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Muscle and tendon stiffness are related to sports performance, tendinopathy, and
tendon degeneration. However, the effects of habitual loading on muscle and tendon
mechanical properties are unclear. Using amateur basketball players as examples, we
investigated the effects of mechanical loading on the stiffness of the gastrocnemius–
Achilles tendon (AT) complex in non-dominant and dominant lower limbs. Then, we
evaluated the correlation between gastrocnemius and AT stiffness. Forty participants
(20 amateur basketball players; 20 normal non-athletic persons) were recruited for this
study. Stiffness of the gastrocnemius–AT complex was assessed using MyotonPRO
at neutral position and 10◦ dorsiflexion of the ankle joint in participants from amateur
basketball players and the non-athletic general population. Our results showed a greater
stiffness of the gastrocnemius–AT complex in amateur basketball players than that
in healthy non-athletic subjects at neutral position and 10◦ dorsiflexion of the ankle
joint (P < 0.05). No significant difference in stiffness was found between the non-
dominant and dominant lower limbs either in amateur basketball players or in generally
healthy subjects (P > 0.05). A significant positive correlation was obtained between
stiffness of the AT and medial gastrocnemius (MG) in amateur basketball players (neutral
position: r = 0.726 and P = 0.001; dorsiflexion 10◦: r = 0.687 and P = 0.001). The
amateur basketball players exhibit significantly higher stiffness value in Achilles and
gastrocnemius. This is possibly caused by repeated training effects. The symmetric
stiffness of the AT and gastrocnemius exists both in amateur basketball players and
generally healthy subjects. A significant correlation between the AT and the MG was
found in amateur basketball players.

Keywords: stiffness, adaptation, Achilles tendon, gastrocnemius, basketball

INTRODUCTION

The gastrocnemius–Achilles tendon (AT) complex, consisting of the medial gastrocnemius (MG),
and lateral gastrocnemius (LG) and AT, is the largest and strongest muscle tendon complex in
the human body (Doral et al., 2010). The AT plays an important role in storing and releasing
elastic strain energy, allowing for efficient functioning of the gastrocnemius–AT complex in
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walking, running, and jumping (Obst et al., 2016). AT and
gastrocnemius injuries are common musculoskeletal disorders,
especially the former (Edama et al., 2015b; Lagas et al., 2020).
Additionally, owing to increasing mechanical demands on the
AT, approximately 82% of such injuries occur in sports and
recreational activities (Huttunen et al., 2014; Lantto et al.,
2015). Stiffness is one of the mechanical property parameters
of muscle and tendon, representing the resistance of soft
tissue to deformation (De Zordo et al., 2010). Muscle and
tendon stiffness could objectively indicate tissue conditions
such as pain and fatigue (Lichtwark et al., 2007). Stiffness
measurement is a potential diagnostic method for assessing
Achilles tendinopathy and AT degeneration (Obst et al., 2018).
It has been reported that stiffness in Achilles tendinopathy
is lower than normal AT stiffness (Coombes et al., 2018;
Obst et al., 2018).

In addition to association with tendon pathology, stiffness has
been widely used to represent modulations in the mechanical
properties of tendons after training (Fouré et al., 2010; Siu
et al., 2016). The mechanical properties of muscle and tendon
can affect human daily locomotion and stability performance
(Lichtwark et al., 2007). The stiffer muscle and tendon are
beneficial for fast stretch-shortening cycle activities and actions
involving high movement velocity (Brughelli and Cronin, 2008).
It was reported that the muscle and tendon stiffness is related to
the athletic performances and the economy of running (Fletcher
et al., 2010; Albracht and Arampatzis, 2013). According to
previous studies, the tendon is highly sensitive to mechanical
loading (Arampatzis et al., 2010). Although some studies have
explored the effect of exercise and training on the mechanical,
material, and morphological properties of tendon and muscle,
in terms of the mechanical properties of muscle and tendon,
the results of these studies are inconsistent (Kubo et al., 2007,
2012; Wiesinger et al., 2015; Siu et al., 2016; Leung et al., 2017;
Geremia et al., 2018). AT stiffness increased by 51–82% after
4–12 weeks of high-load plantar flexion training (Geremia et al.,
2018). Leung et al. (2017) reported a more drastic increase in
MG and LG stiffness after one eccentric heel drop exercise.
Similarly, Siu et al. (2016) detected greater AT stiffness in
the non-dominant side in frequent weight-bearing exercisers
than in infrequent exercisers. In contrast, Kubo et al. (2007,
2012) found that AT stiffness was unchanged after 12 weeks
of plyometric training and 8 weeks of isometric plantar flexion
training, respectively. Therefore, it is necessary to understand AT
and gastrocnemius stiffness variations in response to mechanical
loading to improve our understanding of muscle and tendon
adaptations and to provide a reference for accurate diagnosis
of abnormalities.

