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ABSTRACT

Motivation: Major disorders, such as leukemia, have been shown to

alter the transcription of genes. Understanding how gene regulation is

affected by such aberrations is of utmost importance. One promising

strategy toward this objective is to compute whether signals can reach

to the transcription factors through the transcription regulatory net-

work (TRN). Due to the uncertainty of the regulatory interactions, this

is a #P-complete problem and thus solving it for very large TRNs

remains to be a challenge.

Results: We develop a novel and scalable method to compute the

probability that a signal originating at any given set of source genes

can arrive at any given set of target genes (i.e., transcription factors)

when the topology of the underlying signaling network is uncertain.

Our method tackles this problem for large networks while providing a

provably accurate result. Our method follows a divide-and-conquer

strategy. We break down the given network into a sequence of non-

overlapping subnetworks such that reachability can be computed au-

tonomously and sequentially on each subnetwork. We represent each

interaction using a small polynomial. The product of these polynomials

express different scenarios when a signal can or cannot reach to

target genes from the source genes. We introduce polynomial collap-

sing operators for each subnetwork. These operators reduce the size

of the resulting polynomial and thus the computational complexity

dramatically. We show that our method scales to entire human regu-

latory networks in only seconds, while the existing methods fail

beyond a few tens of genes and interactions. We demonstrate that

our method can successfully characterize key reachability character-

istics of the entire transcriptions regulatory networks of patients

affected by eight different subtypes of leukemia, as well as those

from healthy control samples.

Availability: All the datasets and code used in this article are available

at bioinformatics.cise.ufl.edu/PReach/scalable.htm.

Contact: atodor@cise.ufl.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Major disorders, such as cancer, have been shown to alter the

transcription of a large number of genes and thus affect the

mechanism that governs cells functions (Krivtsov, 2009; Valk

et al., 2004). Many complex disorders, such as acute lympho-

blastic leukemias, however, yield a varying spectrum of expres-

sion profiles and, as a result, cannot be robustly characterized by

merely studying the gene expressions (Armstrong, 2002).

An important part of cell biology research is the study of the

causal relationship between extracellular conditions and the cell

response. Such causality is governed by a chain of biochemical

reactions through which extracellular signals are transmitted

from membrane receptors to transcription factors (i.e., reporters)

via protein–protein interactions (Bu and Callaway, 2011). While

the pattern of this mechanism is similar for all organisms, im-

portant variations in its quantitative aspects such as gene expres-

sions result from external perturbations, differentiation stage

of the cell, timing of DNA replication and various epigenetic

mutations (Los et al., 2009; Mattick et al., 2009). Therefore, de-

tecting these quantitative variations is an important source of

information for assessing the fitness of the organism and ultim-

ately for diagnosis and prognosis.
Extensive evidence suggests that there is a degree of uncer-

tainty in our knowledge of interactions within cells (Bader

et al., 2004; Ceol et al., 2010; Deng et al., 2003; Ourfali et al.,

2007; Sharan et al., 2002; Suthram et al., 2006; Szklarczyk et al.,

2011; von Mering et al., 2002). The source of this uncertainty is

2-fold. First, the biological processes that are modeled as protein

interactions in biological networks are stochastic events (Bader

et al., 2004). Second, the evidence in support of an interaction is

not entirely decisive for the actual presence of the interaction

(Bader et al., 2004; Ourfali et al., 2007; Sharan et al., 2002;

Shlomi et al., 2006) due to many reasons, such as epigenetic

variations across different cells (Gerstein et al., 2012). Several

schemes have already been proposed to assess the reliability of

protein interactions in the form of confidence values (Bader

et al., 2004; Deng et al., 2003; Suthram et al., 2006). Such inter-

action confidence values are now available in large biological

network databases, such as MINT (Ceol et al., 2010) and

STRING (Szklarczyk et al., 2011).

Recent studies often model the uncertainty of the interactions

in biological networks using probabilistic networks (Gabr et al.,

2013; Todor et al., 2012; Todor et al., 2013). We adopt the same

model in this article, namely, each node of the network denotes a

gene and the directed edge from a node vi to node vj denotes that

the gene corresponding to vi can regulate the gene denoted by vj
through an interaction. Each edge in this network is a probabil-

istic event. That is, it is considered possible, but not certain,

reflecting the insecure knowledge of the gene regulation process.

A common way to model the uncertainty of each edge is to

associate it with a probability value, which is computed for

each interaction from several factors: gene expressions, available

evidence for it and network topology around it (Sharan et al.,

2002).
The ability to compute confidence values for interactions pro-

vides opportunities to model and study biological networks ac-

curately. It, however, comes at a high price as the uncertainty of

the topology of interactions makes studying biological networks

a computationally challenging task. The challenge is that a prob-

abilistic network represents a large number of alternative deter-

ministic network topologies. More precisely, a network with n

probabilistic edges yields 2n possible network configurations, as

each one of the n edges may be present or absent. For instance, in*To whom correspondence should be addressed.
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Figure 1, the probabilistic network shown on top corresponds to

16 deterministic networks since it contains 4 probabilistic edges.
In this article, we address the problem of characterizing the

signaling reachability in transcription regulatory networks

(TRNs). Unlike most of the existing literature, we eliminate the

limitations of the classical assumption that all interactions are de-

terministic and adopt the more descriptive probabilistic network.

