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Abstract: The use of deer antlers dates back thousands of years in Chinese history. Deer antlers
have antitumor, anti-inflammatory, and immunomodulatory properties and can be used in treat-
ing neurological diseases. However, only a few studies have reported the immunomodulatory
mechanism of deer antler active compounds. Using network pharmacology, molecular docking,
and molecular dynamics simulation techniques, we analyzed the underlying mechanism by which
deer antlers regulate the immune response. We identified 4 substances and 130 core targets that
may play immunomodulatory roles, and the beneficial and non-beneficial effects in the process of
immune regulation were analyzed. The targets were enriched in pathways related to cancer, human
cytomegalovirus infection, the PI3K-Akt signaling pathway, human T cell leukemia virus 1 infection,
and lipids and atherosclerosis. Molecular docking showed that AKT1, MAPK3, and SRC have good
binding activity with 17 beta estradiol and estrone. Additionally, the molecular dynamics simulation
of the molecular docking result using GROMACS software (version: 2021.2) was performed and we
found that the AKT1–estrone complex, 17 beta estradiol–AKT1 complex, estrone–MAPK3 complex,
and 17 beta estradiol–MAPK3 complex had relatively good binding stability. Our research sheds
light on the immunomodulatory mechanism of deer antlers and provides a theoretical foundation for
further exploration of their active compounds.

Keywords: deer antler; network pharmacology; molecular docking; molecular dynamics simulation;
immunomodulatory mechanisms

1. Introduction

Immunity refers to the ability of an organism to resist or defend against foreign
invaders such as pathogens (e.g., viruses, bacteria, fungi) or abnormal cells. The human
body maintains health by destroying and rejecting antigens or self-produced damaged and
tumor cells [1]. Immune responses include both innate and adaptive immune responses [2].
However, both low immunity and excessive immunity can have destructive effects on the
body and cause diseases such as rheumatoid arthritis, diabetes, and asthma. Additionally,
with environmental pollution, life stress, irregular diet, and other factors, people’s immune
regulation is highly susceptible to disorder. Therefore, regulating the body’s immune
balance and avoiding disease triggers has become a topic of concern for everyone.

Deer antlers are the unossified, densely fluffy horns of sika or red deer and can
periodically regenerate. Studies have shown that deer antlers can considerably im-
prove immunity [3,4], treat neurological diseases [5,6], manage tumors [7], and treat
osteoarthritis [8,9]. The pharmacological activity of deer antlers is derived from the richness
and diversity of their active compounds [10].

The immunomodulatory effect of deer antlers has been reported by several scholars.
In a study using a cyclophosphamide-induced immunosuppression mouse model, a deer
antler aqueous extract ameliorated spleen damage and significantly promoted splenocyte
proliferation [4]. In cell-mediated immunity, deer antler polypeptides can significantly
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promote the proliferation of CD4+ and CD8+T cell subsets in a dose-dependent manner [3].
Additionally, deer antler proteins significantly promote the killing activity of NK cells, the
proliferation of B cells, and promote the secretion of related cytokines such as interleukin
(IL)-2 and IL-12 [11]. However, antler immunomodulation studies usually report immune
indexes, and the mechanism of these immunomodulatory effects have rarely been reported.

The emergence of network pharmacology aligns with the fundamental principles
of Chinese medicine research, which involve the investigation of multiple components,
targets, and pathways in a holistic approach to drug discovery and development. This
study screened and predicted the possible targets of the active ingredients of the deer antler
in the immunomodulatory process. Pharmacology was commonly used to investigate
the immunomodulatory mechanisms of traditional medicines such as Glycyrrhiza spp. [12],
Yupingfeng granules [13], and Qifengqubiao granules [14]. Molecular docking was used
to investigate the interaction between these active compounds and essential therapeutic
targets. Molecular dynamics (MD) simulation was used to assess the ligand–receptor
complexes to assess the binding stability and adaptability of the active compounds and
therapeutic targets. The immunomodulatory mechanism of deer antlers was then ex-
plored. Furthermore, the potential mechanism of deer antlers in maintaining immune
homeostasis was analyzed. Our research may provide a reference and basis for follow-up
experimental research.

2. Results

Figure 1 illustrates the research process.
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Figure 1. Flow chart showing the experimental design.
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2.1. Immunomodulatory Compounds and Targets

A total of 15 immunomodulatory compounds (Figure 2) and 368 immunomodulatory
targets (Figure 3A) were obtained by intersection, including polysaccharides, nucleosides,
and estrogens (Supplementary Table S1 and Figure S2).
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Figure 3. Potential immunomodulatory targets of the active compounds and the protein–protein
interaction (PPI) network. (A) Venn diagram showing potential immunomodulatory targets. (B) Top
20 potential immunomodulatory targets ranked by degree values. (C) PPI network of 368 potential
immunomodulatory targets.