Many clinical studies have used the healthy side as a reference
to quantify changes in an affected leg when examining stiffness
changes in the treatment of AT rupture or Achilles tendinopathy
(McNair et al., 2013; Bohm et al., 2015). Furthermore, according
to assumptions of symmetrical tendon stiffness, a lot of
studies have selected only one leg to investigate differences in
mechanical properties across populations (Kongsgaard et al.,
2007; Stenroth et al., 2012). However, two legs show different
loading during walking, even though it appears to be symmetrical

(Riskowski et al., 2012; Polk et al., 2017). Even in daily life,
foot dominance also could affect the symmetry of tendon
properties in the lower limbs (Arampatzis et al., 2010).
Moreover, there is no definitive evidence for the assumptions
of symmetrical tendon properties between the legs (Bohm
et al., 2014). Inconsistent with the assumption of symmetrical
tendon stiffness, Bayliss et al. (2016) found that AT stiffness
in preferred jumping legs was higher than in non-preferred
legs among collegiate-level jumping athletes. So, one of our
objectives was to determine whether AT and gastrocnemius
stiffness were different between the dominant and non-dominant
legs. As far as the gastrocnemius–AT complex is concerned,
there is a strong correlation between the AT and gastrocnemius.
However, there are differences between MG and LG in muscle
structure, function, and force-generating capacity (Edama et al.,
2015a). To the best of our knowledge, current research has
largely focused on mixed or group muscles, with few studies
examining the individual triceps calf muscles. The exact
correlation between the AT and gastrocnemius, therefore, awaits
further investigation.

Recently, myotonometry, a non-operator-dependent
technology, has been used to quantify the mechanical properties
of muscle and tendon conveniently and quickly. Similar to
Young’s modulus of muscle and tendon measured by shear wave
elastography, the stiffness of muscle and tendon assessed by
MyotonPRO can reflect the relative stiffness properties of the
soft tissue, although they are not equivalent to the true modulus
of elasticity obtained from biomechanical testing in vitro
(Kelly et al., 2018). Compared with shear wave elastography,
MyotonPRO requires less experience from the operator and
is less costly (Feng et al., 2018; Liu et al., 2018). However,
only a few studies have reported myotonometry assessment
in the gastrocnemius and AT for the athletic population
(Cristi-Sánchez et al., 2019).

The purposes of this study were to (1) investigate the effects of
mechanical loading on MG, LG, and AT stiffness by comparing
amateur basketball players with general non-athletic subjects;
(2) examine differences of MG, LG, and AT stiffness between
dominant and non-dominant sides; and (3) evaluate stiffness
correlations between MG, LG, and AT in basketball players
and non-athletes.

MATERIALS AND METHODS

Participants
Forty healthy male participants (aged 18–35 years) were recruited
for the present study. They comprised 20 amateur basketball
players and 20 general non-athletic subjects. The sample size was
calculated based on a previous study (Dirrichs et al., 2019), in
which the effect size between athletes and non-athletic control
groups on AT stiffness was 0.92. Assuming that α at 5% and
statistical power at 80%, the estimated sample size was 16 subjects
per group. Therefore, 20 subjects in each group were sufficient for
this experiment.

