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Abstract

Maximum growth rate per individual (r) and carrying capacity (K) are key life-history traits

that together characterize the density-dependent population growth and therefore are cru-

cial parameters of many ecological and evolutionary theories such as r/K selection.

Although r and K are generally thought to correlate inversely, both r/K tradeoffs and trade-

ups have been observed. Nonetheless, neither the conditions under which each of these

relationships occur nor the causes of these relationships are fully understood. Here, we

address these questions using yeast as a model system. We estimated r and K using the

growth curves of over 7,000 yeast recombinants in nine environments and found that the r–

K correlation among genotypes changes from 0.53 to −0.52 with the rise of environment

quality, measured by the mean r of all genotypes in the environment. We respectively

mapped quantitative trait loci (QTLs) for r and K in each environment. Many QTLs simulta-

neously influence r and K, but the directions of their effects are environment dependent

such that QTLs tend to show concordant effects on the two traits in poor environments but

antagonistic effects in rich environments. We propose that these contrasting trends are gen-

erated by the relative impacts of two factors—the tradeoff between the speed and efficiency

of ATP production and the energetic cost of cell maintenance relative to reproduction—and

demonstrate an agreement between model predictions and empirical observations. These

results reveal and explain the complex environment dependency of the r–K relationship,

which bears on many ecological and evolutionary phenomena and has biomedical

implications.

Author summary

Two parameters are widely used to describe density-dependent population growth: the

maximum growth rate per individual (r) and the maximum population size or carrying

capacity (K). The relationship between these parameters is the subject of many fundamen-

tal theories and debates in ecology and evolutionary biology. Interestingly, although only

r/K tradeoffs are expected and explained thus far, r/K trade-ups have also been reported.
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The present study surveyed the relationship between r and K using the growth curves of

over 7,000 yeast strains in nine environments, discovering that the r–K correlation

changes from trade-ups to tradeoffs as the environment quality improves. Analysis of the

genetic underpinnings of variations in r and K confirms that the same mutation tends to

have concordant influences on r and K in poor environments but antagonistic influences

in rich environments. It is proposed that the environment-dependent pleiotropic effects

of mutations on r and K are a result of the tradeoff between the speed and efficiency of

energy production and the energetic cost of cell maintenance relative to reproduction.

The varied relation between r and K may have biomedical implications for the antibiotic

control of microbial infections and the population growth of tumor cells.

Introduction

Density-dependent population growth is commonly described by a logistic curve with two

parameters: r and K. The carrying capacity K is the maximum population size that can be sup-

ported by the available resource in a local environment, whereas the maximum growth rate r is

the number of individuals produced per individual per unit time when the population size is

much smaller than K. Evolutionary biologists typically treat r as a measure of fitness, whereas

ecologists often regard K as a fitness proxy [1]. Because of such biological importance of r and K,

their relationship has been studied for over half a century, most often in the context of r/K trade-

offs and r/K selection [1]. Specifically, it has been argued that in fluctuating environments, popu-

lation sizes are usually much lower than K, so increasing K has little effect on population growth;

selection is thus focused on r as a means to expanding the population. Under this condition,

organisms are said to be under r selection to become r strategists, which are characterized by a

relatively high fecundity but low probability of surviving to adulthood, along with other traits

such as small body size, early maturity onset, short generation time, and the ability to disperse

offspring widely. By contrast, when the environment is more or less stable or predictable, popu-

lations often approach the carrying capacity, making raising r irrelevant; hence, selection is cen-

tered on K to increase the population size. Under this condition, organisms are said to be subject

to K selection to become K strategists, which are characterized by a relatively low fecundity but

high survivorship, along with a large body size, long life expectancy, and the production of fewer

offspring, which often require extensive parental care until they mature [2–4]. Comparing r-
selected and K-selected organisms revealed an apparent r/K tradeoff, possibly because investing

energy/resources in improving r compromises the investment in improving K and vice versa [4],

but it could also be because r-selected organisms have relatively unimpressive K and vice versa.

The r/K selection and r/K tradeoff were once highly fashionable topics in ecology, but they

lost popularity in the 1990s when empirical studies obtained more complex results than theo-

retical predictions [5]. Nonetheless, the essence of r/K selection was later blended into other

life-history models [6]. Studying r/K selection and r/K tradeoff with evolutionary ecology

approaches can be difficult because (i) the mechanistic basis of the tradeoff is unclear, (ii) the

initial environment where the relevant traits evolved is usually unknown, (iii) the natural envi-

ronment is hard to manipulate, and (iv) the number of replicates/species is insufficient most of

the time [5]. The topic of r/K tradeoffs was, however, revived in microbial studies in the last

decade [7–11]. Although these studies have the benefits of manipulated environments and suf-

ficient replicates, they are small in terms of genotype and environment numbers, and the r/K
tradeoff is not consistently observed across experiments [7–11]. For example, a recent study

reported positive correlations between r and K in bacteria and fungi across environments [11].
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However, it is generally unknown under what conditions r/K tradeoffs and trade-ups, respec-

tively, are expected. Related to this question is a lack of clear understanding of the mechanistic

basis of various r–K relationships. The compromise between ATP production rate (i.e., num-

ber of ATPs generated per unit time) and efficiency (i.e., number of ATPs generated per unit

resource) is commonly used to explain the r/K tradeoff [12–14], but this cannot be the whole

story because it cannot explain the r/K trade-up.