More specifically, given a set of source genes S=fs1; s2; . . . ; sag
and a set of target genes T=ft1; t2; . . . ; tbg, we compute the

reachability profile of that network as a doubly indexed vector

R where, for all i, j such that 1 � i � a; 1 � j � b, the entry R[i,j]

is the probability that a signal originating at si can reach ti (i.e., si
regulates tj). We show that the reachability profile can help us

understand how different disorders that alter the cellular func-

tions based on the signaling patterns of the gene regulatory net-

works. We particularly focus on leukemias, which is challenging

due to the heterogeneity of the transcription patterns.
Summary of related work. The problem of computing reach-

ability in uncertain network topologies has drawn significant

attention in the context of network reliability. Various exact

methods, as well as approximate methods, have been proposed.

We refer interested readers to several surveys on the topic

(Aggarwal et al., 1975; Hwang et al., 1981). Theoretical results

on the complexity of the problem reveal that it is #P complete

(Brown and Colbourn, 1996; Husfeldt and Taslaman, 2010;

Provan and Ball, 1983). The problem is significantly simplified

in the case of acyclic graphs. This type of graphs can be repre-

sented as Bayesian Networks, for which various inference

algorithms exist. However, for this simple case sophisticated in-

ference algorithms are unnecessary. In the context of biological

networks, the problem for general graphs was first addressed by

Ourfali et al. (2007). The goal of these authors was to infer the

structure of the signaling network that best explains a set of gene

knockout pairs, given a protein–protein interaction network. To

achieve this goal, they developed a method to compute the reach-

ability probability for each knockout gene pair. Their method is

an exact solution based on the inclusion–exclusion principle (van

Lint and Wilson, 1992). However, due to its high time complex-

ity, this method works accurately only for very small networks

(i.e., those with a few tens of nodes). PReach (Gabr et al.,

2013) computes the exact reachability probability based on

polynomial multiplication. It is significantly faster than the in-

clusion–exclusion method of Ourfali et al. (2007) for networks

where there are many paths. However, it does not scale to large

networks. Thus, the existing solutions cannot be used to study

entire TRNs, and there is a great need for accurate yet efficient

methods.
Contributions.Here, we develop a novel method that computes

the probability that a signal originated at a given source gene can

reach to a given target gene in a given probabilistic network.

Unlike existing methods, our solution is both precise (i.e., it

computes this probability without error) and it scales to large

networks. Our method follows a divide-and-conquer approach.

We partition the given probabilistic network into a sequence of

loosely connected clusters of nodes. On the boundary between

two such consecutive clusters lies a set of nodes called node sep-

arators. Any signal which originates from the source node and

arrives at any node in the latter cluster must visit the node sep-

arators. Similar to PReach (Gabr et al., 2013), we model the

given probabilistic network using polynomials. The form of the

polynomials of our method however differs from that of PReach

in a way that allows us to collapse the polynomial to very small

size that is determined by the size (number of interactions) of the

clusters and the number of nodes in a given boundary. Each term

in our polynomial evaluates the existence probability of a collec-

tion of subsets of interactions. In brief, instead of computing the

reachability probability from the given source node to the target

node, we incrementally compute the reachability probability

from the source node to each node separator in sequential

order. That allows us to avoid storing a massive fraction of

terms of the polynomial (i.e., the terms corresponding to the

nodes in earlier clusters). Our experimental results on real and

synthetic datasets demonstrate that our method scales to very

large network sizes while the inclusion–exclusion method

(Ourfali et al., 2007) and PReach (Gabr et al., 2013) fail. We

also observe that the reachability profiles provide a valuable re-

source for characterizing leukemias and differentiating the cen-

trality of the genes across different leukemias as well as healthy

control groups.
In summary, the key contributions of this work are:

� We introduce a new quantity for evaluating the state of a

biological network, the reachability profile.

� We introduce a novel, fast and scalable method to compute

the reachability profile of large networks, based on polyno-

mials and polynomial collapsing operators.

� We demonstrate the usefulness of reachability profiles in

detailed analysis of different types of leukemias.

The rest of the article is organized as follows. Section 2 de-

scribes our method. Section 3 presents our experimental results.

Section 4 concludes with a brief discussion.

2 METHOD

In this section we present our method in detail. We first define the essen-

tial theoretical concepts in Section 2.1. We then present an overview of

our method in Section 2.2. We discuss how to compute intermediate

reachability probabilities in Section 2.3. We elaborate on how to partition

the network in Section 2.4.

Fig. 1. A probabilistic network (top) and two of the deterministic net-

works corresponding to it (bottom). Each of the deterministic networks is

obtained from the probabilistic network with some probability deter-

mined by the probabilities of the edges that are included or not in the

deterministic network. pi denotes the probability of edge ei being present.

qi=1– pi is the probability of the edge being absent. The expression

above each deterministic network is the probability of observing it
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2.1 Preliminary definitions

We start by formally defining the probabilistic network concept.

We provide a list of notations used throughout the article in the

Supplementary Material.

DEFINITION 1 (probabilistic network). A probabilistic network is a graph

G=ðV;E;PÞ, where V is the set of nodes, E is the set of edges and P : E

! ð0; 1� is a function that associates to each edge a probability value.

In our context, each node in V represents a gene, each edge in

E represents an interaction between two genes and P associates to each

edge the probability of the existence of the interaction it represents. For

instance, in Figure 1 (top figure), V={a,b,c,d} and E={e1,e2,e3,e4}.

We assume that each edge exists independent of all other edges.

This assumption is commonly used in the literature for similar problems

(Ceol et al., 2010; Szklarczyk et al., 2011). We limit our description

to directed networks, although undirected networks can be dealt

with by replacing each undirected edge with two edges in opposite

directions.

Given a probabilistic network G=ðV;E;PÞ, we call the deterministic

network G=(V,E) the maximal deterministic network of G. In other

words, the maximal deterministic network is the deterministic network

in which all possible interactions of G are present.