The inclusion criteria of the general non-athletic subjects
were as follows: (1) ages varied between 18 and 35 years; (2)
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body mass index (BMI) ranged from 16 to 28 kg/m2; (3) no
history of lower limb trauma; (4) no neurological disorders;
(5) no musculoskeletal system diseases; (6) no regular exercise;
and (7) participants provided written informed consent and
were willing to cooperate with the researchers. Additional
inclusion criteria for the basketball players were a regular history
of training (at least 5 years and 6 h per week). Exclusion
criteria included pain in the gastrocnemius or plantar heel
or AT, plantar fasciitis and Achilles tendinopathy, metabolic
and inflammatory diseases, a history of hormone therapy,
treatment with corticosteroids, skin lesions above measuring
sites, performed exercise within 48 h of testing, and inability to
complete the full experiment.

Equipment
The MyotonPRO (Myoton AS, Tallinn, Estonia) was used to
quantify stiffness in this study. The device’s basic principles are
as follows: after pre-compressing the tissue, mechanical impulses
from the probe cause oscillations from the measurement of soft
tissue. The MyotonPRO recorded the information and calculated
the soft tissue’s mechanical parameters (Schneider et al., 2015).
Among these parameters is stiffness (Newton/meter; N/m). The
larger the value is, the stiffer the tissue.

Experimental Procedures
Subjects’ exercise history was recorded based on their past and
present physical activities. Demographic characteristics (age,
weight, and height) were also recorded. We measured the stiffness
of the dominant and non-dominant legs. The dominant leg of
each subject was identified by which one they used when asked to
kick a ball (Lenskjold et al., 2015; Zhang et al., 2015).

According to previous studies, the measurement region for
AT stiffness was 4 cm above the calcaneal tuberosity, where
Achilles tendinopathy is more likely to occur (Stenroth et al.,
2012). The MG measurement site was located at 30% of the
length between the popliteal fossa and lateral malleolus (Hirata
et al., 2017). The LG measurement site was defined as one-third
of the length between the small head of the fibula and the heel
(Masood et al., 2014).

Participants were asked to rest for 5 min before stiffness
measurement. For the examination, each subject adopted a
prone position, with hip and knee joint fully extended, and
the feet hanging over the edge of the examination couch.
The subjects were asked to completely relax for the whole
examination. Measurement regions were marked by the same
experienced physical therapist. LG, MG, and AT stiffness were
obtained at neutral position (ankle joint dorsiflexion 0◦) and
10◦ dorsiflexion (10◦ DF) of the ankle joint (Taş and Salkın,
2019). Three measurements were taken at each measurement
region and the mean values were used for statistical analysis.
The angle of the ankle joint was maintained by a customized
and movable ankle–foot orthosis. The order of measurements
was LG, MG, and AT. The subjects relaxed for 5 min after
completing measurement at ankle neutral position. Then, MG,
LG, and AT stiffness were measured at ankle dorsiflexed 10◦.
During the stiffness measurement, the MyotonPRO’s probe is

placed on and perpendicular to the surface of the measurement
region (Sohirad et al., 2017).

Statistical Analyses
All statistical analyses were performed using SPSS software (SPSS
version 22.0, IBM, United States). The sample size calculations
were performed using the G∗Power program (G∗Power 3.1.9).
Descriptive data and all stiffness data were represented as
mean± standard deviation. The normality of all data distribution
was assessed using the Shapiro–Wilk test. Homogeneity of
variances was tested using Levene’s test. BMI was calculated
by the following formula: BMI = weight (kg)/height (m2).
Comparisons between stiffness in the healthy subjects and the
amateur basketball players were evaluated using an independent
sample t test. A paired-sample t test was performed for
stiffness differences on the bilateral sides of participants. Pearson
correlation analysis (r) was used to analyze the correlation
between AT, LG, and MG stiffness. A histogram was generated
using GraphPad Prism 8.