Given the long history of studying the r–K relationship, it is surprising that this relationship

at the mutational level is rarely researched [11]. In fact, Charlesworth showed almost 30 years

ago that pure phenotypic correlations among life-history variables are unlikely to provide use-

ful information on tradeoffs because selection and environmental effects may generate positive

correlations between traits even when they have negative underlying correlations, and he sug-

gested that studying genetic correlations can help understand evolutionarily relevant tradeoffs

and predict evolutionary responses to new selective pressures [15]. In this study, we take

advantage of a recently released dataset of>7,000 yeast genotypes with known genome

sequences and growth curves under multiple environments to address the following suite of

questions. First, do mutations simultaneously influence r and K? Second, when a mutation

simultaneously influences r and K, are the effects concordant or antagonistic? Third, are the

answers to the above two questions influenced by the environment, and how? Fourth, what is

the mechanistic basis of the potentially varying r–K relationship? We report that the pleiotro-

pic effects of mutations on r and K tend to be concordant under poor environments but antag-

onistic under favorable environments and demonstrate that these general trends are

explainable by the relative impacts of two factors: the tradeoff between the speed and efficiency

of ATP production and the energetic cost of cell maintenance relative to reproduction.

Results

Estimating r and K by fitting yeast growth data to logistic curves

Illingworth and colleagues sequenced the genomes of 85 MATa and 86 MATα haploid Saccha-
romyces cerevisiae strains derived from a 12th-generation two-parent intercross pool con-

structed from a North American strain and a West African strain that diverged from each

other at 0.53% of genomic nucleotide positions [16]. Hallin and colleagues then mated each of

the MATa strains with each of the MATα strains to obtain 7,310 diploids with known geno-

types [17]. They grew these strains in nine different solid media (S1 Table) with four replicates

and measured the cell number in each replicate by colony scan-o-matic [18] from 0 and 72 h

of growth at 20 min intervals.

We first developed a method to simultaneously estimate the maximum growth rate r (num-

ber of cells produced per cell per h) and the carrying capacity K (number of cells) by fitting

growth data to logistic curves (see Materials and methods). For each genotype under each

environment, we used this method to estimate r and K for each replicate (see Fig 1A for an

example) and then averaged among replicates that pass our quality standard (S1 Data); we

similarly averaged the coefficient of determination (Rg
2; the subscript g refers to growth) of the

fitted logistic curve among qualified replicates (see Materials and methods). We found that

yeast growths tightly follow logistic curves. Across the nine environments, the median Rg
2

among genotypes is in the range of 0.979–1.000 (Fig 1B). Except for one environment (phleo-

mycin), at least 75% of genotypes have Rg
2 > 0.98 (Fig 1B).

Reducing environment quality turns r/K tradeoffs into trade-ups

Under each environment, we measured Spearman’s rank correlation (ρrK) between the esti-

mated r and K among all genotypes. In six of the nine environments, ρrK is significantly
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negative (all P< 10−11), revealing r/K tradeoffs (S1 Fig). But in the other three environments

(NaCl, caffeine, and galactose), ρrK is significantly positive (all P< 10−166), showing r/K trade-

ups (S1 Fig). For example, ρrK = −0.52 in the allantoin medium (Fig 2A) but 0.32 in the caf-

feine medium (Fig 2B). Because the same genotypes were used in all environments, the above

results indicate that the environment affects the relationship between r and K. To exclude

the possibility that these results are caused by biased estimations of r and K, we conducted a

computer simulation in which the specified r and K are uncorrelated. The simulated data

resembled the empirical data in all other aspects such as numbers of replicates, genotypes,

environments, time points measured during growth, the range of r, the range of K, and Rg
2

(see Materials and methods). The simulated data were analyzed as the actual data, but in none

of the environments did we find ρrK to differ significantly from 0. Furthermore, the estimated

r and K are sufficiently accurate when compared with the values specified in the simulation

(see Materials and methods). We also confirmed by computer simulation that growth need

not reach saturation for reliable estimations of r and K (see Materials and methods). These

results support that the observed varying ρrK across environments is genuine.

The type of stress does not seem to determine whether ρrK is positive or negative because

the three environments with a positive ρrK belong to three different types of stress (S1 Table).

To investigate what environmental factors impact the sign and magnitude of ρrK, we consid-

ered environment quality Q, which is the mean r of all genotypes in the environment [19].

We found that Q and ρrK are strongly negatively correlated (ρ = −0.88, P = 3.1 × 10−3; Fig 2C),

suggesting that reducing the environment quality turns r/K tradeoffs into trade-ups. As a com-

parison, we also calculated the mean K of all genotypes in an environment but found it uncor-

related with ρrK (ρ = 0.18, P = 0.64; Fig 2D). This is probably because the total amount of

carbon and nitrogen provided varies among the media (S1 Table), making the mean K not

directly comparable among the nine environments.