The computational problem we address in this article is: given a prob-

abilistic network, G=ðV;E;PÞ, a source node s 2 V and a target node

t 2 V, what is the probability that the t can be reached from s?

Next, we define a graph concept, node separator, which will help us in

explaining our method.

DEFINITION 2 (Node Separator). Let G= (V,E) be a deterministic net-

work and s; t 2 V be two of its nodes. An s-t node separator of G is a set of

nodes K � V whose removal disconnects t from s in G.

Figure 2 illustrates this concept. Here, the source node s and the target

node t are labeled with 1 and 8, respectively. The set of nodes {4, 5} is an

s-t node separator. We say that a node separator is minimal if none of its

proper subsets is a node separator.

A node separator partitions the nodes of that network into three dis-

joint subsets:

(1) The left nodes are the nodes that are reachable from the source, but

the target cannot be reached from any of them without going

through the node separator (e.g., nodes 1, 2 and 3 in Figure 2,

for the node separator {4, 5}).

(2) The node separator itself (e.g., nodes 4 and 5 in Fig. 2).

(3) The right nodes are the remaining nodes (e.g., nodes 6, 7 and 8 in

Fig. 2). Notice that these are the nodes from which the target can

be reached, but they are not reachable from the source without

passing through the node separator.

A node separator K also partitions the edges of the given network into

three subsets:

(1) The left edges are the edges between the nodes in the union of

left and separator nodes (e.g., edges e1,e2,e3,e5 and e6 in Fig. 2).

We denote the set of left edges with L(K).

(2) The right edges are the edges between right nodes or from a sep-

arator node to a right node (e.g., edges e7,e9,e10,e11 in Fig. 2).

(3) The backward edges are the edges from right nodes to the sep-

arator nodes or from right nodes to left nodes (edges e4,e8 in

Fig. 2).

THEOREM 1. Let G= (V,E) be a deterministic network. Given two nodes,

s; t 2 V, let K be an s-t node separator. For any right node u of K, it is

guaranteed that K is also an s-u node separator.

We prove Theorem 1 in the Supplementary Material.

If a node separator does not yield backward edges, we call it a good

node separator. We only use good node separators in the rest of the

article. So, in what follows by node separator we refer to a good node

separator, unless otherwise specified. Finally we define the concept of

subset reachability in probabilistic networks.

DEFINITION 3 (Subset Reachability). Let G=ðV;E;PÞ be a probabilistic

network. Let s and t (s; t 2 V) be source and target nodes in G. Consider

two s-t node separators Ki and Kj of G such that for all nodes u 2 KjnKi; u is

a right node of Ki. Let S and T be two subsets of Ki and Kj, respectively. We

say that Kj is T-reachable from S if all nodes in T are reachable from at

least one node in S and none of the nodes in KjnT is reachable from any

node in S. We denote the probability that Kj is T-reachable from S by

p(S,T,Kj).

2.2 Overview of the method

Our method works in two steps.

Step 1. Given a probabilistic network G=ðV;E;PÞ and source and target

nodes s and t, in the first step, we partition G into a sequence of subnet-

works that are connected to each other through node separators. In gen-

eral terms, let us denote the sequence of node separators with K0,

K1; . . . ; Kc; Kc+1, where K0={s} and Kc+1={t}. We choose these

node separators such that 8i5j, for all nodes u 2 KjnKi; u is a right

node of Ki. Following from Definition 3, the problem we solve in this

article is equivalent to computing pðK0;Kc+1;Kc+1Þ=pðfsg; ftg; ftgÞ.

Step 2. At this step we compute the reachability probability from s to t.

More specifically, using this notation above, for any i (05i� c), we write

the probability p({s},T,Ki+1) as

pðfsg;T;Ki+1Þ=
X

S�Ki;S6¼;

pðfsg;S;KiÞpðS;T;Ki+1Þ ð1Þ

The case i=0 is a special one. Since K0 contains s, we have T={s}.

Thus the probability to reach the source node is 1. Following from

Equation (1), our algorithm iteratively computes p(K0,Kc+1,Kc+1) by

moving from one node separator to the next, starting from K0.

The correctness of Equation (1) follows from the definition of node

separator and Theorem 1. More specifically, in order to reach to any

node in T � Ki+1, we have to visit at least one node in Ki. The product

p({s},S,Ki)p(S,T,Ki+1) in Equation (1) is the probability that a signal

reaches T by visiting all the nodes in S and no other node in Ki– S.

The summation in this equation enumerates all possible subsets S � Ki.

Thus, it is accumulates the probability of all possible alternative routes

from s to T defined by all possible subsets S.

Figure 3 illustrates our method. In this example, the set of edges in E is

split into three non-overlapping sets using four node separators K0, K1, K2

and K3 where K0={s} and K3={t}. These sets are LðK1Þ; LðK2ÞnLðK1Þ,

and LðK3ÞnLðK2Þ. Each of these sets define a subnetwork of G. Once the

network is partitioned this way, instead of computing the reachability

Fig. 2. A network with an s-t node separator. The source is node 1 and

the target is node 8. The dotted rectangle indicates an s-t node separator
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probability directly from s to t, we compute it incrementally by advancing

from one node separator to the next. For the example in Figure 3, we first

consider the separator K1, then K2, finally K3. At each node separator, we

only consider the subnetwork which contains the left edges of that

separator.

To understand Equation (1) better, consider the separators K1 and K2

in Figure 3. There are three possible scenarios to reach to a subset T of

K2, say T={4} from s=1. Each of these scenarios corresponds to a

nonempty subset of K1={2, 3}.