RESULTS

Demographic Information
Subjects’ demographic characteristics and duration of training are
presented in Table 1. No differences were observed between the
two groups in terms of basic characteristics, such as age, weight,
height, and BMI.

MG, LG, and AT Stiffness Between the
Amateur Basketball Players and the
General Non-athletic Subjects
As shown in Figure 1, the gastrocnemius and AT stiffness
of amateur basketball players was greater than that of the
general non-athletic subjects in the ankle neutral position
(amateur basketball players vs. general non-athletic subjects; MG:
468.00 ± 53.31 vs. 379.55 ± 50.27; LG: 491.90 ± 80.89 vs.
426.40 ± 73.03; and AT: 1,122.35 ± 65.04 vs. 982.10 ± 61.98).
Similar results were observed in dorsiflexion 10◦ of ankle joint
(amateur basketball players vs. general non-athletic subjects).
MG stiffness in basketball players was greater than that in non-
athletes (528.25 ± 57.21 vs. 424.70 ± 70.58). LG stiffness was
greater in basketball players (562.45 ± 83.07 vs. 504.75 ± 76.26).
AT stiffness was greater in basketball players than that in

TABLE 1 | The characteristics of the subjects.

Amateur basketball
players (M ± SD)

General non-athletic
subjects (M ± SD)

Age (years) 30.30 ± 2.70 29.8 ± 3.10

Height (m) 1.77 ± 0.04 1.76 ± 0.05

Weight (kg) 73.80 ± 6.27 74.35 ± 7.53

BMI (kg/m2) 23.50 ± 1.59 24.12 ± 1.68

Training years 14.81 ± 4.10

Training hours/week 7.72 ± 1.20
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FIGURE 1 | The mean stiffness of the lateral gastrocnemius (LG), medial
gastrocnemius (MG), and Achilles tendon (AT) between amateur basketball
players and general non-athletic subjects at ankle neutral position. Amateur
basketball players (black) and general non-athletic subjects (gray).
**P < 0.001, *P < 0.05.

FIGURE 2 | The mean stiffness of the LG, MG, and AT between amateur
basketball players and the general non-athletic subjects at dorsiflexion 10◦ of
ankle joint. Amateur basketball players (black) and general non-athletic
subjects (gray). **P < 0.001, *P < 0.05.

non-athletic subjects (1,179.00 ± 57.59 vs. 1,050.95 ± 66.31;
Figure 2).

MG, LG, and AT Stiffness Between the
Non-dominant and Dominant Sides
Tables 2, 3 reveal the stiffness of MG, LG, and AT at ankle
neutral position and ankle dorsiflexion 10◦ in amateur basketball
players and general non-athletic subjects, respectively. There was
no difference in MG, LG, and AT stiffness between the non-
dominant and dominant sides (P > 0.05).

The Relationship Between Stiffness of
the AT and MG and LG
Further analysis of the data reveals a significant correlation
between the AT and MG in amateur basketball players (r = 0.726
and P = 0.001 at the neutral position, r = 0.687 and P = 0.001
at the ankle dorsiflexed position). For the basketball players, no
significant correlation was apparent in stiffness results between
the AT and LG, regardless of ankle position (P > 0.05). Table 4
shows the r and P values of the AT and MG and LG for different
ankle joint positions in amateur basketball players and general
non-athletic subjects.

TABLE 2 | The stiffness of the medial gastrocnemius (MG), lateral gastrocnemius
(LG), and Achilles tendon (AT) in amateur basketball players.

Amateur basketball players Dominant side
(M ± SD)

Non-dominant
side (M ± SD)

P

Neutral position MG 468.00 ± 53.31 445.90 ± 76.34 0.31

LG 491.90 ± 80.89 516.50 ± 69.63 0.24

AT 1,122.35 ± 65.04 1,092.40 ± 70.68 0.14

Dorsiflexion 10◦ MG 528.25 ± 57.21 497.70 ± 97.93 0.23

LG 562.45 ± 83.07 592.30 ± 80.49 0.09

AT 1,179.00 ± 57.59 1,138.05 ± 88.80 0.13

TABLE 3 | The stiffness of the MG, LG, and AT in the general
non-athletic subjects.