2.2. PPI Network Analysis

The PPI network findings are presented in Figure 3C. The network consisted of
7355 edges and 368 nodes, showing the complexity of the network. The shades of color
represent the interaction degree of the targets, as shown in Figure 4B. Figure 3B shows
the top 20 targets with the highest degree values; the target with the highest degree was
protein kinase B (AKT1) which had a degree value of 208.
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2.3. Core Target Screening and Central Target Screening

The screening of core and central targets reflects the potential targets of deer antler
involvement in immunomodulatory processes. A total of 130 core targets were obtained
(Supplementary Table S2), and these 130 core targets were plotted in an interactions network
composed of 130 nodes and 3793 edges (Figure 4A). Subsequently, the CytoHubba plugin
was used for central target screening, and the intersection of targets obtained from these four
screening results are the central targets. The central targets were AKT1, tumor protein (TP) 53,
JUN, signal transducer and activator of transcription (STAT)-3, tyrosine-protein kinase (SRC),
IL-6, tumor necrosis factor (TNF), and mitogen-activated protein kinase (MAPK) 3.

2.4. GO Functional Annotation and KEGG Enrichment of Core Targets

We conducted KEGG enrichment and GO functional annotation analyses to investigate
the biological processes and metabolic pathways in which deer antler may be involved
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in immune regulation. We found that 2193 BPs, 163 MFs, 98 CCs, and 201 KEGG path-
ways were annotated. We ranked the top 25 items based on the number of annotations
to a functional area (Figure 5). The most upregulated BPs included processes such as re-
sponse to hormones and lipids, organ tissue development, response to cytokines and small
molecule compounds, and regulation of cell motility (Figure 5A). Furthermore, the most
upregulated MFs included transcription factor binding, kinase binding, protein structural
domain specific binding, and RNA polymerase II specific DNA binding transcription factor
binding (Figure 5C), and the most upregulated CCs included transcriptional regulatory
factor complexes, membrane sides, membrane rafts, membrane microregions, and RNA
polymerase II transcriptional regulatory complexes (Figure 5B). The KEGG pathways were
mainly enriched in the cancer pathway, human cytomegalovirus infection, phosphoinosi-
tide 3-kinase (PI3K)/AKT signaling pathway, human T cell leukemia virus 1 infection,
lipids and atherosclerosis, and proteoglycans in cancer (Figure 5D).
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2.5. Compound–Target—Pathway Interaction Network Construction

Figure 6 shows that the interaction network consisted of 155 nodes and 711 edges
(including 132 targets, 13 compounds, and 10 metabolic pathways). The compounds
were ranked based on degree value, from high to low: 17 beta estradiol (78), estrone (71),
adenosine triphosphate (ATP; 36), glucosamine (28), alpha-estradiol (11), cholesterol (8),
estragole (7), retinol (6), prostaglandin E1 (4), D-galacturonic acid (3), galactosamine (3),
and lecithin. The KEGG pathways were ranked according to degree value, from high to
low: pathways in cancer (66), human cytomegalovirus infection (40), PI3K/AKT signaling
pathway (38), human T cell leukemia virus 1 infection (37), lipid and atherosclerosis (36),
proteoglycans in cancer (35), hepatitis B (34), human papillomavirus infection (34), FoxO
signaling pathway (31), and microRNAs in cancer (31).
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2.6. Molecular Docking