Among-genotype variations of r and K have common genetic components

To understand the genetic basis of the r/K tradeoffs and trade-ups, we respectively mapped

quantitative trait loci (QTLs) for r (rQTLs) and K (KQTLs) in each environment and identified

93–96 QTLs per trait per environment (see Materials and methods). Through a series of steps

Fig 1. Yeast growths fit logistic curves. (a) An example of yeast growth in the galactose medium and the fitted logistic curve. Red dots represent observed data from

one replicate of a genotype, and the blue line is the fitted curve. Rg
2 from the logistic curve is presented. (b) Distribution of Rg

2 among all genotypes in each of the nine

environments. The lower and upper edges of a box represent qu1 and qu3, respectively; the horizontal red line inside the box indicates md; the whiskers extend to the

most extreme values inside inner fences, md ± 1.5 (qu3–qu1); and the red crosses represent values outside the inner fences (outliers). Data are available at https://github.

com/AprilWei001/Environment-dependent-r-K-relations. md, median; qu, quartile.

https://doi.org/10.1371/journal.pbio.3000121.g001
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that maximize the difference between the total phenotypic variance of a trait explained by

QTLs and that explained by the same number of random single-nucleotide polymorphisms

(SNPs), we retained the 36 most significant QTLs per trait in each environment (S2 Data) for

further analysis (see Materials and methods). In each environment, the 36 top rQTLs together

explain 65%–81% of the total variance of r (Fig 3A) as well as 21%–60% of the total variance of

K in the same environment (Fig 3B). Similarly, the 36 top KQTLs together explain 53%–77%

of the total variance of K (Fig 3B) as well as 27%–66% of the total variance of r in the same

environment (Fig 3A). That rQTLs partially explain the K variance and vice versa has two pos-

sible explanations. First, some rQTLs and KQTLs share the same underlying causal mutations.

In other words, some mutations are pleiotropic, affecting both r and K. Second, rQTLs and

Fig 2. The r–K correlation among genotypes varies with environment. (a) An overall negative r–K correlation is observed in

the allantoin medium. (b) An overall positive r–K correlation is observed in the caffeine medium. In (a) and (b), each dot is a

genotype. The rank correlation (ρrK) between r and K among all genotypes and the associated P-value are presented. (c) ρrK

decreases with environment quality Q, which is the mean r of all genotypes in the environment. (d) ρrK is not significantly

correlated with the mean K of all genotypes in the environment. In (c) and (d), each dot represents one environment. The

among-environment rank correlation (ρ) between ρrK and either Q or mean K are presented. Data are available at https://

github.com/AprilWei001/Environment-dependent-r-K-relations.

https://doi.org/10.1371/journal.pbio.3000121.g002
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KQTLs have distinct causal mutations and are independently distributed in the genome, but

rQTLs explain the K variance and vice versa owing to the linkage disequilibrium between

rQTLs and KQTLs in the mapping population, which could still exist after 12 generations of

crosses. Under this explanation, 36 randomly picked SNPs should explain the r variance as

much as the 36 KQTLs do. But what we found is that in each of the nine environments, the 36

KQTLs explain the r variance much better than the 36 randomly chosen SNPs do (P< 0.001

based on 1,000 random samplings of 36 SNPs) (Fig 3A). The same is true when comparing

rQTLs and random SNPs in explaining the K variance (Fig 3B). These observations refute the

second potential explanation, suggesting that some rQTLs and KQTLs share causal mutations,

which is supported by the recent finding that altering the ribosomal RNA gene copy number

in Escherichia coli simultaneously alters r and K [11].

Fraction of antagonistic QTLs rises with environment quality

That the sign of ρrK turns from positive into negative as the environment quality Q rises (Fig

2C) and that r and K share underlying genetic components (Fig 3A and 3B) predict that the

fraction of QTLs with antagonistic effects on r and K rises with Q. To confirm this prediction,

in each environment, we estimated the effects of each rQTL on r and K by regression (see

Materials and methods). If the two effects are of the same direction, the QTL has concordant

effects; otherwise, it has antagonistic effects. In seven of the nine environments, most rQTLs

show antagonistic effects; in one other environment (the NaCl medium), most rQTLs show

concordant effects. In the remaining environment (the caffeine medium), equal numbers of

rQTLs show concordant and antagonistic effects. The fraction of antagonistic rQTLs indeed

rises with Q (ρ = 0.94, P = 4.9 × 10−4; Fig 3C).

We similarly analyzed the effects of KQTLs on r and K in each environment. In seven of the

nine environments, most KQTLs exhibit antagonistic effects. The opposite is true in the

remaining two environments (the NaCl and caffeine media). Again, the fraction of antagonis-

tic KQTLs rises with Q (ρ = 0.74, P = 0.018; Fig 3C). Not unexpectedly, neither the fraction of

Fig 3. Among-genotype variations of r and K in each environment share genetic components. (a) Fractions of r variance among genotypes explainable by 36 rQTLs,

36 KQTLs, and 36 random SNPs, respectively. (b) Fractions of K variance among genotypes explainable by 36 rQTLs, 36 KQTLs, and 36 random SNPs, respectively. (c)

Fractions of rQTLs and KQTLs that show opposite effects on r and K, respectively, increase with environment quality Q. Rank correlations (ρ) between these fractions

and Q, as well as the associated P-values, are presented. Data are available at https://github.com/AprilWei001/Environment-dependent-r-K-relations. QTL, quantitative

trait locus; SNP, single-nucleotide polymorphism.

https://doi.org/10.1371/journal.pbio.3000121.g003
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antagonistic rQTLs nor the fraction of antagonistic KQTLs in an environment correlates sig-

nificantly with the mean K of all genotypes in the environment (P> 0.5 in both cases).