General non-athletic Dominant side Non-dominant side P

subjects (M ± SD) (M ± SD)

Neutral position MG 379.55 ± 50.27 395.40 ± 57.92 0.23

LG 426.40 ± 73.03 440.40 ± 59.72 0.43

AT 982.10 ± 61.98 990.60 ± 62.67 0.67

Dorsiflexion 10◦ MG 424.70 ± 70.58 450.85 ± 97.11 0.13

LG 504.75 ± 76.26 520.00 ± 70.09 0.35

AT 1,050.95 ± 66.31 1,069.00 ± 87.64 0.49

TABLE 4 | The relationship of the stiffness between the AT and MG and LG.

AT (r)

Amateur basketball
players

General non-athletic
subjects

Neutral position MG 0.726/0.001** 0.349/0.132

LG 0.389/0.090 0.312/0.180

10◦ dorsiflexion MG 0.687/0.001** 0.260/0.268

LG 0.244/0.299 0.125/0.599

**P ≤ 0.001; r, correlation coefficient.

DISCUSSION

This present study evaluated the stiffness of the gastrocnemius–
AT complex between the non-dominant and dominant sides in
amateur basketball players and general non-athletic subjects. We
found a greater stiffness in the basketball players than the non-
athletes. No significant difference was investigated between the
non-dominant and dominant sides. Additionally, a significant
positive correlation was obtained between AT and MG stiffness
in amateur basketball players.

MG, LG, and AT Stiffness Between the
Amateur Basketball Players and General
Non-athletic Subjects
This study investigated the effects of chronic loading on
the mechanical properties of tendons and muscles using
amateur basketball players as examples. We found that AT
and gastrocnemius stiffness was greater in basketball players
than that in the general non-athletic subjects. Variation
of tendon mechanical properties is one of the proposed
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mechanisms for loading adaptation (Kongsgaard et al., 2007;
Arampatzis et al., 2010). A stiffer tendon was detected in athletes
who had been training for many years, suggesting that it was
adapted to a long-term exercise program (Arampatzis et al.,
2010). Many studies have explored the effects of habitual loading
on the mechanical properties of AT and the gastrocnemius.
Our results are consistent with previous studies that found that
the AT became stiffer after chronic mechanical loading such as
exercise (Albracht and Arampatzis, 2013; Siu et al., 2016; Dirrichs
et al., 2019). Siu et al. (2016) demonstrated that frequent weight-
bearing exercisers had greater AT stiffness on the non-dominant
side than did infrequent exercisers. Healthy semiprofessional
running athletes exhibit a significantly higher value of AT stiffness
than the non-athletic general population on both the left and
right sides (Dirrichs et al., 2019). Some 14 weeks of resistance
training intervention resulted in a 16% increase in triceps
surae aponeurosis stiffness (Albracht and Arampatzis, 2013).
However, inconsistent with our results, 20 healthy participants
were recruited to measure the elastic modulus of the calf muscles
using shear wave elastography at the beginning and end of a
30-min running task, and they found no significant change in
the LG and MG after the exercise (Ohya et al., 2017). In that
study, the participants were asked to perform a 30-min running
task. In our study, the subjects underwent long-term basketball
player exercises. The mechanical loading level has been proven
to determine muscle and tendon adaptation (Bohm et al., 2014).
Besides, exercise types and subjects’ training intensity also have
an impact on muscle and tendon adaptation (Kubo et al., 2007).