We selected the active compounds with degree values greater than 10 and the central
targets for molecular docking. The immunoactive compounds included 17 beta estradiol,
estrone, adenosine triphosphate and glucosamine. The central targets included TP53 (PDB
ID:1GZH), AKT1 (PDB ID:1H10), JUN (PDB ID:1A02), STAT3 (PDB ID:5AX3), SRC (PDB
ID:1A07), IL-6 (PDB ID:1ALU), TNF (PDB ID:1A8M), and MAPK3 (PDB ID:3FHR). The
molecular docking results are shown in Figure 7. A binding affinity less than −5.0 kcal/mol
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indicated moderate affinity, whereas a binding affinity less than −7.0 kcal/mol indicated
high affinity binding. The binding affinity of three complexes (MAPK3–17 beta estradiol,
MAPK3–estrone, SRC–17 beta estradiol) were less than −8.0 kcal/mol. We visualized some
docking complexes using the DiscoveryStudio software (version number: 4.5).
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As is shown in Figure 8A, the AKT1–17 beta estradiol had one Pi–cation interaction
with ARG86, two conventional hydrogen bonds with ASN54 and ARG23, one alkyl in-
teraction with ILE19, one carbon–hydrogen bond with LEU52, and many van der Waals
forces. The AKT1–estrone complex was stabilized by two conventional hydrogen bonds
with GLU91 and GLU95, one Pi–alkyl interaction with HIS13, one Pi–sigma interaction
with TRP11, and three van der Waals forces (Figure 8B). The MAPK3–17 beta estradiol
presented three conventional hydrogen bonds with GLU170, LEU52, and MET121, three
Pi–sigma interactions with LEU50, VAL58, and LEU173, one Pi–alkyl interaction with
ALA71, one Pi–sulfur interaction with CYS120, and many van der Waals forces (Figure 8C).
The MAPK3–estrone complex was stabilized by Pi–alkyl and alkyl interaction with LYS221,
LYS218, and HIS158, one Pi–sigma interaction with THR294, one carbon–hydrogen bond
and one conventional hydrogen bond with ARG292 and SER222, and six der Waals forces
(Figure 8D). As is shown in Figure 8E, the SRC–17 beta estradiol complex had two conven-
tional hydrogen bonds with GLN147 and VAL202, one alkyl and Pi–alkyl interaction with
LYS206 and LYS155, and many van der Waals forces. The SRC–estrone presented one alkyl
interaction with LYS155, one conventional hydrogen bond with TYR152, one Pi–anion inter-
action with GLU162, and many van der Waals forces (Figure 8F). The findings demonstrate
a favorable binding activity between the immunoactive compounds and the targets.
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Figure 8. Molecular docking 2D diagram and 3D diagram of deer antler immunoactive com-
ponents and central targets: (A) AKT1–17 beta estradiol complex, (B) AKT1–estrone complex,
(C) MAPK3–17 beta estradiol complex, (D) MAPK3–estrone complex, (E) SRC–17 beta estradiol
complex, (F) SRC–estrone complex.
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2.7. MD Simulation

To confirm the ligand–receptor binding stability, we performed MD simulations using
the AKT1–estrone, AKT1–17 beta estradiol, MAPK3–estrone, and MAPK3–17 beta estradiol.

2.7.1. MD Simulation of AKT1–Estrone and AKT1–17 Beta Estradiol Complexes

We used the root-mean-square deviation (RMSD) to analyze the mobility of the receptor–
ligand complex. The RMSD curve reflects the fluctuation in protein conformation [15].
Figure 9A showed that the RMSD of the AKT1–estrone complex and AKT1–17 beta estra-
diol complex. The complete structure of the complex was used in RMSD analysis. The
RMSD curve of the AKT1–estrone complex was relatively stable for 0–100 ns, and the
RMSD curve of the AKT1–17 beta estradiol complex was stable after 70 ns.

Root mean square fluctuation (RMSF) can be used to indicate the fluctuation of the com-
plex at the residue level [16]. The residues 77–84 of the AKT1-estroneAKT1–estronecomplex
had greater residue flexibility than the AKT1–17 beta estradiol complex, and the residues
42–52 and 86–116 of the AKT1–17 beta estradiol complex had greater residue flexibility
(Figure 9B).

Hydrogen bonding is a strong non-covalent interaction. The number of hydrogen
bonds in the AKT1–estrone complex was 0–4 in 0–100 ns (Figure 9D); and the maximum
number of hydrogen bonds AKT1–17 beta estradiol complex was 3. The hydrogen bond
between the ligand and the receptor helps maintain the stability of the complex.

The radius of gyration (Rg) reflects the tightness of binding and the degree of constraint
of the system; it reflects the degree of protein folding [17]. A higher Rg value is related to
an increased chance of producing flexible ligands. Thus, the higher the Rg value, the lower
the stability. In contrast, a lower Rg value indicates a dense and tightly packed system.
Figure 9C shows that the Rg of the AKT1–estrone complex and AKT1–17 beta estradiol
complex were stable during 0–100 ns. AKT1–estrone and AKT1–17 beta estradiol complex
had similar fluctuations; both tend to stabilize in the range of 1.37–1.42.

The Gibbs energy landscape shows the complex stability [18]. RMSD and Gyrate were
selected to construct landscape maps to detect and explore their steady-state structures.
The Gibbs energy landscape of the AKT1–estrone and AKT1–17 beta estradiol complexes
are shown in Figure 9E,F; the region with blue and purple colors indicates that at a lower
energy, the stable state conformation of the complex can be indicated in the free energy
minimum region [19]. When the Rg value was 1.37–1.38 and the RMSD value was 0.15–0.20,
the AKT1–estrone complex was in a relatively stable conformational state. When Rg value
was 1.38–1.40, and the RMSD value was 0.22 and 0.45, the free energy of AKT1–17 beta
estradiol complex was lowest.