Environment-dependent pleiotropic effects of individual QTLs on r and K
The above results strongly suggest that the phenotypic effects of a given QTL on r and K may

be antagonistic in one environment but concordant in another. In other words, the environ-

ment modulates the type of pleiotropy of the QTL, which we refer to as pleiotropy by environ-

ment interaction, a form of genotype by environment interaction [20]. To our knowledge,

QTL pleiotropy by environment interaction has not been reported beyond one case in plants

[21]. To explore this phenomenon in our data, we examined each 3 kb genomic segment—

which harbors 1.5 genes and 3.0 mapping SNPs on average—and counted the number of times

that an rQTL or KQTL identified in an environment resides in this segment. This treatment is

necessary because (i) the causal genetic variant of a QTL cannot be traced to the nucleotide res-

olution despite much of the linkage in the original parental strains being broken in 12 genera-

tions of crosses and (ii) each mapping SNP may represent multiple SNPs that are in complete

linkage disequilibrium (see Materials and methods). We considered only the 36 top rQTLs

and 36 top KQTLs per environment. We referred to a segment as an enriched segment if four

or more QTLs were found in the segment among the nine environments. A total of 21

enriched segments were detected. By contrast, our simulation showed that only 0.83 segments

are expected to have�4 QTLs if all 36 × 2 × 9 = 648 QTLs are randomly distributed in the

yeast genome. Among the 21 segments, 18 harbor at least one rQTL and at least one KQTL.

Because one segment is expected to have only 0.144 QTLs if all QTLs have distinct causal

mutations, the�4 QTLs in each of these 18 segments likely have the same causal mutation.

Because the causal mutation is unknown, an SNP representing the causal mutation was chosen

(see Materials and methods), and its effects on r and K in each environment were estimated.

Fig 4 shows the effects of these 18 representative SNPs on r and K in each of the nine environ-

ments, and they clearly demonstrate pleiotropy by environment interactions. For example,

SNP #66 has significant concordant effects on r and K in the NaCl and galactose media but sig-

nificant antagonistic effects in the rapamycin, allantoin, and isoleucine media (Fig 4A).

Why do r/K tradeoffs turn into trade-ups as Q lowers?

The prevailing explanation of the r/K tradeoff is the compromise between ATP production

rate and efficiency, which states that increasing the rate of ATP production per unit time

improves the growth rate but reduces the efficiency of resource utilization by lowering the

total amount of ATP produced, causing K to decrease [12–14]. This model, however, cannot

explain why lowering Q turns r/K tradeoffs into trade-ups, as observed in our study. One defi-

ciency of the model is the implicit assumption that the amount of ATP used per generation is

independent of the growth rate. Population growth requires energy for producing new cells as

well as energy for maintaining existing cells. While the per-generation cost for the former is

probably independent of the growth rate, the cost for the latter should be proportional to the

generation time T, which equals ln2/rN, where rN (� r) is the growth rate when the population

size is N. Indeed, as early as 50 years ago, Prit showed in multiple organisms that the extra sub-

strates (glucose or glycerol) needed to produce the same amount of dry weight increases line-

arly with the inverse of the growth rate [22]. Hence, it is possible that when r is low, increasing

r raises K because the per-generation cell-maintenance cost is reduced in spite of a lowered

efficiency in resource utilization [23]. Below, we examine this model quantitatively.

Let a be the per-cell maintenance cost of energy per h. Hence, the per-cell maintenance cost

per generation is aT = aln2/rN, where T is the generation time in h. Let b be the energy cost to
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produce a new cell. Thus, the total energy cost per cell per generation is aln2/rN + b, and the

corresponding cost per cell per h is a + brN/ln2. The above result indicates that as rN increases,

the energy used and produced per h, or ATP production rate, must increase. The tradeoff

between ATP production rate and efficiency dictates that the efficiency of resource usage, f
(rN), must then decline. Hence, f(rN), which is between 0 and 1, is a decreasing function of rN.

Let the amount of resource usage per cell per generation be CN when the population size is N.

Following a recent study [24], we have

CN f ðrNÞ ¼ aln2=rN þ b: ð1Þ

Let us now consider the situation of N<< K, under which rN = r and CN = C. So, Eq 1 can be

written as

C ¼ ðaln2=r þ bÞ=f ðrÞ: ð2Þ

It is difficult to derive an analytical formula relating r and K from Eqs 1 or 2 because the

exact form of f(rN) is unknown and because CN changes with population growth as a result of

changes of rN and f(rN). Nevertheless, when the total amount of resource is fixed, the larger the

C or CN, the fewer generations the population can grow for, and hence, the smaller the K.

Taking derivatives on both sides of Eq 2, we get

dC
dr
¼
�

aln2f ðrÞ
r2 � f 0ðrÞ aln2

r þ b
� �

½f ðrÞ�2
¼
½� aln2f ðrÞ� þ ½� f 0ðrÞðarln2þ br2Þ�

½f ðrÞ�2r2
: ð3Þ

On the right-hand side of Eq 3, the denominator is positive, the first term of the numerator is

negative, and the second term of the numerator is positive. Hence, dC/dr may be positive or

negative, depending on the values of a, b, and r and the function f(r). Now let us consider the

scenario when r approaches 0. Given that f(r) will approach 1, f 0(r) cannot be infinity. Hence,

the second term of the numerator in the right-hand side of Eq 3 approaches 0, while the first

term of the numerator remains considerably negative. Consequently, dC/dr< 0, meaning that

C decreases with r, which results in r/K trade-ups. Let us turn to the scenario when r is very

large. Now, the first term of the numerator is negligible relative to the second term, leading to

dC/dr> 0 and r/K tradeoffs. In other words, regardless of a, b, and f(r), the model creates r/K
trade-ups at very low r and tradeoffs at very high r.

