HMBC correlations also revealed that three acetates should be attached at C-2, C-9, and C-14, respectively. The remaining *n*-butyrate ester and hydroxy groups were positioned at C-3 and C-12 as indicated by analysis of ¹H-¹H COSY correlations and characteristic NMR signals analysis ($\delta_{\rm H}$ 5.13, 1H, br s, H-3; $\delta_{\rm C}$ 69.9, d, C-3; $\delta_{\rm H}$ 3.96, 1H, br s, H-12; $\delta_{\rm C}$ 69.3, d, C-12). These data, together with the HMBC correlations between H-7/C-17, -19 and H₃-18/C-8, -17, -19, were used to establish the molecular framework of 1.

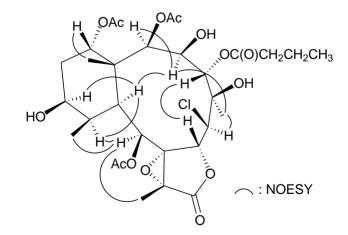
		1		2
Position	¹ H- ¹ H COSY	HMBC	¹ H- ¹ H COSY	НМВС
H-2	H-3	C-1, -4, -14, -15,	H-3	C-1, -3, -4, -10, -14,
		acetate carbonyl		acetate carbonyl
H-3	H-2, H ₂ -4	C-4	H-2, H-4, OH-3	C-1, -5
H-4	H-3	C-3, -5, -6	H-3	C-2, -5, -16,
				<i>n</i> -butyrate carbonyl
H-6	H-7	n.o.	H-7	C-4, -5, -7, -8, -16
H-7	H-6	C-5, -6, -17, -19	H-6	C-5, -6, -9, -19
H-9	H-10	C-1, -7, -8, -10, -11,	H-10	C-7, -8, -10, -11, -17,
		acetate carbonyl		acetate carbonyl
H-10	H-9, H-11	C-1, -2, -11, -12, -14	H-9, H-11	C-1, -8, -9, -11, -12, -15, -20
H-11	H-10, H-12, H ₃ -20	C-10, -20	H-10, H-12, H ₃ -20	C-1, -10, -12, -20
H-12	H-11, H ₂ -13	n.o.	H-11, H ₂ -13	C-20
H-13	H-12, H-14	C-1, -14	H-12, H-14	C-12
H-14	H ₂ -13	C-1, -2, -12, -13,	H ₂ -13	C-10, -12
		acetate carbonyl		
H-15		C-1, -2, -10, -14		C-1, -2, -10, -14
H-16		C-4, -5, -6		C-4, -5, -6
H-18		C-8, -17, -19		C-8, -17, -19
H-20	H-11	C-10, -11, -12	H-11	C-10, -11, -12
OH-3			H-3	C-3
OH-5				C-4, -5, -16
OH-12	n.o. ^{<i>a</i>}	n.o.	H-12	C-11


Table 2. The ¹H-¹H COSY and HMBC (H \rightarrow C) correlations for diterpenoids 1 and 2.

^{*a*}: n.o. = not observed.

Based on previous studies, all naturally occurring briarane-type diterpenoids have the C-15 methyl group as *trans* to H-10, and these two groups are assigned as β - and α -oriented, respectively, as shown in most briarane derivatives [1–3]. The relative stereochemistry of **1** was established from a NOESY experiment (Figure 1). In the NOESY experiment of **1**, the correlations of H-10 with H-2, H-3, H-6, H-9, and H-11; and H-11 correlated with H-12, indicated that these protons are situated on the same face and were assigned as α protons since the C-15 methyl is the β -substituent at C-1. H-14 was found to exhibit a correlation with H₃-15, revealing the β -orientation of this proton. The correlations between H₃-16 and H-3, H-6, reflected the α -orientation of H₃-16. H-7 correlated with H₃-15, indicating this

proton should be β -oriented. Furthermore, H₃-18 showed a correlation with H-9. By detailed analysis of molecular models, H₃-18 was found to be reasonably close to H-9 when H₃-18 was placed on the β face in the γ -lactone moiety. Based on the above findings, the structure of **1** was elucidated unambiguously.