(1) Visit S={2} and do not visit K1nS={3}. This happens with prob-

ability p({1},{2},K1)p({2},{4},K2).

(2) Visit S={3} and do not visit K1nS={2}. This happens with prob-

ability p({1},{3},K1)p({3},{4},K2).

(3) Visit both nodes in S={2, 3}. This happens with probability

p({1},{2,3},K1)p({2,3},{4},K2).

The sum of the three probabilities above yields the probability

p({1},{4},K2).

In Section 2.3, we explain how we compute Equation (1) efficiently for

i40 (Step 2). In Section 2.4, we explain how we choose the node separ-

ators (Step 1).

2.3 Computing the reachability probability

In Equation (1), we presented an iterative formula to compute the reach-

ability probability p({s},{t},{t}) by splitting the network using cuts

K0, K1, . . . , Kc+1. Although this equation reduces the scale of the problem

to the subnetworks between consecutive cuts, computing it efficiently still

remains to be a challenge. Here, we describe how we compute this prob-

ability efficiently yet provably correctly. More specifically, given two con-

secutive node separators Ki and Ki+1 (05i� c) and given p({s},S,Ki)

for all subsets S � Ki, we discuss how we compute p({s},T,Ki+1) for all

subsets T � Ki+1.

From the definition of left edges, we know that the probability

p({s},S,Ki) depends only on the edges in L(Ki). This is because L(Ki)

contains all the edges that can lie on a path from s to any node in Ki.

Let us denote the set of edges in LðKjÞnLðKj�1Þ with Ej for any 05j (i.e.,

left edges of Kj which are also right edges of Kj– 1). Thus, the probability

p({s},T,Ki+1), depends only on the edges in Ei+1 when p({s},S,Ki) is given

for all S. This implies that it is possible to compute the probability

p({s},T,Ki+1) by considering only the edges in Ei+1 when p({s},S,Ki) is

known 8S � Ki. Below, we compute this probability by transforming the

probabilistic network into a collection of polynomials.

Transformation into polynomial space.Assume that the given probabilistic

network, G=ðV;E;PÞ, contains n edges and m nodes, denoted with

E={e1,e2, . . . en} and V={v1,v2, . . . vm}, respectively. As the first step

of the transformation, we associate to each edge a polynomial called

the edge polynomial. More precisely, for edge ei 2 E, let pi=P(ei) and

qi=1– pi denote the existence and absence probability of ei, respectively.

We define the edge polynomial of ei as the first degree polynomial of two

variables, xi and yi, Fi(xi,yi)= pixi+ qiyi.

Consider a subset E 0 of the edges in E. We define the edge aggregation

polynomial for E 0, denoted with F(E 0), as the product of all the edge

polynomials associated with the edges in E 0:

FðE 0Þ=
Y
ei2E 0

Fiðxi; yiÞ=
X
E�E 0

Y
ei2E

pixi
Y

ej2E 0nE

qjyj: ð2Þ

Notice that each term in the summation above corresponds to one of

the possible deterministic configurations for the network topology. The

coefficient of the term
Q

ei2E
xi
Q

ej2E0nE
yj in F is the probability of obser-

ving all the edges in E and not observing any edge in E0nE. To understand

this better, consider the network in Figure 1 (network on the top). In the

edge aggregation polynomial of this network, the term x3x4y1y2 corres-

ponds to the deterministic instance where only edges e3 and e4 are present

(i.e., bottom left network in Fig. 1). The coefficient of this term is q1q2p3p4
which is the probability of observing that network instance.

Reachability in polynomial space. As we explain in Equation (2), the terms

of the edge aggregation polynomial represent different deterministic net-

work configurations. Thus, the probability p({s},T,Ki+1) is equal to the

sum of the coefficients of a specific subset of the polynomial terms: The

terms which yield a topology where Ki+1 is T-reachable from {s}.

At this point, the polynomial transformation seemingly makes the

reachability problem as complicated as exhaustively enumerating all net-

work topologies. This is because, (i) the edge aggregation polynomial has

as many terms as the number of network topologies; and (ii) finding the

subset of polynomial terms which yield the desired topologies will incur

additional computational cost. Below, we build a novel algebra on the

edge aggregation polynomial to compute this value by enumerating only

a tiny fraction of the polynomial terms.

Algorithm 1 presents a pseudocode that describes our algorithm for

constructing the polynomial needed to compute p({s},T,Ki+1). The algo-

rithm takes the existing edge aggregation polynomial for the edges in

L(Ki) as input. At each iteration it grows that polynomial by aggregating

it with the edge polynomial of a new edge in Ei+1 (Step 2). It then reduces

the size of the resulting polynomial by collapsing it (Step 3). Briefly, the

collapsation step merges all terms which correspond to configurations in

which Ki+1 is T-reachable from s, for each possible subset T of Ki+1,

into a single term by replacing the variables in these terms with a

single variable denoted with zT. Thus, the coefficient of zT is the

sum of the coefficients of the original terms that were collapsed. In the

rest of this section, we elaborate on these steps, particularly the collapsa-

tion step.

Algorithm 1 Compute the edge aggregation polynomial for L(Ki+1)

Require: Probabilistic graph G=ðV;E;PÞ
Require: Node separators Ki and Ki+1

Require: Edge aggregation polynomial F 0=F(L(Ki)).

1: for all ej 2 Ei+1 do

2: Aggregate edge polynomial of ej as F
0=F 0� Fj(xj,yj)

3: Collapse F 0

4: end for

We start by introducing some notation which will simplify our poly-

nomial algebra below. For a subset of edges E � E, we denote the set of

indices of the edges in E by IndðEÞ. For instance, for E=fe2; e3; e8g, we

have IndðEÞ=f2; 3; 8g

Let us denote the subset of edges of Ei+1 which have been multiplied

into the edge aggregation polynomial so far with E � Ei+1 and its set of

indices with �=IndðEÞ.