After MD simulation, we found that the structures of both AKT1–estrone and AKT1–
17 beta estradiol complex had changed. As is shown in Supplementary Figure S1A, the
AKT1–17 beta estradiol complex had one conventional hydrogen bond with GLU116, two
carbon–hydrogen bonds with THR34 and TRP80, two attractive charges interactions with
GLU115 and ASP32, and many van der Waals forces. In Supplementary Figure S1B, the
AKT1–estrone complex was stabilized by one alkyl and Pi–alkyl interaction with PRO24,
one Pi–anion interaction with GLU91, one Pi–sigma interaction with TRP11, and two van
der Waals forces with HIS13 and HIS89.

2.7.2. MD Simulation of MAPK3–Estrone and MAPK3–17 Beta Estradiol Complexes

As is shown in Figure 10, We performed MD simulations of MAPK3–estrone and
MAPK3–17 beta estradiol complex.
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Figure 9. The molecular dynamics (MD) simulation of the AKT1–estrone complex and AKT1–17 beta
estradiol complex. (A) The RMSD plot of the AKT1–estrone complex and AKT1–17 beta estradiol
complex. (B) The RMSF plot of the AKT1–estrone complex and AKT1–17 beta estradiol complex.
(C) The Rg plot of the AKT1–estrone complex and AKT1–17 beta estradiol complex. (D) The number
of hydrogen bonds in the AKT1–estrone complex and AKT1–17 beta estradiol complex. (E) The
Gibbs energy landscape of AKT1–estrone complex. (F) The Gibbs energy landscape of AKT1–17 beta
estradiol complex.
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Figure 10. The MD simulation of the MAPK3–estrone complex and MAPK3–17 beta estradiol complex.
(A) The RMSD plot of the MAPK3–estrone complex and MAPK3–17 beta estradiol complex. (B) The
RMSF plot of the MAPK3–estrone complex and MAPK3–17 beta estradiol complex. (C) The Rg plot of
the MAPK3–estrone complex and MAPK3–17 beta estradiol complex. (D) The number of hydrogen
bonds in the MAPK3–estrone complex and MAPK3–17 beta estradiol complex. (E) The Gibbs energy
landscape of the MAPK3–estrone complex. (F) The Gibbs energy landscape of the MAPK3–17 beta
estradiol complex.
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Figure 10A shows the RMSD of MAPK3–estrone and MAPK3–17 beta estradiol com-
plexes; the RMSD curve fluctuation was relatively stable at 0–100 ns, and both had similar
RMSD curve fluctuations. It was suggested the binding of MAPK3–estrone and MAPK3–17
beta estradiol complexes were stable. The RMSF values of the MAPK3–estrone and
MAPK3–17 beta estradiol complexes were relatively similar (Figure 10B), which showed
that the combination of MAPK3–estrone and MAPK3–17 beta estradiol have similar flexibil-
ity; however, there are two intervals where the fluctuations are constant, because there are
two missing regions, 195–216 and 243–263. The two missing regions, 195–216 and 243–263,
correspond to disordered or unstructured regions, which indicates that the missing regions
have unstable or disordered structures [20]. The Rg value of the MAPK3–estrone complex
was lower than the MAPK3–17 beta estradiol complex after 70 ns, and the MAPK3–estrone
complex was more tightly folded than the MAPK3–17 beta estradiol complex (Figure 10C).
The number of hydrogen bonds in the MAPK3–17 beta estradiol complex was 0–6 for
0–100 ns, and the hydrogen bonds of the MAPK3–17 beta estradiol complex was higher
than the MAPK3–estrone complex. The MAPK3–17 beta estradiol complex may bind
more stably through hydrogen bonds (Figure 10D). The Gibbs energy landscape of the
MAPK3–estrone and MAPK3–17 beta estradiol complexes are shown in Figure 10E,F. When
the Rg value was 1.89–1.91 and the RMSD value was 0.25–0.28, the MAPK3–estrone com-
plex was in a relatively stable conformational state. Meanwhile, the MAPK3–17 beta
estradiol complex reached stable state when the Rg value was 1.91–1.93 and the RMSD
value was 0.07–0.08.

After MD simulation, we found that the structures of both MAPK3–estrone and
MAPK3–17 beta estradiol had changed. As is shown in Supplementary Figure S1C, the
MAPK3–17 beta estradiol complex presented a variety of interactions, including van der
Waals, salt bridge, attractive charge, conventional hydrogen bond, carbon–hydrogen bond,
Pi–sulfur interaction, amide–Pi stacked interaction and Pi–alkyl interaction. This indicated
that there are very complex binding forces between MAPK3 and 17 beta estradiol. In
Supplementary Figure S1D, the MAPK3 and 17 beta estrone complex had three conventional
hydrogen bonds with LYS218, ILE295, and HIS158, one alkyl and Pi–alkyl interaction
with LYS221, and five van der Waals forces with MET225, SER222, PRO289, THR290,
and THR294.