The molecular formula of excavatoid P (2) was determined as $C_{30}H_{43}ClO_{14}$ by its HRESIMS (*m/z* 685.2235, calculated for $C_{30}H_{43}ClO_{14}$ + Na, 685.2239). The IR spectrum showed bands at 3472, 1784, and 1734 cm⁻¹, consistent with the presence of hydroxy, γ -lactone, and ester groups in 2. From the ¹³C NMR data of 2 (Table 1), five carbonyl resonances appeared at δ_{C} 173.9, 172.0, 170.4, 170.3, and 170.0 (5 × s), confirming the presence of a γ -lactone and four esters in 2; three acetyl methyls (δ_{H} 2.43, 2.17, 2.03, each 3H × s) and an *n*-butyryl group (δ_{H} 0.98, 3H, t, *J* = 7.6 Hz; 1.66, 2H, m; 2.33, 2H, t, *J* = 7.6 Hz) were also observed. According to the above data, briarane 2 was found to be a tetracyclic compound with a γ -lactone, as no other unsaturated functional group could be found.

¹H NMR coupling information in the ¹H-¹H COSY spectrum of **2** enabled identification of the C-2/-3/-4, C-6/-7, C-9/-10/-11/-12/-13/-14, and C-11/-20 units (Table 2), which were assembled with the assistance of an HMBC experiment (Table 2). The HMBC correlations between protons and quaternary carbons, such as H-2, H-3, H-10, H-11, H₃-15/C-1; H-3, H-4, H-6, H-7, H₃-16, OH-5/C-5; H-6, H-9, H-10, H₃-18/C-8; H-9, H₃-18/C-17; and H-7, H₃-18/C-19, permitted elucidation of the carbon skeleton. A methyl at C-5 was established by the HMBC correlations between H₃-16/C-4, -5, -6 and H-4, H-6, OH-5/C-16. The ring junction C-15 methyl group was positioned at C-1 from the HMBC correlations between H₃-15/C-1, -2, -10, -14; and H-10/C-15. The acetate esters at C-2 and C-9 were established by correlations between H-2 ($\delta_{\rm H}$ 4.62), H-9 ($\delta_{\rm H}$ 5.36) and the acetate carbonyls

observed in the HMBC spectrum of **2**. The *n*-butyrate ester positioned at C-4 was confirmed from the HMBC correlation between H-4 ($\delta_{\rm H}$ 5.82) and the carbonyl carbon ($\delta_{\rm C}$ 173.9) of *n*-butyrate ester. Thus, the remaining acetoxy group was positioned at C-14 as indicated by analysis of ¹H-¹H COSY correlations and characteristic NMR signals ($\delta_{\rm H}$ 4.84, 1H, br s, H-14; $\delta_{\rm C}$ 80.8, d, C-14). The presence of hydroxy groups at C-3 and C-12 was deduced from the ¹H-¹H COSY correlations between the hydroxy protons ($\delta_{\rm H}$ 3.18, OH-3 and $\delta_{\rm H}$ 2.17, OH-12) and H-3 ($\delta_{\rm H}$ 5.07) and H-12 ($\delta_{\rm H}$ 4.13), respectively. The C-5 hydroxy group was also confirmed by the HMBC correlations between the hydroxy proton ($\delta_{\rm H}$ 2.36, OH-5) and C-4, -5, -16. Thus, the remaining chlorine atom in **2** should be attached C-6 by the ¹H-¹H COSY correlation between H-6 ($\delta_{\rm H}$ 4.29) and H-7 ($\delta_{\rm H}$ 5.26) and further supported by the HMBC correlations between H-6/C-4, -5, -7, -8, -16 and H-7, H₃-16/C-6.