Following from Equation (2), since E and L(Ki) are disjoint, we can

write the edge aggregation polynomial of the edge set E [ LðKiÞ as

Fig. 3. A hypothetical network with two disjoint s-t node separators,

K1={2,3} and K2={4,5,6}. Source and target nodes are labeled with

s=1 and t=7. For uniformity, we consider K0={1} and K3={7} also

to be node separators
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FðEÞFðLðKiÞÞ. To simplify our notation of FðEÞ, for all I � �, we denoteQ
i2I xi and

Q
i2�nI yi with xI and y�nI, respectively. We denote the coef-

ficient of xIy�nI with �I. Thus, we can write the first polynomial as

FðEÞ=
P

I�� �IxIy�nI.

For each node separator Ki, we define a unique collapsing operator

and denote it with �i(). This is a linear operator; it acts on the terms of the

given edge aggregation polynomial for the edges in L(Ki) independently.

Briefly, the collapsed polynomial contains a new variable, zs, for each

subset S of Ki. The form of this polynomial is �iðFðLðKiÞÞÞ=
P

S�Ki
�SzS.

In this representation, zS corresponds to the case where Ki is S-reachable

from K0 (i.e., the original source node), and the coefficient �S is the

probability of observing that case. In other words �S is equal to

p({s},S,Ki) in Equation (1). We explain how this operator works and

how we compute it in detail later in this section. For the moment,

assume that we have already applied it for the edge set L(Ki). Therefore

we replace the polynomial, F(L(Ki)) in the product FðEÞFðLðKiÞÞ with its

collapsed version, denoted by �i(F(L(Ki))).

After multiplying the first polynomial and the collapsed version of the

second polynomial, we get

FðEÞ�iðFðLðKiÞÞÞ=
X
I��

�IxIy�nI

X
S�Ki

�SzS: ð3Þ

Since this product includes edge polynomials from the edge set E, we

further reduce its size by applying the collapsing operator �i+1() on it

and thus obtain �i+1ðFðEÞ�iðFðLðKiÞÞÞÞ.

Next, we explain how the collapsing operator works. Given two nodes

u; v 2 V, let � be a path from u to v in the maximal deterministic network

G=(V,E) of the given probabilistic network. Here, by path we mean the

set of edges traversed to reach from u to v. Let I be a subset of indices,

I � f1; . . . ; ng. We define two set indicator functions �u,v() and !u,v() for

the node pair (u, v). The first one takes the value �u,v(I)=1 if there is a

path � from u to v such that Indð�Þ � I and 0 otherwise. For instance, in

Figure 2, �1,8({1,2,5,6,7,10,11})=1. This is because {e2,e5,e6,e7,e10} forms

a path from 1 (source) to 8 (target) and its set of indices {2, 5, 6, 7, 10} is a

subset of the input set {1, 2, 5, 6, 7, 10, 11}. Similarly, the second indicator

function takes the value !u,v(I)=1 if there is a minimal u- v cut � such

that Indð�Þ � I and 0 otherwise. For example, !1,8({2,3,4,5})=1, because

{e3,e5} forms a minimal cut between nodes 1 and 8 and its set of indices

{3, 5} is a subset of input set {2, 3, 4, 5}.

Next, we extend the definitions of the set indicator functions � and !

to multiple source nodes. The extended function �S,v(I) evaluates to 1 if

there is a path � from at least one node u in S to v such that Indð�Þ � I

and 0 otherwise. Similarly, !S,v(I) evaluates to 1 if for all nodes u 2 S

there is at least a minimal u- v cut � such that Indð�Þ � I and 0 otherwise.

Formally, we compute these functions as

�S;uðIÞ=1�
Y
s2S

ð1� �s;uðIÞÞ and !S;uðIÞ=
Y
s2S

!s;uðIÞ ð4Þ

Next, we formalize T-reachability of the node separator Ki+1. For this

purpose, we define a new set indicator function CS,T() which evaluates to

1 only if Ki+1 is T-reachable from S. Otherwise, it evaluates to 0. We

compute this function as

CS;TðIÞ=
Y
u2T

�S;uðIÞ
Y

v2Ki+1nT

!S;vð�nIÞ: ð5Þ

We prove the correctness of Equations (4) and (5) in the

Supplementary Materials.

Now we are ready to put all the pieces together and compute the

collapsing operator �i+1. Recall that each term of the given edge aggre-

gation polynomial indicates a deterministic subnetwork topology for the

edges in E, combined with all deterministic topologies of the edges in

L(Ki) in which Ki is S-reachable from K0, for every S � Ki. If that com-

bination ensures that Ki+1 is T-reachable from K0, then the collapsing

operator �i+1 replaces all the variables of that term with zT. More spe-

cifically, consider a term in Equation (3) after the product has been

expanded, in the form �I;SxIy�nIzS, where �I;S=�I�S. We compute the

collapsing operator �i+1() on this term as

�i+1 �I;SxIy�nIzS

� �
=�I;S

X
T�Ki+1

CS;TðIÞzT:

+�I;S
Y

T�Ki+1

1� CS;TðIÞ
� � !

xIy�nIzS

ð6Þ

The collapsing operator �i+1() [see Equation (6)] transforms each term

of the polynomial into a single term. The resulting term either contains

the variable zT, where T � Ki+1, or remains unchanged. This is because

CS;T either takes the value 0 or 1. Thus, �i+1() leaves the term unchanged

only if CS;T=0 for all T. When, CS;T=1 for some T � Ki+1, the coeffi-

cient of zS becomes 0. It returns �I,SzT in this case. Furthermore, from

Equation (5), we know that if CS;T=1, then for all T0 6¼T (T0 � Ki+1),

CS;T 0=0. Thus, the function �i+1() returns no other term containing vari-

able z0T.