2.8. Binding Free Energy Calculations

The binding free energy was calculated using the final 50 ns stable RMSD trajectory,
and the different types of energies that contributed to the binding, including van der Waals,
electrostatic, polar solvation, and SASA energy, were calculated. We performed the binding
free energy calculations for the AKT1–estrone, AKT1–17 beta estradiol, MAPK3–estrone,
and MAPK3–17 beta estradiol complexes.

2.8.1. Binding Free Energy Calculations of AKT1–Estrone and AKT1–17 Beta
Estradiol Complexes

The result revealed that the average binding free energy of the AKT1–estrone com-
plex was −66.300 kJ/mol. The average van der Waals (−89.567 kJ/mol), electrostatic
(−89.336 kJ/mol), and SASA energy (−13.140 kJ/mol) were favorable for the binding of
the estrone to the AKT1, and polar solvation energy was not favorable for the binding of
the complex (Supplementary Figure S2B). The binding free energy of the AKT1–estrone
complex during the stable period of 50–100 ns is shown in Supplementary Figure S2A. The
binding free energy ranged from −9.629 kJ/mol to −97.282 kJ/mol.

Meanwhile, the average binding free energy of the AKT1–17 beta estradiol complex was
−60.261 kJ/mol (Supplementary Figure S2C). The average van der Waals (−86.715 kJ/mol),
electrostatic (−138.394 kJ/mol), and SASA energy (−14.371 kJ/mol) were favorable for the
binding of the ligand, 17 beta estradiol, to AKT1 (Supplementary Figure S2D). From the
above results, we indicated that AKT1–estrone complexes have a stronger binding stability.
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2.8.2. Binding Free Energy Calculations of MAPK3–Estrone and MAPK3–17 Beta
Estradiol Complex

As is shown in Supplementary Figure S3, the binding free energy of the MAPK3–estrone
and MAPK3–17 beta estradiol complexes were calculated. The binding free energy of
the MAPK3–17 beta estradiol complex ranged from −155.495 kJ/mol to −42.401 kJ/mol
at 50–100 ns (Supplementary Figure S3C), and the average binding free energy was
−94.927 kJ/mol (Supplementary Figure S3D). The average van der Waals, electrostatic,
polar solvation, and SASA energy was −197.949, −417.288, 350.542, and −28.181 kJ/mol.

The binding free energy of MAPK3–estrone complex ranged from −79.604 kJ/mol to
−34.461 kJ/mol at 50–100 ns (Supplementary Figure S3A), and the average binding free
energy was −62.000 kJ/mol (Supplementary Figure S3B). The MAPK3–17 beta estradiol
complex has a stronger binding stability than the MAPK3–estrone complex, which may be
caused by the MAPK3–17 beta estradiol complex containing more van der Waals forces
and hydrogen bonds.

3. Discussion

As a traditional medicine, deer antler has been proved to play an important role in
immune regulation and anti-inflammation from in vitro and vivo studies [11]. However, the
molecular mechanism of deer antler involved in immune regulation is not clear. Therefore,
exploring the interaction between the active compounds of the deer antler and targets can
explore the positive immune regulation in the process of immune regulation and avoid
the negative effect in the process of immune regulation. In this research, we used network
pharmacology and molecular docking to analyze the immunomodulatory mechanism
of active compounds in the deer antler; the findings were furthered using molecular
dynamics simulations.

The immunomodulatory active compounds of deer antlers were selected and screened
using the TCMSP and BATMAN-TCM databases, but the relevant compounds could not
be retrieved from the TCMSP database. This is because the TCMSP database does not
include the active ingredient information of deer antler. Therefore, the immunomodulatory
active compounds were all retrieved from the BATMAN-TCM database. The BATMAN-
TCM database provides resources concerning the interactions between compounds used
in Chinese medicine and their therapeutic targets, as well as the functional annotation of
the targets. These methods aim to promote understanding of the combination therapeutic
mechanisms of traditional Chinese medicine, which often involves multiple components,
targets, and pathways. Furthermore, they can provide valuable clues for experimental
validation [21]. Finally, we constructed an immune active component–target–pathway
network after screening the deer antler compounds and immune active targets.