To analyze the behavior of the model further, especially when r is not too small nor too

large, we assume that f(r) = 1 − (r/rMAX)w, where rMAX is the maximum possible r of any geno-

type in any environment and w> 0. Based on the finding that the cost of maintenance per h is

about 1% of the cost of reproduction in yeast [24], we assume a = 0.01 and b = 1. We drew the

numerical relationship between C and r when rMAX = 0.5 and w = 3 (S2 Fig). One can see that

C declines as r increases to an intermediate value (approximately 0.13) and then rises as r fur-

ther increases. Hence, K should rise and then decline as r increases, creating r/K trade-ups

when r is small but tradeoffs when r is large.

Fig 4. Representative SNPs of individual QTLs show varying pleiotropic effects on r and K in different

environments. (a)–(r) Each panel is the result for one QTL, with the representative SNP labeled at the right corner.

The x-axis shows the effect of the North American allele at the SNP on r, and the y-axis shows the effect of the same

allele on K. Blue dashed lines indicate zero effects. The effects in each environment are shown by the central position of

a sphere with the corresponding color, estimated by the difference in mean phenotypic value between homozygotes

with the North American allele and homozygotes with the West African allele, and the SEs of the effects are shown by

error bars. Data are available at https://github.com/AprilWei001/Environment-dependent-r-K-relations. all, allantoin;

caf, caffeine; gal, galactose; gly, glycine; HU, hydroxyurea; ile, isoleucine; NaCl, sodium chloride; phl, phleomycin;

QTL, quantitative trait locus; rap, rapamycin; SE, standard error; SNP, single-nucleotide polymorphism.

https://doi.org/10.1371/journal.pbio.3000121.g004
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The above finding is made without specifying how r is altered. Hence, it applies when r is

altered by an environmental shift, a mutation, or a combination of the two, as long as the

parameters of the model stay more or less unchanged and K is measured under a fixed amount

of resource when different environments are compared. Because Q is defined by the average r
across all genotypes, it follows that an overall r/K trade-up among genotypes is observed in

low-Q environments, while an overall tradeoff is observed in high-Q environments (Fig 2C).

Lipson proposed verbally that when maintenance cost is considered, r/K trade-ups should be

observed in slow-growth environments and tradeoffs should be observed in fast-growth envi-

ronments [23]. His proposal is supported by observations from our model and empirical data.

Furthermore, our model predicts that, under a given environment, ρrK for a subgroup of

genotypes could be positive or negative depending on the range of r for this subgroup of geno-

types. In other words, it is possible to observe a positive ρrK for a subgroup of low-r genotypes

and a negative ρrK for another subgroup of high-r genotypes in the same environment, pro-

vided that the range of r among genotypes in the environment is large enough. In addition,

our model predicts that the critical r value at which r/K tradeoffs turn into r/K trade-ups

should be more or less the same in different environments if a, b, and f(r) are similar among

different environments. To verify these predictions, in each environment, we divided all geno-

types into bins of 500 genotypes based on their r values in the environment. We then com-

puted the mean K and mean r of each bin. In each environment, we identified the bin with the

highest mean K and then averaged the mean r of this bin across the nine environments, which

arrived at rtp = 0.1076 (the subscript "tp" stands for turning point; see black vertical line in Fig

5). We found that in most but not all environments, K tends to increase with r when r< rtp

but decrease with r when r> rtp, even when the r range spans rtp in an environment (Fig 5).

Thus, the r/K tradeoffs and trade-ups can simultaneously appear in one environment, and the

turning point between tradeoffs to trade-ups is similar among the nine environments.

Admittedly, there may be other models that could explain the r–K trade-up. For example, a

mutation that renders some strains more efficient in using a nutrient than other strains can

result in an r–K trade-up. But this hypothesis cannot explain why the r–K trade-up turns into

tradeoff when Q increases because the ability to better use a nutrient could occur in both high-

and low-Q environments. By contrast, the maintenance cost coupled with the conflict between

the speed and efficiency of ATP production can explain trade-ups, tradeoffs, and the turn

from trade-ups into tradeoffs when Q rises. Although we cannot prove that our model is the

only possibility, it appears to be the simplest and probably the most general explanation.

Discussion

Using the growth data of over 7,000 yeast strains in nine environments, we conducted the larg-

est-ever investigation of the relationship between r and K. We showed an overall r/K tradeoff

in high-quality environments but an overall r/K trade-up in low-quality environments, where

the quality of an environment is measured by the average maximal growth rate (r) of all geno-

types in the environment. By mapping rQTLs and KQTLs, we found that at least some muta-

tions simultaneously influence r and K. Interestingly, the effects of the same mutation on these

two traits can be concordant in one environment but antagonistic in another. In general, con-

cordant mutational effects on r and K are more common in low-quality environments, while

the opposite is true in high-quality environments. Finally, we proposed a model involving a

compromise between the speed and efficiency of ATP production and the relative costs of cell

maintenance and division that satisfactorily explains our observations. Our model predicts

that r/K tradeoffs and trade-ups can even coexist in a single environment in different ranges of

r values, which is subsequently confirmed by the empirical data.
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Warringer and colleagues measured the growth rate and efficiency of 39 S. cerevisiae strains,

39 S. paradoxus strains, and a few strains from other yeasts in a large number of liquid media

[25]. But they reported rate-efficiency tradeoffs across all strains examined in only two media.