One study indicated an increased type I collagen in the AT’s
peritendinous tissue after performing physical training (Langberg
et al., 2001; Bohm et al., 2014). This is one of the mechanisms
to explain increased tendon stiffness. In addition, variations
in collagen fibril morphology and collagen molecular cross-
linking levels can also cause tendon adaptation changes (Kjaer
et al., 2009). Muscle and tendon mechanical properties have
been shown to affect sports performance (Kubo et al., 2015).
From a biomechanical perspective, stiffer muscles use tendon
elasticity more efficiently (Muraoka et al., 2005; Obst et al.,
2016). Kubo et al. (2015) investigated the relationship between
stiffness of plantar flexors and running performance in long-
distance runners. They found a positive relationship between
the stiffness of the plantar flexors and the best official record
in a 5,000-m race. A stiffer vastus lateralis can be beneficial to
athletic performance in both sprinters and long-distance runners
(Miyamoto et al., 2019). AT stiffness has been confirmed to
correlate with muscle strength in the triceps surae (Epro et al.,
2018). Also, modifications in tendon stiffness can meet increased
functional demands due to changes in muscle force (Raiteri et al.,
2018). The gastrocnemius–AT complex plays a critical role in
the sport-specific demands of basketball (Lemme et al., 2019).
Therefore, the stiffer AT and gastrocnemius of amateur basketball
players may contribute to improving their performance on the
court. However, in addition to physiological adaptive muscle
and tendon change, excessive mechanical loading can lead to
tendinopathy and tendon degeneration (Grimaldi et al., 2015).

Minimal detectable change (MDC) could provide a value to
reflect a true change as a reference for further study. In our

previous study, we found an excellent intra- (ICC = 0.85–0.94)
and inter-rater reliability (ICC = 0.87–0.92) for evaluating AT
stiffness using the MyotonPRO, with a relatively low MDC
(MDC less than 45 N/m; Liu et al., 2018). In terms of this
finding, measurements of the AT stiffness should be greater than
45 N/m to reflect real change. Also, the differences in means
stiffness values between the amateur basketball players and the
general non-athletic subjects exceeded the value of MDC in the
present study, suggesting that the difference in measurements is
a “real” difference. Regrettably, we did not obtain the MDC of
gastrocnemius stiffness measurements.

MG, LG, and AT Stiffness Between the
Non-dominant and Dominant Sides
Our study demonstrates symmetric stiffness in the AT and
gastrocnemius between the dominant and non-dominant lower
limbs, and this result provides evidence for the assumptions
of symmetrical tendon properties between the legs. In future
studies, the stiffness of the healthy side could be measured as
a reference to quantify degenerative or pathological changes
of the affected leg. The results of our study were consistent
with various other research findings. A study of moderately
active individuals examined similar AT stiffness between non-
dominant and dominant legs (Bohm et al., 2015). Another
study investigated muscle structure and stiffness in lower limbs
and observed no difference in MG and LG stiffness and
muscle thickness between dominant and non-dominant lower
limbs in professional badminton players (Bravo-Sánchez et al.,
2019). Similar results were also observed in the AT stiffness of
semiprofessional running athletes and the non-athletic general
population (Dirrichs et al., 2019). Cristi-Sánchez et al. (2019)
assessed AT stiffness between the dominant and the non-
dominant limbs in elite soccer players using the MyotonPRO. Just
like us, they located the measurement site 4 cm above calcaneal
tuberosity, and they reported stiffness of 1,075.0 ± 100.8 and
1,031.0 ± 115.9 N/m in the dominant and non-dominant limbs.
This is similar to our AT stiffness results for amateur basketball
players (dominant limbs: 1,122.35 ± 65.04 N/m; non-dominant
limbs: 1,092.40 ± 70.67 N/m). The small differences in AT
stiffness maybe because they did not hold the ankle joint angle
in the neutral position using the ankle–foot orthosis. However,
conflicting results were observed by a study that found the
AT stiffness in preferred jumping legs was higher than for
non-preferred jumping legs in collegiate-level jumping athletes
(Bayliss et al., 2016). Couppé et al. (2008) found higher patellar
tendon stiffness in the lead extremity than non-lead extremity
in elite fencers and badminton players. Moreover, they also
concluded that the change in mechanical properties was primarily
the result of a change in tendon size. As stated before, the studied
subjects, the stiffness measurement region, and their sports are
different, which may account for discrepancies in the findings.
According to one report (Kubo et al., 2012), AT stiffness did not
increase significantly within 2 months of isometric plantar flexion
training, but became statistically significant after 3 months of
training. A study proposed that strain magnitude applied to AT
has a threshold, and that when this is exceeded, tendon stiffness
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will change (Arampatzis et al., 2007). Although lower limb
asymmetries during typical stop-jump movement potentially lead
to overloading of dominant limbs in jumping sports (Edwards
et al., 2012), this limb dominance may not provide enough
differential stimulus to induce asymmetric adaptation (Benítez-
Martínez et al., 2019). Symmetrical stiffness may also be due to
a similar amount of stimulus of both lower limbs after years of
training and matches.