The relative configuration of **2** was elucidated from the interactions observed in a NOESY experiment and from vicinal proton coupling constant analysis. In the NOESY experiment of **2** (Figure 2), the correlations of H-10 with H-3, H-11, and H-12, indicated that these protons were situated on the same face and were assigned as α protons since the C-15 and C-20 methyls are β -substituents at C-1 and C-11, respectively. H-2 exhibited an interaction with H-3, and no coupling was found between H-2 and H-3, indicating that the dihedral angle between H-2/H-3 is approximately 90 ° and the acetoxy group at C-2 should be β -oriented. H-14 was found to exhibit a response with H₃-15, showing that H-14 has a β -orientation. H-9 was found to show responses with H-11, H₃-18, and H₃-20. From modeling analysis, H-9 was found to be close to H-11, H₃-18, and H₃-20 when H-9 was detected between H-6 and H-7, suggesting the α -orientation of H₃-16 and H-6; and β -orientation of H-7. H-7 exhibited a correlation with H-4, and no coupling was found between H-3 and H-4, indicating that the dihedral angle between H-3 and H-4 is also approximately 90 ° and the *n*-butyrate ester group at C-4 was α -oriented. On the basis of the above results, the structure of **2** was elucidated. To the best of our knowledge, briarane **2** is the first briarane which possesses a $\beta\beta$ -chlorine atom.

Figure 2. Selective NOESY correlations of 2.

In the biological activity testing, briaranes 1 and 2 displayed 16.9 and 16.1% inhibitory effects on elastase release by human neutrophils at 10 μ g/mL, resepectively [4].

3. Experimental

3.1. General Experimental Procedures

Melting points were determined on a FARGO apparatus and were uncorrected. Optical rotation values were measured with a JASCO P-1010 digital polarimeter at 25 °C. Infrared spectra were obtained on a VARIAN DIGLAB FTS 1000 FT-IR spectrometer. The NMR spectra were recorded on a VARIAN MERCURY PLUS 400 FT-NMR at 400 MHz for ¹H and 100 MHz for ¹³C, in CDCl₃, at 25 or 0 °C, respectively. Proton chemical shifts were referenced to the residual CHCl₃ signal ($\delta_{\rm H}$ 7.26 ppm). ¹³C NMR spectra were referenced to the center peak of CDCl₃ at $\delta_{\rm C}$ 77.1 ppm. ESIMS and HRESIMS data were recorded on a BRUKER APEX II mass spectrometer. Column chromatography was performed on silica gel (230–400 mesh, Merck, Darmstadt, Germany). TLC was carried out on precoated Kieselgel 60 F₂₅₄ (0.25 mm, Merck) and spots were visualized by spraying with 10% H₂SO₄ solution followed by heating. HPLC was performed using a system comprised of a HITACHI L-7100 pump, a HITACHI photodiode array detector L-7455, and a RHEODYNE 7725 injection port. A normal phase column (Hibar 250 × 10 mm, Merck, silica gel 60, 5 µm,) was used for HPLC.

3.2. Animal Material

Specimens of the octocoral *Briareum excavatum* were collected and transplanted in 0.6-ton cultivating tanks located in the NMMBA, Taiwan, in December 2003. This organism was identified by comparison with previous descriptions [5–7]. A voucher specimen was deposited in the National Museum of Marine Biology and Aquarium, Taiwan.

3.3. Extraction and Isolation

The organism (wet weight 1.0 kg) was collected and freeze-dried. The freeze-dried material was minced and extracted with EtOAc. The extract was separated by silica gel column chromatography, using hexane and hexane/EtOAc mixtures of increased polarity to yield 12 fractions. Fraction 3 was separated by normal phase HPLC, using a mixture of dichloromethane and acetone to afford briarane **2** (0.9 mg, 9/1). Fraction 2 was separated by normal phase HPLC, using a mixture of hexane and EtOAc to afford briarane **1** (13.2 mg, 1/1).

Excavatoid O (1): white powder; mp 137–138 °C; $[\alpha]_{D}^{25}$ – 39 (*c* 0.4, CHCl₃); IR (neat) ν_{max} 3512, 1793, 1741 cm⁻¹; ¹³C NMR (CDCl₃, 100 MHz) and ¹H NMR (CDCl₃, 400 MHz) data, see Table 1; ESIMS m/z 633 (M + Na)⁺; HRESIMS m/z 633.2519 (Calcd for C₃₀H₄₂O₁₃Na, 633.2523).