Nevertheless, we found that more media in their data show tradeoffs if only intraspecific varia-

tions are considered. For instance, we found rate-efficiency tradeoffs in 12 of the 196 media

among S. cerevisiae strains and in 39 of the 196 media among S. paradoxus strains. Interestingly,

Fig 5. Varying r–K relationships among genotypes across different ranges of r in each of the nine environments. (a)–(i) Each panel

shows r–K relationships in one environment labeled on the top of the panel. Each dot shows the average r and average K from a bin of

500 genotypes grouped by r. The same vertical black line is shown on all panels, the position of which is determined by the average r of

the group with the highest K among the nine environments. Note that the y-axes of different panels are not directly comparable because

of the variation in the amount of resource among media. Data are available at https://github.com/AprilWei001/Environment-dependent-

r-K-relations.

https://doi.org/10.1371/journal.pbio.3000121.g005
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the rate-efficiency correlation turns from positive into negative values as the average growth

rate in a medium increases (Spearman’s ρ = −0.199, P = 0.005 in S. cerevisiae; ρ = −0.130,

P = 0.070 in S. paradoxus; S3 Fig). Thus, our primary finding appears to hold in liquid media as

well.

Recently, Reding-Roman and colleagues observed both r/K tradeoffs and trade-ups when

examining microbial growths of multiple genotypes in multiple media that differ in the glucose

concentration [11]. However, their findings are distinct from ours in that they observed a max-

imal r when K is intermediate, while we observed a maximal K when r is intermediate. Further-

more, their explanatory model is based on the Monod function [26], which neglects the cell-

maintenance cost [22]. Because their observation was based on a relatively small number of

genotypes and their environments varied in the concentration of only one component (glu-

cose), the generality of their findings is unclear. At any rate, their observations differ from ours

and their model cannot explain our observations.

While the classic r/K-selection theory predicts that selecting for r leads to a reduction in K
and vice versa, our findings paint a more complex picture. In a constant environment, adapta-

tion will likely improve r and K concordantly if the initial r is low. But when r reaches a certain

level, further adaptation will cause antagonistic changes of r and K. Whether r or K will further

increase while the other trait will decrease depends on which of the two traits is the main target

of selection. These predictions can be tested using Lenski’s long-term experimental evolution

of 12 populations of E. coli in a constant low-glucose medium. Novak and colleagues examined

the relationship between r and K in the first 20,000 generations of evolution of these E. coli
populations [7]. Their results are broadly consistent with our predictions. For instance, they

reported that both r and K increased quickly in the first 2,000 generations, after which r con-

tinued to improve slowly, but K stopped rising and even declined in some populations. Appar-

ently, r is the main target of selection in this case. While Novak and colleagues reported no

clear correlation between r and K among the 12 populations at the end of 20,000 generations,

their Fig 3 showed a positive r–K correlation among populations with relatively low r values

and a negative correlation among populations with relatively high r values [7]. Similarly, previ-

ous mixed reports of r/K tradeoffs and trade-ups [7–10] are actually expected rather than sur-

prising. Hence, considering the varying intrinsic relationship between r and K is critical to

predicting how r and K respond to natural selection and largely explains why Pianka’s r/K-

selection–based prediction of life-history traits [4] does not always work [5].

Our findings may also have implications in medicine. For instance, our results suggest that,

in applying antibiotics to control microbial infection, it is important to apply a sufficiently

high dose such that r is below the turning point rtp. Only in this range will reducing r also

lower K; otherwise, reducing r will increase K. The same principle may apply in the treatment

of cancer, which is intimately related to the growth of the tumor cell population [27,28]. Nev-

ertheless, we caution that, because our discovery is made in a unicellular organism, its general-

ity, especially among multicellular organisms, awaits future exploration.

We identified a number of QTLs with concordant effects on r and K in one environment

but antagonistic effects in another. Such pleiotropy by environment interaction means that a

mutation that cannot be fixed in one environment because of antagonistic effects on two traits

may be easily fixed in another environment when its effects become concordant and hence has

evolutionary implications. But how common pleiotropy by environment interaction is remains

unknown, although both pleiotropy [29] and genotype by environment interaction [20,30,31]

appear prevalent.

Our findings illustrate the necessity and power of discerning the relationship between phe-

notypic traits at the mutational level for understanding the cause of their positive or negative

correlation among individuals, populations, or species. With the rapid progress in genomic
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technology and high-throughput phenotyping, this approach promises to offer deeper and

broader insights into phenotypic variation and evolution.

Materials and methods

Genotype and growth data of diploid yeast hybrids

We acquired from Hallin and colleagues the unsmoothed growth data of 7,310 diploids pro-

duced from all pairwise crosses between 85 MATa and 86 MATα haploid strains of S. cerevisiae
[17]. The haploids were randomly drawn from a 12th-generation two-parent intercross pool

derived from a North American wild strain and a West African wild strain [17]. The colony

size for each diploid genotype was measured and cell number inferred at 217 time points from

0 to 72 h at 20 min intervals with four replicates by scan-o-matic, a high-resolution automatic

microbial growth phenotyping approach [18]. The four replicates were initiated from different

precultures and run in different instruments and plate positions in the scanner to minimize

bias. Because the cell number estimation is based on colony scan, the estimated K reflects the

total volume of the cell population and is robust to cell size. The diploids were grown in nine

different solid agar media, which are synthetic complete media with additional stressors or

alternative carbon or nitrogen source (allantoin, caffeine, galactose, glycine, hydroxyurea, iso-

leucine, NaCl, phleomycin, and rapamycin) (S1 Table). Because the genomes of all 171 hap-

loids were sequenced [16], all 7,310 diploids have known genome sequences [17]. Note that

the original experiment contained 86 MATa and 86 MATα haploids, but all crosses involving

one MATa strain were contaminated and removed.