Now suppose that a term has collapsed to zT and a new edge ej is

added in Step 2 of Algorithm 1. From a polynomial point of view, the zT
variable will be multiplied with xj and yj, respectively, resulting in two

new terms. From the graph reachability point of view, we know that the

edges added prior to ej already ensure T-reachability, so ej does not make

any differece: both its presence and its absence lead to reachable graph

configurations. In the polynomial, the coeficients of zTxj and zTyj have to

be added together to obtain the reachability probability. To take advan-

tage of this observation, we introduce a special multiplication rule for the

zT variables: both zTxj and zTyj are replaced with zT, for all ej 2 Ei+1, so

that their coefficients are added together.

The collapsing operator is very powerful as it ensures that the size of

the edge aggregation polynomial never exceeds 2jKi j+jEi+1 j in the worst

case (i.e., when the indicator function CS,T() always returns 0 until the last

edge in L(Ki+1) is aggregated). More importantly, it guarantees to reduce

the polynomial size down to 2jKi+1 j once the edges in L(Ki+1) are all

aggregated. This is a significant improvement as without the collapsation

function, the size of the edge aggregation polynomial 2jLðKi+1Þj after con-

sidering Ki+1 and it goes up to 2jEj after including all the edges.

So what is the reachability probability? After all the edges in Ei+1 have

been added, all the terms will collapse, and the polynomial will be

�i+1ðFðLðKi+1ÞÞÞ=
P

T�Ki+1
�TzT. When Kc+1={t} is reached, the poly-

nomial will have only two terms: �ftgzftg+�;z;. The coefficient �{t} is

equal to the probability that the target node is reachable from the

source node. We prove the correctness of our method in the

Supplementary Material.

2.4 How to choose node separators

Depending on the topology of the maximal deterministic network there

can be many alternative sequences of node separators between the source

and target nodes. Regardless of how we choose the node separators, our

method guarantees to return the correct result. The node separator choice

however can affect the size of the intermediate polynomials and thus the

running time of our method in two ways. (i) Ideally, each node separator

Ki should contain a small number of nodes as it will produce 2jKi j vari-

ables of the form zS. (ii) Each consecutive node separators should contain

a small number of edges between them (i.e., Ei should be small). This is

because, in the worst case, they yield 2jEi j terms. Finding an optimal

sequence of node separators that minimizes the overall computation

time is in itself an intriguing area worth investigating. The right balance

between the separator size, the size of the edge sets between the separators

and the amount of computation we are willing to spend on finding the

solution is hard to find. Here, we use a greedy approach to find good

node separators.

We consider the first node separator (K0) to be the source node itself.

We determine the next node separator from the current one by
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considering all nodes that are one edge further from the current node

separator. The set of nodes identified in this way is a minimal node sep-

arator, but it is not necessarily good, because it may contain nodes with

incident backward edges—see Section 2.1. To make it good, we first

identify the nodes that have incident backward edges and replace each

of them with all the nodes that are reachable from them in one hop. Thus

we advance the node separator toward the target keeping it minimal, and

stop as soon as we encounter a good minimal node separator. This way,

we aim to keep the size of Ei small. We repeat this process to select more

good node separators until we reach the target.

3 RESULTS

In this section we experimentally evaluate our method.

Section 3.1 presents the datasets and the experimental setup.

Section 3.2 examines the running time of our algorithm.

Section 3.3 presents the reachability profiles obtained with our

method. Section 3.4 evaluates gene centrality based on the reach-

ability profiles. Section 3.5 analyses the stability of the human

TRN.

3.1 Datasets and implementation details

We evaluate our method using both synthetic and real biological

networks.
Synthetic dataset. We generated the synthetic network dataset

using the Barabasi–Albert random network model (Barabasi and

Albert, 1999). We chose this model because it is the de facto

standard for the scale-free networks, which best describe most

biological networks (Jeong et al., 2000; Todor et al., 2012; Yook

et al., 2004). We created six sets of random networks. In each set,

we created 10 networks with the same number of nodes: 50, 100,

150, 200, 250 and 300, respectively. The number of edges is twice

the number of nodes in each network.
Real dataset. For experimentation on real biological networks

we used the human regulatory network of Gerstein et al. (2012).

From this network, we selected only the reliable interactions by

taking the intersection with those present in the DIP database

(Xenarios et al., 2002). The resulting network has 130 nodes and

172 edges. To assess the interaction confidence for each edge in

this intersection, we used the logistic regression method used by

Sharan et al. (2002). This strategy is used often in the literature to

compute interaction confidence (Bader et al., 2004; Ourfali et al.,

2007; Sharan et al., 2002; Shlomi et al., 2006). We obtained the

gene expression data of 575 leukemia patients from Zhang et al.