Excavatoid P (2): white powder; mp 154–155 °C; $[\alpha]_{D}^{25}$ + 14 (*c* 0.05, CHCl₃); IR (neat) ν_{max} 3472, 1784, 1734 cm⁻¹; ¹³C NMR (CDCl₃, 100 MHz) and ¹H NMR (CDCl₃, 400 MHz) data, see Table 1; ESIMS m/z 685 (M + Na)⁺; HRESIMS m/z 685.2235 (Calcd for C₃₀H₄₃ClO₁₄Na, 685.2239).

3.4. Human Neutrophil Elastase Release

Human neutrophils were obtained by means of dextran sedimentation and Ficoll centrifugation. Elastase release experiments were performed using MeO-Suc-Ala-Ala-Pro-Valp-nitroanilide as the elastase substrate [8,9].

Acknowledgements

This study was supported by grants from the National Museum of Marine Biology and Aquarium (Grant No. 99200321 and 99200322); National Dong Hwa University; Asia-Pacific Ocean Research Center, National Sun Yat-sen University (Grant No. 97C031702); and the National Science and Technology Program for Biotechnology and Pharmaceuticals, National Science Council (Grant No. NSC 98-2323-B-291-001, 99-2323-B-291-001, and 98-2320-B-291-001-MY3), Taiwan, awarded to P.-J.S.

References and Notes

- 1. Sung, P.-J.; Sheu, J.-H.; Xu, J.-P. Survey of briarane-type diterpenoids of marine origin. *Heterocycles* **2002**, *57*, 535–579.
- 2. Sung, P.-J.; Chang, P.-C.; Fang, L.-S.; Sheu, J.-H.; Chen, W.-C.; Chen, Y.-P.; Lin, M.-R. Survey of briarane-type diterpenoids-Part II. *Heterocycles* **2005**, *65*, 195–204.
- 3. Sung, P.-J.; Chang, P.-C.; Fang, L.-S.; Sheu, J.-H.; Chen, W.-C.; Chen, Y.-P.; Lin, M.-R. Survey of briarane-type diterpenoids-Part III. *Heterocycles* **2008**, *75*, 2627–2648.
- 4. Elastatinal was used as a positive control in anti-inflammatory activity testing. This compound displayed inhibitory effects on elastase release by human neutrophils ($IC_{50} = 31.0 \ \mu M$).
- 5. Bayer, F.M. Key to the genera of octocorallia exclusive of Pennatulacea (Coelenterata: anthozoa), with diagnoses of new taxa. *Proc. Biol. Soc. Wash.* **1981**, *94*, 902–947.
- 6. Benayahu, Y.; Jeng, M.-S.; Perkol-Finkel, S.; Dai, C.-F. Soft corals (Octocorallia: Alcyonacea) from southern Taiwan. II. Species diversity and distribution patterns. *Zool. Stud.* **2004**, *43*, 548–560.
- Fabricius, K.; Alderslade, P. Soft Corals and Sea Fans—A Comprehensive Guide to the Tropical Shallow-Water Genera of the Central-West Pacific, the Indian Ocean and the Red Sea, 1st ed.; Australian Institute of Marine Science: Queensland, Australia, 2001; pp. 55, 154–157.
- Hwang, T.-L.; Li, G.-L.; Lan, Y.-H.; Chia, Y.-C.; Hsieh, P.-W.; Wu, Y.-H.; Wu, Y.-C. Potent inhibitors of superoxide anion production in activated human neutrophils by isopedicin, a bioactive component of the Chinese medicinal herb *Fissistigma oldhamii*. *Free Radic. Biol. Med.* 2009, 46, 520–528.
- Hwang, T.-L.; Su, Y.-C.; Chang, H.-L.; Leu, Y.-L.; Chung, P.-J.; Kuo, L.-M.; Chang, Y.-J. Suppression of superoxide anion and elastase release by C₁₈ unsaturated fatty acids in human neutrophils. *J. Lipid Res.* 2009, *50*, 1395–1408.

Samples Availability: Not available.

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).