There are two potential biases in measuring growth from Hallin and colleagues’ experiment

[17]. First, the growth of a colony could be affected by its neighbors on the plate; this is referred

to as the positional effect. Second, some regions on the plate may have systematically higher or

lower growths because of differential lighting and evaporation of water; this is referred to as

the spatial effect. Hallin and colleagues used grid reference correction [17] because the grid ref-

erence was shown to be useful in correcting the spatial effect in the original development of

scan-o-matic by Zackrisson and colleagues [18]. Nevertheless, there is one distinction between

Hallin and colleagues’ data [17] and Zackrisson and colleagues’ data [18] that could make the

helpful correction in Zackrisson and colleagues’ work detrimental in Hallin and colleagues’

study. Specifically, the grid reference correction was verified in a plate of 1,536 colonies of the

same genotype [18]; there was no positional effect on this plate because all positions had the

same neighbors. In Hallin and colleagues’ experiment, 384 controls of the same genotype were

placed on each plate. A control colony in Hallin and colleagues was potentially subject to both

the spatial effect and positional effect because different controls no longer shared the same

neighbors. If a control colony grew rapidly because its neighbors grew slowly and were out-

competed by the control, this rapid growth was due to the positional effect. If one attempts to

correct it by the grid reference, one is mistakenly assuming that the rapid growth is due to the

spatial effect, and the correction introduces a bias, making the corrected neighboring geno-

types’ growth rates even lower than the true values. Therefore, performing the grid reference

correction can bias the estimation of genetic effects for the sake of correcting nongenetic

effects. In addition, it is possible that r and K are differentially influenced by neighbors because

r is determined mostly by earlier sections of a growth curve when competition among neigh-

bors are not strong, while K, a feature determined mostly by later sections of a growth curve, is

more likely influenced by neighbors. However, because each genotype had four replicates at

different plate positions in the scanner, the spatial effect is mostly randomized and uncorre-

lated with the genotype. There is therefore little need to correct for the spatial effect. This said,

we performed the normalization as in Hallin and colleagues and confirmed that our primary
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finding that r–K trade-ups turn into tradeoffs when Q rises still holds (Spearman’s ρ = −0.75,

P = 0.026). Similarly, because different strains were placed randomly on plates, the positional

effect on each strain is random so is not expected to create general trends as discovered in our

analysis. Indeed, as mentioned in the Discussion, the above turn from tradeoffs into trade-ups

is also present for yeast growth in liquid media, which has no spatial or positional effect.

Estimating r and K
The logistic equation was used to describe density-dependent population growth [32], and it

was popularized by Raymond Pearl and Lowell Reed when they substituted r and K into the

Verhulst model [33]. As early as 1913, the logistic growth of yeast was demonstrated by Carl-

son [34]. Our estimation of r and K from growth data is based on the following logistic equa-

tion.

dN
dt
¼ rNð1 �

N
K
Þ ð4Þ

Integrating Eq 4 leads to

N ¼
K

1þ ð KN0
� 1Þe� rt

; ð5Þ

where N0 is the initial population size and t is the growth time. The r estimated here is also

known as r0 in the literature and is the maximum cell growth rate. It should not be confused

with the maximum population growth rate, often written as rmax and estimated from the mid-

log phase of a growth curve.

We first estimated r and K for each replicate of each genotype in each environment by fit-

ting Eq 5 to the data of cell number N and time t using the NonLinearModel.fit function in

Matlab. We then removed low-quality replicates in the following manner. We assumed that r
and K estimates that are far from the nearest neighbors are outliers and set cutoffs based on

the fold difference between outliers and medians. Because K has a wider range than r, different

cutoffs for r and K were used. In practice, we removed all replicates whose estimated r is larger

than 200% or smaller than 50% of the median r from all r estimates from all genotypes in the

same environment. We similarly removed all replicates whose estimated K is larger than 400%

or smaller than 25% of the median K estimate from all genotypes in the same environment.

The majority of removed replicates were extreme outliers, with r or K estimates being negative

or hundreds of times bigger than nonoutliers. Changing the lower r cutoff to 33%, higher r cut-

off to 300%, lower K cutoff to 20%, and higher K cutoff to 500% impacts <1% of the number

of retained replicates. After the quality control, in each environment, 93.2%–100% of geno-

types have at least three retained replicates. The r and K estimates of a genotype in an environ-

ment are the average values of all remaining replicates. For each remaining replicate, we

computed the fraction of variance in the growth data explained by the logistic regression (Rg
2)

and then computed the average Rg
2 across the remaining replicates. We found no correlation

between mean Rg
2 across genotypes in an environment and the mean r or K of all genotypes in

the environment. We calculated the standard error (SE) of the r and K estimates from repli-

cates. The median SE of r among all genotypes varies from 0.0034 to 0.013 in the nine environ-

ments, while the median SE of K among all genotypes varies from 1.2 × 105 to 2.6 × 105 in the

nine environments. The median SE of r (or K) is uncorrelated with mean r (or K) among envi-

ronments. We also calculated the standard deviations of r and K among genotypes under each

environment to be used in simulations (see below).
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To exclude the possibility that the observed correlation between r and K is an artifact of our