The immunomodulatory active compounds of deer antler include hormone com-
pounds and nucleoside compounds; this is the difference between deer antlers as animal
medicine and Chinese herbal medicine. 17 beta estradiol and estrone are hormonal com-
pounds. Estrogen is thought to enhance the body’s immunity [22] and has multiple effects
on the immune system via immune cells and signal transduction pathways. The hormone
replacement therapy for autoimmune diseases such as rheumatoid arthritis and systemic lu-
pus erythematosus has been systematically evaluated [23], but there are still risks to the use
of hormones; excessive intake of hormones can lead to results such as breast cancer [24,25]
and venous thromboembolism [26]. Therefore, hormonal therapies should be used based on
individual health conditions. Among the screened deer antler immune active compounds,
glucosamine is a polysaccharide and is an important component of chondroitin sulfate.
Chondroitin sulfate is a unique acidic mucopolysaccharide in the cartilage tissue of higher
animals [27,28] and can be combined with glucosamine for patients with osteoarthritis [29].
ATP, as an intracellular energy molecule, is released from various types of cells after in-
jury. It accumulates in the damaged tissue [30] and can activate receptors or be rapidly
decomposed by exonucleases. Low concentrations of extracellular ATP can open cation
channels, lead to cell proliferation, and play a role in immune regulation. However, at
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high concentrations, it is a pro-inflammatory danger signal [31] that may lead to increased
immune response and myocardial damage [32]. The pharmacokinetic evaluation of the
immunoactive compounds of deer antler revealed that only estrone was found to satisfy
both oral utilization (OB) ≥ 0.3 and drug similarity (DL) ≥ 0.18 (Supplementary Table S3).
In addition, estrone could interact with 71 potential targets. In the molecular docking
and MD simulation analysis, estrone had a good affinity for AKT1, MAPK3, and SRC.
Moreover, to obtain higher drug availability, intravenous injection, intraperitoneal injection,
or appropriate drug delivery systems were recommended. The use of deer antler products
should be based on a rational assessment of the beneficial and non-beneficial pharmaco-
logical effects of the active compounds. The pharmacological effects of the immunoactive
compounds of deer antlers need to be experimentally verified.

To explore the central target of immune regulation was helpful to study the immune
regulation mechanism of deer antler; we identified AKT1, TP53, JUN, STAT3, SRC, IL-6,
TNF, and MAPK3 as the central targets involved in immune regulation. As a hub target
of deer antler immunoreactive compounds, AKT1 plays an important role in regulating
biological functions such as metabolism, cell proliferation, survival, and growth [33]. AKT
signaling has been found to determine the functional properties of macrophages, which are
widely characterized as M1- and M2-polarized phenotypes [34]. The deletion of AKT1 can
promote the upregulation of nitric oxide (NO) synthase and IL-12β, cause macrophages to
tend to polarize to the M1 type, enhance bacterial scavenging ability, and increase response
to lipopolysaccharide (LPS) [35,36]. Several studies have reported that AKT1 plays a
role in inflammatory diseases [37,38]; this makes AKT1 a key target for the treatment of
inflammatory diseases [34]. TP53 is a tumor suppressor gene and it is poorly expressed
in normal cells but highly expressed in malignant tumors [39], indicating that there is
a correlation between TP53 mutation and cancer induction [40]. Moreover, the central
targets involved in the multiple inflammatory pathways were identified; IL-6 is a pro-
inflammatory cytokine produced by various immune cells. TNF-α has a strong antiviral
effect by inhibiting the replication of different influenza viruses [41]. TNF-α can promote
fever, cause apoptosis (by inducing the production of IL-1 and IL-6), trigger inflammation,
and prevent tumorigenesis and virus replication [42]. The aqueous extract of deer antlers
has been shown to exert anti-inflammatory effects by inhibiting the secretion of IL-6 [43,44].
Deer antler polypeptides can treat inflammatory diseases and osteoporosis by inhibiting
the release of TNF-α [45]. STAT3 is a protein-coding gene. It can regulate the inflammatory
response by regulating the differentiation of immature CD4 (+) T cells into helper (TH) or
regulatory T cells (Tregs) [46]. JUN is a protein-coding gene. Its related pathways include
MyD88-dependent cascades initiated by endosomes, which are mainly involved in RNA
binding and sequence-specific DNA binding. MAPK3 plays important roles in the MAPK
signaling pathway. MAPK3 participates in autoimmune regulation and can inactivate
dendritic cells and prevent T cells from overreacting to autoantigens [47]. SRC (SRC proto-
oncogene, non-receptor tyrosine kinase) is a protein-coding gene. SRC is associated with
thrombocytopenia and colorectal cancer, and the gene product c-SRC, derived from the SRC
gene, is overexpressed and highly activated in various human tumor cells. Studying SRC
inhibitors as a target for drug therapy will provide new possibilities for treating multiple
cancers. The identification of immune regulation targets can facilitate the investigation of
the underlying immune regulation mechanisms, and has significant implications for the
prevention, treatment, and management of immune-related disorders.