(2012). We obtained control gene expression data in early pro-

genitor cells from Laurenti et al. (2013). Both control and leuke-

mia expression datasets are normalized using quantile

normalization (Amaratunga and Cabrera, 2001). Each leukemia

sample in our dataset belongs to one of eight different subtypes

of leukemia: hyperdiploid, TCF3-PBX1, ETV6-RUNX1, MLL,

Ph, Hypo, T-ALL and Other, or to non-leukemia sample types

CD10CD19 and CD34. We do not include samples from the last

two categories in our experiments, since they contain only four

samples each. We trained eight different logistic regression

models, one for each leukemia subtype to compute interaction

probabilities for each subtype separately. Also, we classified the

early progenitor cell samples into three categories: primitive

(hematopoietic stem cells), lymphoid (ETP, MLP, ProB and

B_NKpre) and myeloid (the rest of the samples). We trained a

different logistic regression model for each type. Thus, we ob-

tained different probability values for the edges of the human

regulatory network, depending on the cancer or control group

subtype in which the gene expression levels were measured. This

in turn results in different reachability probabilities. We identi-

fied all the source and all the target genes in our network using

the hierarchical decomposition obtained by HIDEN (Gulsoy

et al., 2012). This resulted in 9 source genes and 88 target genes.

We used C++, Matlab and R for implementation. We ran

our experiments on an AMD Opteron processor with 256 GB of

memory and 1.9GHz speed.

3.2 Evaluation of the running time

In order to evaluate the performance of our method systematic-

ally, we ran it on the synthetic networks of different sizes. We

measured the running time for each synthetic network and each

source–target pair. We have taken each node, in turn, as a source

an then as a target. Thus, computing the reachability profile for

the largest network size requires 300� 299=89700 reachability

probability computations per network. In total, we computed

the reachability profile for 10� 6=60 networks, for a total of

2264500 reachability probabilities. In Figure 4, we report the

average running time to compute the reachability probability

for one source–target pair for each set of networks. We report

the average running time over all networks in the set and over all

source–target pairs.
The figure shows that the running time of our method in a

scale-free network grows at most linearly in terms of number of

nodes. Even for networks as large as 300 nodes and 600 edges,

the average running time of our method per source–target pair

remains in milliseconds. This small running time allows us to com-

pute the entire reachability profiles in practical time for a large

number of networks, which was not possible before.

For comparison, the inclusion/exclusion method (Ourfali

et al., 2007) and PReach (Gabr et al. 2013) fail to complete exe-

cution on the same dataset because they exhausted the 256 GB of

memory available in the system even for a single source–target

node pair of the smallest network in our dataset.
For the real dataset investigated in this article, we computed

11 reachability profiles, one for each leukemia or control group

subtype. For each subtype, we computed 9� 88 reachability

probabilities (for 9 sources and 88 target nodes), thus 8712 prob-

abilities in total. Our method computed each of these

Fig. 4. Average running time of our method on Barabasi–Albert net-

works for growing network sizes
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probabilities in only 2.5 s on the average. Both PReach and the

inclusion–exclusion method fail to scale to this network size.

3.3 Reachability profiles in the human TRN

For each leukemia or control network, we computed the reach-

ability probability for each pair of source–target nodes. We call

this the reachability profile of the network. In Figure 5 we show

the reachability profiles for all leukemia subtypes and control

groups in a heat map. Each row in the figure represents a leuke-

mia subtype or a control group, and each column represents a

source–target pair. The color intensity at a location represents

the reachability probability for that pair. We applied hierarchical

clustering on both dimensions based on the reachability profiles.

Hierarchical clustering correctly clusters the control groups sub-

types together, as well as all the leukemias. This shows that the

reachability profile can distinguish between healthy and leukemia

cases.
Source and target gene groups that show a noticeable gap

between their reachability probabilities in control versus leuke-

mia cases include SPI1, POU2F2 as sources and TOPBP1,

TFDP1, TFDP2, HDAC1, CDK8, REL, RELA and NFKB2

as targets. While these sources and targets have low a reachabil-

ity probability for control groups, they exhibit a higher range in

leukemia subtypes.
Our findings resonate with earlier observations. Our method

clusters the hyperdiploid and the ETV6-RUNX1 subtypes to-

gether, while in (Zhang et al., 2012), Supplementary Figure

S22, a significant number of genes exhibit similar expression

levels in these subtypes. They are frequently studied together,

as they are both related to a favorable prognosis in children

(Liang et al., 2010; Paulsson et al., 2010). On the contrary, the

Hypo subtype, which is least similar to Hyperdiploid and ETV6-

RUNX1 in our results, is associated with poor outcome

(Holmfeldt et al., 2013).
To further appreciate the value added by the reachability pro-

files to our results, we performed another experiment based

solely on gene expression data, without taking the regulatory

network into account. In this experiment, we clustered the gene

expression samples using k-means clustering. We set k=11, as

there are totally 11 subtypes in our dataset. Then, within each

cluster, we examined the distribution of each leukemia type. The

results are shown in Figure 6. Our results demonstrate that, with

the exception of cluster 10, consisting primarily of T-ALL sam-

ples, all the clusters are a heterogeneous mix and do not have a

definitive dominant leukemia type. Although one cluster consists

only of control samples, the control subtypes are mixed together.

Furthermore, the myeloid subtype samples are spread out

through the rest of the clusters. We conclude that clustering

based on gene expression alone is insufficient for classifying leuke-

mia types.
In light of these experimental observations, reachability profiles

prove to be a reliable and valuable tool for assessing the viability of

TRNs working as a whole.