r and K estimation, we performed a computer simulation. We simulated the growth of 7,000

genotypes in nine environments to best mimic the real data. In each environment, the r and K
of all genotypes used in the simulation followed normal distributions with the same means

and standard deviations as estimated from the actual data. We then computed the cell number

using the logistic curve from 0 to 72 h at 20 min intervals. We added a random noise to each

computed cell number at each time point; the noise follows a normal distribution with

mean = 0 and variance = median (1 − Rg
2) in each environment × SST (i.e., the total sum of

squares of cell numbers for each replicate). By doing so, our median fitted Rg
2 from simulated

data equals the empirical median Rg
2. Four independent replicate growth datasets were simu-

lated per genotype per environment. Using the simulated data, we estimated r and K for each

replicate of each genotype as in the estimation using the actual data. As expected, the r and K
estimates from the simulated data have similar ranges as those from the actual data. In each

simulated environment, 95.1%–99.9% of simulated genotypes have r and K estimated. Among

them, 71.6%–74.6% of genotypes have estimated r and K that, respectively, deviate from the

simulated value by <1%, and 93.0%–97.6% of the genotypes have estimated r and K that,

respectively, deviate from the simulated value by<20%. Hence, our estimation of r and K is

accurate under logistic growth. Of the nine simulated environments, none showed a signifi-

cant correlation between r and K upon multiple-testing corrections. We also confirmed by

computer simulation that growth need not reach saturation for reliable estimations of r and K.

Specifically, we simulated growth using low r and high K to avoid saturation, resulting in a

median last-hour growth rate that was 23.3% of the initial growth rate. Yet, estimates of r and

K were generally accurate and unbiased.

QTL mapping

Before QTL mapping, we first coded the genotype at each SNP as 0, 1, or 2 if it was homozy-

gous for the West African allele, heterozygous, or homozygous for the North American allele,

respectively. We then filtered the SNPs that contain redundant information such that only the

middle SNP is maintained when several neighboring SNPs are in complete linkage disequilib-

rium. This resulted in 13,350 remaining SNPs for QTL mapping.

We mapped rQTLs and KQTLs in each environment following a recent QTL study [35],

using a false discovery rate (FDR) of 0.05. Briefly, this approach performs multiple rounds of

mapping. In each round, at most one most significant SNP in each chromosome will be

mapped as a QTL, and the residuals from fitting all mapped QTLs from all previous rounds

will be used for the next round of mapping. FDR is calculated by a permutation test. We

stopped the mapping after six rounds, resulting in 93–96 QTLs per trait. We calculated the

total phenotypic variance explained by all mapped QTLs (R2). We then removed the QTL that

has the smallest effect on total R2 and recalculated the total R2 explained using all remaining

QTLs. We repeated this process and removed small-effect QTLs one by one until we retained

48, 36, 24, or 18 QTLs per trait. By doing so, we acquired equal numbers of rQTLs and KQTLs

in each environment. We also calculated the total fraction of phenotypic variance explained

(R2
SNPs) by 96, 48, 36, 24, or 18 randomly picked SNPs, respectively. When we retained 48

QTLs, the averaged fraction of R2 explained for all traits is R2
QTLs = 0.738. This value reduced

to 0.703 when we retained 36 QTLs. The averaged R2
QTLs dropped quickly when fewer than 36

QTLs were considered. We found that the difference between R2
QTLs and R2

SNPs is maximized

when 36 QTLs were compared with 36 random SNPs. Focusing on these 36 large-effect QTLs

instead of 93–96 total QTLs per trait allowed us to study how environment affects mutational

pleiotropy with increased confidence.
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We performed a linear regression using the genotypes of the 36 rQTLs in one environment

to predict the r in that environment. The regression coefficient for each rQTL was used as a

measure of the effect of this rQTL on r. Similarly, a regression using the 36 rQTLs to predict K
in that environment gave the effect of each rQTL on K. The same method was used to estimate

the effects of each KQTLs on r and on K.

The r–K relationship and the rate–yield relationship

In addition to the r–K relationship, the rate–yield relationship is frequently discussed in the lit-

erature [7,36], in which rate refers to the growth rate and yield refers to the dry weight pro-

duced per mole of substrate. The r–K relationship is equivalent to the rate–yield relationship

when K is measured under a fixed amount of resource, because K = yield × amount of resource

in moles.
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S1 Fig. The among-genotype relationship between r and K in each of the nine environ-

ments. Each panel shows one environment labeled on top of the panel. Each dot represents

one genotype.
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S2 Fig. Model-predicted relationship between maximum growth rate (r) and energy cost

per cell per generation (C) using the following parameters: a = 0.01, b = 1, rMAX = 0.5,

w = 3. See main text for details.

(PDF)

S3 Fig. The growth rate–yield correlation in liquid media turns from positive into negative

as the average rate in a medium increases in (a) S. cerevisiae and (b) S. paradoxus. Each dot

represents one growth medium. Both the rate and yield estimates were from Warringer and

colleagues [25]. The x-axis shows the average growth rate of all 39 measured strains in an envi-

ronment, while the y-axis shows the rank correlation between rate and yield among the 39

strains in the same medium.

(PDF)

S1 Table. Variables and stresses among the nine growth media.
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S1 Data. Estimated r and K for each genotype in each of the nine environments.
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S2 Data. The top 36 rQTLs and top 36 KQTLs in each of the nine environments. QTL,

quantitative trait locus.
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