KEGG analysis plays a crucial role in network pharmacology by revealing the relation-
ship between drugs and diseases, and aiding in the understanding of drug mechanisms
and regulatory networks. It provides valuable information for drug development and
treatment strategies. From the KEGG study, we found that the pathways in cancer, human
cytomegalovirus infection, and the PI3K-Akt signaling pathway were the three enriched
pathways. These pathways are involved in the anti-tumor, inflammatory response, antioxi-
dant, hormone regulation, cell proliferation, and cell cycle functions, and other functional
areas. In this research, a total of 66 targets were annotated into the cancer pathway, and
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the literature shows that deer antler is widely used in the treatment of cancer [48,49].
Through enrichment analyses, we found that the core targets were widely distributed in
the PI3K/AKT signal pathway. The PI3K/AKT signaling pathway regulates T cell develop-
ment, function, and stability [50]. The downstream of the PI3K/AKT pathway contains
MAPK, FoxO, NF-κB, P53, mTOR, and other signaling pathways that have been widely
demonstrated to play regulatory roles in immune regulation, inflammatory response, and
cancer development [51–54]. It is also suggested that the immunomodulatory effect may
be achieved by regulating several key targets in these signal pathways.

Molecular docking serves as a predictive tool to elucidate the interactions between
drugs and target molecules. Molecular dynamics simulations can be used to uncover
the dynamic interactions between drugs and target molecules, providing in-depth in-
sights into their binding mechanisms, stability, and interaction patterns. The binding
stability between the active compounds and the central targets was analyzed using molec-
ular docking and MD simulation. The results showed that the AKT1–estrone, AKT1–17
beta estradiol, MAPK3–estrone, and MAPK3–17 beta estradiol complexes had relatively
good binding activity. The MAPK3–17 beta estradiol complex had the lowest binding
scores (−8.9 kcal/mol) and the lowest average binding free energy (−94.927 kJ/mol),
which indicates that MAPK3–17 beta estradiol complex may play an indispensable role in
immune regulation.

It was indicated that these complexes may exert important roles in immune regulation.
The potential immunomodulatory mechanisms of deer antler has been revealed by network
pharmacology, molecular docking, and MD simulation. However, the in vivo and in vitro
experiments are needed to verify the central targets and pathways.

4. Methods and Materials
4.1. Screening of Active Compounds and Targets of Deer Antlers

TCMSP and BATMAN-TCM databases are authoritative Chinese medicine databases
for screening pharmacologically active substances and analyzing the relationships between
drug targets and diseases. We searched the TCMSP database (https://old.tcmsp-e.com/
tcmsp.php, accessed on 11 December 2022) and BATMAN-TCM database (http://bionet.
ncpsb.org.cn/batman-tcm/index.php/Home/Index/index, accessed on 13 December 2022)
for the active compounds present in deer antlers [21,55]. The score cutoff value and adjusted
p-value were set to ≥20 and ≤0.05, respectively; this is an ideal and reasonable threshold
for screening active compounds of deer antler [21]. We set “LURONG” (LURONG is the
transliteration of deer antler, but you cannot find the results when you use deer antler as
the keyword) as the keyword to search for the active compounds and targets. To evaluate
the ADME properties of deer antler compounds, we used the “chemical name” option
in the TCMSP database to input the English names of active compounds and obtained
pharmacological and molecular properties data [56,57].

4.2. Screening of Immunomodulatory Targets of the Active Compounds

To screen targets related to immune regulation, the Genecards database, a searchable,
comprehensive database was searched. The website offers extensive and user-friendly
information for all annotated and predicted human genes [58]. In addition, the OMIM
database was searched. The OMIM database is an online catalog that compiles informa-
tion on human genetic and hereditary diseases [59]. Using “immune regulation” as the
keyword, we searched the Genecards database (https://www.genecards.org/, accessed
on 13 December 2022) and the OMIM database (https://www.omim.org/, accessed on 13
December 2022) to identify targets related to immune regulation. We then intersected the
deer antler targets with the immunomodulatory targets.

4.3. Protein–Protein Interaction (PPI) Network Construction

We uploaded the deer antler immunomodulatory targets to the STRING database
(https://string-db.org/, accessed on 15 December 2022). The species selection was “Homo

https://old.tcmsp-e.com/tcmsp.php
https://old.tcmsp-e.com/tcmsp.php
http://bionet.ncpsb.org.cn/batman-tcm/index.php/Home/Index/index
http://bionet.ncpsb.org.cn/batman-tcm/index.php/Home/Index/index
https://www.genecards.org/
https://www.omim.org/
https://string-db.org/
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sapiens”, and the interaction network results were imported into Cytoscape 3.9.0 for analysis.
The colors were adjusted according to the degree value. Finally, statistical analysis was
performed based on the target degree value.