3.4 Gene centrality using reachability profiles

We further illustrate the usefulness of reachability profiles by

analysing the centrality of genes based on their contribution to-

ward the reachability profile (Gabr and Kahveci, 2013). For this

experiment, we compare the reachability profiles for the original

network with the reachability profiles obtained by eliminating

one gene from the network. Thus, for each gene, we compute

its centrality by comparing the reachability profile for the ori-

ginal network with the reachability profile obtained when the

gene is missing. For a given gene g, whose centrality is under

consideration, and a given source–target pair, the difference in

reachability probability can be seen as the probability that the

source–target pair is indispensable for connecting the source to

the target; in other words, {g} is a node separator. Then the sum

of this value over all source–target pairs is the average number of

source–target pairs for which g is indispensable. To formalize

this description, let us denote the set of source and target genes

with S and T, respectively. We also denote the probability that

gene t is reachable from gene s in the original network with p(s,t)

and the same probability for the network where gene g is

removed with pg ðs; tÞ. The centrality of gene g is defined asP
s2S

P
t2T pðs; tÞ � pg ðs; tÞ.

Figure 7 plots the centrality values for each leukemia type and

each gene. We excluded from the plot the genes having centrality

smaller than 1. As expected, only a few genes have a high cen-

trality, which is a characteristic of scale-free networks. We also

Fig. 5. Reachability profiles in the human regulatory network. Each row

represents a cancer type or a control group. Each column represents a

source–target pair. The intensity of each cell represents the reachability

probability for that source–target pair—lighter color means higher

probability

Fig. 6. Distribution of leukemia subtype and control group samples

within clusters obtained from transcription data alone. Each cluster is

normalized by the number of samples it contains
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performed hierarchical clustering of the leukemia subtypes and

of the genes based on their centrality. We observe that the most

similar subtypes of leukemias are T-ALL and Ph. The Ph sub-

type is a chromosomal abnormality resulting from the same

translocation found in ALL (Talpaz et al., 2006). The least simi-

lar to the first two is Hypo, like in the reachability profiles ex-

periment. TP53 and RB1 are two of the most central genes

identified by our method. They are both characterized by alter-

ations in Hypodiploid ALL (Holmfeldt et al., 2013). We see that

the most central gene is E2F1, which a transcription factor

known to have a crucial role in cell cycle and tumor suppression

(Neuman et al., 1996). Thus, malfunctioning of this gene severely

affects many pathways in the regulatory network. Likewise, the

following two reachable genes, MYC and TBP are known hubs

regulating important functions. MYC is involved in cell prolif-

eration and its persistent expression is common to many cancers

(Nesbit et al., 1999), while TBP is related to RNA polymerase II,

an essential element of DNA transcription initiation (Kornberg,

2007). Among the top genes we identified based on their central-

ity is also EP300, a histone-modifying gene which was reported

to inactivate lesions disrupting hematopoietic development in

ETP ALL (Zhang et al., 2012).

3.5 Assessment of network stability

Beside characterization of single genes using centrality, we also

performed and experiment to characterize the entire human

TRN. In this experiment, we assess the level of stability of

each of the studied networks. We measure the stability of the

network as the average change in reachability probability when

edge probabilities are randomly perturbed.
Consider the given probabilistic network G=ðV;E;PÞ and the

sets of source and target nodes S and T. Also consider a param-

eter 	 that denotes the maximum change in edge probabilities.

We defined a perturbed edge probability function P	 ! [0,1]

that, for each edge e 2 E, returns a value drawn uniformly at

random from the range PðeÞ � 	 \ ½0; 1�. We constructed a per-

turbed network G	=ðV;E;P	Þ. For every pair of s 2 S and

t 2 T, we measured the reachability probability in G as p(s,t),

as well as that in G	 as p	(s,t). We then computed the absolute

difference jp	ðs; tÞ � pðs; tÞj. We repeated this experiment

20 times. We computed the average of the resulting values over

all s 2 S and t 2 T, as well as over the 20 experiments.
We plotted the results for different values of 	 for the leukemia

networks as well as for the control networks. Figure 8 shows the

results. The first observation we draw from the figure is that the

change in reachability probability for all networks is linear. We

also observe that even by perturbing the edge probabilities in the

range of �0.3, the change in reachability probability does not

exceed 0.1. From these two observations we can judge transcrip-

tion-factor regulation in homo sapiens as highly stable and in-

sensitive to random perturbation. This conclusion holds for both

healthy people and leukemia patients. However, we also observe

that the gap between the networks is not constant; it slightly

increases with the increase of perturbation level. At the extreme

case of �0.3, the gap is maximum. There, T-ALL show the most

sensitivity to this level of perturbation, while Hypo and MLL

show the least sensitivity.

4 CONCLUSION

In this article we have characterized different types of leukemias

based on the state of the regulatory networks in patients affected

by this disease. The state is evaluated through reachability pro-

files. The reachability profile describes the ability of regulator

genes to affect the transcription factors. For this we developed

a fast, exact method for computing the probability for a signal to

reach from a source node to a destination node in a probabilistic

network. The rigorous mathematical apparatus, which involves

polynomials and polynomial collapsing operators, allows fast

execution time, demonstrated in the performance evaluation ex-

periments. Valuable uses of the reachability profiles illustrated in

this article include leukemia subtype classification, gene central-

ity evaluation and regulatory network stability analysis. All these

are valuable tools for evaluating the viability of the TRN under

varying conditions as a whole, not just limited to individual gene

expressions levels. An interesting parallel can be drawn between

Fig. 7. Centrality of genes in the human regulatory network for different

leukemia subtypes. Light color denotes high centrality. We only show the

genes with centrality value41 for at least one network

Fig. 8. Effect of random perturbation as a measure of network stability:

average change in reachability probability ("Preach) when each interaction

probability p is altered to a random value in the window p� 	\[0,1]
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our solution and Bayesian Network inference. However, as we
mentioned in Section 1, this alternative is limited to acyclic net-
works. We see a possible application of the Bayesian Network
alternative in combination with the reduction of strongly con-

nected components to single nodes, but this solution deserves a
careful examination by itself.
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