The Relationship Between the Stiffness
of the AT and MG and LG
In this study, we observed a significant positive correlation
between the stiffness of AT and MG in amateur basketball
players. Many studies have suggested architectural and functional
differences between the MG and LG (Albracht et al., 2008; Toumi
et al., 2016). Toumi et al. (2016) proposed that the muscle volume
of MG was higher than that of LG in the gastrocnemius–AT
complex. Although MG and LG have the same effect on ankle
plantar flexion, they contribute to different degrees. MG provides
more than 70% of muscle strength, about twice as much as LG
does (Albracht et al., 2008). The fascicles of the tendons of LG and
soleus muscles comprise the deep part of AT, while the MG forms
the superficial part of the AT (Edama et al., 2015a). The imbalance
between MG and LG can contribute to the development of
Achilles tendinopathy or AT pain (Mogi et al., 2018). Structural
or functional differences between the LG and MG may influence
their correlation with the AT.

Many studies reported that the AT’s mechanical properties
were closely related to the MG in different exercise programs.
Hirata et al. (2017) reported a significant decrease in MG
stiffness and no significant change in LG after static stretching.
Riemann et al. (2011) demonstrated that MG activation was
significantly greater than LG during the eccentric phase of heel-
raise exercise. Crill et al. (2014) observed that GM fascicle
length increased 12% in patients with Achilles tendinopathy
after 6 weeks of eccentric training, but there was no significant
change in the LG. This is the first study to investigate the
relationship between the AT and gastrocnemius stiffness using
the MyotonPRO. The findings of the present study suggest a
closer correlation between MG and AT in amateur basketball
players. This finding may provide a new treatment idea for AT
disorders. Reducing MG tension may be considered to be one
effective treatment for AT injury prevention and rehabilitation.
Since only healthy participants were recruited in this study,
more research is needed to investigate the correlation between
the MG and AT in patients with AT disorders and to explore
whether current management programs for AT disorders need to
be adapted for MG.

Limitations
We should mention limitations to the present study. First, only
one muscle and tendon point was evaluated, which cannot
represent stiffness variations in other parts of the complex.
Although we suggested that participants be completely relaxed
throughout the experiment, this is difficult to control precisely.
Considering that the stiffness is related to the degree of muscle
contraction, as a result, the stiffness values could have been
overestimated in this study. In addition, we evaluated only
variations in mechanical properties of the gastrocnemius–AT
complex, but did not assess changes in its morphological
properties. Finally, we investigated the mechanical properties
of the gastrocnemius–AT complex only in healthy subjects.
Therefore, a subsequent experiment should focus on the stiffness
of Achilles tendinopathy under excessive habitual loading.

CONCLUSION

The stiffness of the gastrocnemius and AT in basketball players
is significantly greater than that in the general non-athletic
subjects. This is possibly caused by repeated training effects. The
symmetric stiffness of the AT and gastrocnemius exists both in
amateur basketball players and in generally healthy subjects. The
present study suggests a significant correlation between the MG
stiffness and AT stiffness in amateur basketball players.
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