4.4. Core Target and Central Target Screening

To further screen for core targets relevant to immunomodulation, we used the degree,
closeness, and betweenness parameters of CentiScape to screen core targets. The targets
with topology parameters above the median for all three parameters were selected to build
subnetworks. This is considered acceptable in core target screening [60,61]. Meanwhile,
in cytohubba of Cytoscape, we used the Degree, Maximum Neighborhood Component
(MNC), Maximal Clique Centrality (MCC), and Closeness to obtain the top 10 targets. The
intersections of the obtained targets are the central targets [62].

4.5. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment
Analysis of Core Targets

GO functional annotation involves assigning functional terms from the GO database
to a set of genes based on their sequence similarity, experimental evidence, or curated
literature [63]. KEGG pathways provide a comprehensive view of the interactions be-
tween genes, proteins, and small molecules in various biological processes. We used the
Metascape database (https://metascape.org/gp/index.html#/main/step1, accessed on
20 December 2022) to perform the GO functional annotation and KEGG pathway enrich-
ment analyses [64]. We limited the analysis to “Homo sapiens” and set the cutoff p-value
to ≤0.01 and the minimum overlap to 3. The results were visualized using imageGP
(http://www.ehbio.com/ImageGP/index.php/Home/Index/PCAplot.html, accessed on
21 December 2022).

4.6. Compounds–Targets–Pathways Network Construction

The selected core targets, immunomodulatory deer antler compounds, and the top
10 enriched KEGG pathways were used to construct the compounds–targets–pathways
interaction network using Cytoscape 3.9.0.

4.7. Molecular Docking

We docked the active compounds with the central targets to analyze their binding
affinities. We used the compounds–targets–pathways network construction results to
determine whether there is an interaction between each central target and each deer antler
compound. This aimed to avoid false positive docking results. The structures of the
active compounds were downloaded from the PubChem database (https://pubchem.
ncbi.nlm.nih.gov/, accessed on 25 December 2022). The central targets were selected,
and their structures were downloaded from the RCSB database (https://www.rcsb.org/,
accessed on 1 April 2023) and saved as a PDB format file. Next, the receptor files were
imported into AutoDockTools and converted to pdbqt format. After removing solvent
and heteromolecules, hydrogen and Kollman charges were added to the receptor; the
docking box information is shown in Supplementary Materials (Table S4), and the molecular
docking was performed via Autodock vina. Finally, a heatmap of the affinity statistics
based on the molecular docking results was generated. Based on the docking results, the
complexes which had good binding ability were visualized using the DiscoveryStudio
software (version number: 4.5).

4.8. MD Simulation

MD simulations were performed using GROMACS (version 5.1.5) [65]. We used the
AMBER front field to generate the ligand topology file using the ACPYPE script, whereas
the AMBER99SB-ILDN force field was used to generate the protein topology file. In the
MD simulation, a triclinic lattice containing transferable intermolecular potential (TIP3)
water molecules was used. Before the MD simulation, the system was neutralized with
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NaCl counter ions, and the complex was minimized for 1000 steps and equilibrated with
NVT and NPT for 100 ps. MD simulations were performed for each system under periodic
boundary conditions at 310 K and 1.0 bar for 100 ns. The minimum distance between the
simulation box and the protein in the XYZ direction was set to 1.0 nm, the time step was
2 fs, and the energy minimization was achieved using the steepest descent algorithm, with
a cutoff of 1.4 nm for Coulomb interactions and van der Waals interactions.

4.9. Binding Free Energy Calculations

Calculating binding free energy can verify the intermolecular interaction strength in
receptor–ligand complexes. This parameter provides the contribution of various chemical
energies to the stability of the complex. The molecular mechanics Poisson–Boltzmann
surface area (MM-PBSA) method provides a simple quantification of receptor–ligand
binding free energy [66]. The binding affinities of simulated receptor–ligand complexes
were calculated using the g_mmpbsa tool in GROMACS [67], and the specific formulas
used in this study are as follows:

Gx = EMM + Gsolvation (1)

EMM = Ebonded + Enonbonded = Ebonded + (Evdw + Eelec) (2)

Gsolvation = GPB + GSA (3)

5. Conclusions

This research explored the potential immunomodulatory mechanisms of active com-
pounds of deer antler. A total of four deer antler immunoactive compounds were screened.
Metabolic pathway and target interactions analysis revealed that multiple metabolic net-
works were involved in the process of deer antler immunomodulation. Molecular docking
and MD simulation results showed that the AKT1–estrone and MAPK3–17 beta estra-
diol complexes had stronger binding stabilities than the AKT1–17 beta estradiol and
MAPK3–estrone complexes, respectively. Our results provide a theoretical basis for subse-
quent experimental verification.
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