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Ungrouping binned data can be desirable for many reasons: Bins can be too coarse to allow for accurate analysis;

comparisons can be hindered when different grouping approaches are used in different histograms; and the last

interval is often wide and open-ended and, thus, covers a lot of information in the tail area. Age group–specific dis-

ease incidence rates and abridged life tables are examples of binned data. We propose a versatile method for

ungrouping histograms that assumes that only the underlying distribution is smooth. Because of this modest as-

sumption, the approach is suitable for most applications. The method is based on the composite link model, with

a penalty added to ensure the smoothness of the target distribution. Estimates are obtained by maximizing a pe-

nalized likelihood. This maximization is performed efficiently by a version of the iteratively reweighted least-squares

algorithm. Optimal values of the smoothing parameter are chosen by minimizing Akaike’s Information Criterion. We

demonstrate the performance of this method in a simulation study and provide several examples that illustrate the

approach. Wide, open-ended intervals can be handled properly. The method can be extended to the estimation of

rates when both the event counts and the exposures to risk are grouped.

grouped data; penalized composite link model; smoothing; ungrouping

Abbreviation: AIC, Akaike’s Information Criterion.

Grouped data are omnipresent. In epidemiology, examples
of grouped data are age-specific disease incidence rates and
cause-of-death data by age. Ages are commonly grouped in
bins of 5 years, followed by a broad or open-ended age class
that includes all of the elderly starting at age 80 or 85 years.
Many abridged life tables and data provided by the World
Health Organization or EUROSTAT, the statistical office of
the European Union situated in Luxembourg, follow this pat-
tern (1–3). The data are grouped to facilitate compact presen-
tation or to suppress small-scale fluctuations that occur in the
sparsely occupied areas of a distribution.
Relying on coarsely grouped data may, however, hinder

accurate data analysis. Thus, ungrouping binned data may
be desirable. This is particularly true for the wide, open-ended
interval that covers the highest ages. With increasing long-
evity, more people are reaching very high ages, and exploring
health trends among the elderly is possible only if age-specific
information can be made available for less heavily aggregated
data. Another issue that can arise when using grouped data is

that the bins may vary over time or across different geograph-
ical regions. Again, ungrouping or regrouping the data would
facilitate comparisons.
In this paper, we propose a methodology for ungrouping

data while making modest assumptions about the underlying
(ungrouped) distribution. We assume only that the underlying
distribution is smooth but otherwise let the data determine their
actual shape. Themethod is based on the composite linkmodel
(4) with a penalty added to ensure smoothness, and estimation
is achieved by maximizing a penalized likelihood (5). This ap-
proach essentially emulates the grouping process in a statistical
model and estimates the most likely original distribution under
the modest assumption of smoothness.
Different approaches to ungrouping histograms or abridged

life tables have been proposed.Most early attempts were based
on parametric assumptions for the underlying distribution (6,
7) or were developed for particular applications (8, 9). For fit-
ting a nonparametric density to binned data histosplines (10),
kernel density estimators (11) and local likelihood estimation
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(12) have been proposed. These approaches may, however,
have some drawbacks, including a potential violation of non-
negativity, complications for open-ended intervals and for
stretches of intervals with 0 counts, and an optimal choice of
the smoothing parameter.

The method we propose is based on the idea that the counts
in the coarse bins are indirect observations of a finer (i.e.,
ungrouped) but latent sequence of counts. This latent distri-
bution has to be estimated, and estimation can be achieved by
maximizing a penalized likelihood. First, we introduce this
penalized composite link model and show how the latent dis-
tribution can be estimated. Nonparametric estimating pro-
cedures require the choice of a smoothing parameter, and
we recommend minimizing Akaike’s Information Criterion
(AIC). We study the performance of the approach in a simula-
tion study, andwe also compare itwith alternativemethods.We
apply our approach to age-at-death distributions for several
causes of death in the United States in 2009 and pay particular
attention to the last interval that is open ended. Furthermore,
when analyzing age-specific rates, we note that just as events
can be binned in intervals, exposures to risk can come in similar
age groups.We demonstrate how our approach can be extended
to ungroup both the event and the exposure distributions. We
conclude with a discussion and give some R code.

METHODS

The statistical model for grouped counts

Consider a sequence of values a1, . . ., aJ (i.e., ages a1 = 0,
a2 = 1, . . .) and let γj, j = 1, . . ., J be the corresponding ex-
pected counts that constitute the distribution of the values aj.
In a sample of sizeN, each γj =Npj, where pj is the probability
of the value aj. If the sample were not grouped, then the num-
ber of observations at the aj would follow Poisson distri-
butions with means γj (13). However, although we would
like to estimate the distribution γ = (γ1, . . ., γJ)

T, the actual-
ly observed grouped counts yi are realizations from Poisson
variables Yi, i = 1, . . ., I, whose expected values μi = E(Yi)
result from grouping the original distribution γ into I < J
bins (Figure 1). Each of the μi results from a sum of those values
γj that contribute to bin i of the histogram, and the observed
counts have the probability PðYi ¼ yiÞ ¼ μi

yi e�μi=yi!: If we
combine the μi into a vector μ = (μ1, . . ., μI)

T, we can write
μ =Cγ, with C being the I × J composition matrix
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The number of rows I is the number of histogram bins, and
the number of columns J corresponds to the length of the
original, but unobservable distribution γ. Elements of C are 0
except for those cij = 1 that indicate the elements of γ that are
aggregated into histogram bin i. This is a composite link model
as it was introduced (4), which extends standard generalized
linear models (14). To guarantee nonnegative values of γ, we
write it as γ = eXβ and estimate the values of β = (β1, . . ., βJ)

T. If

the number of elements J in the original distribution γ is large,
we can choose a design matrix X that represents a B-spline
basis of dimension p < J to reduce the number of parameters
to be estimated. As here we deal only with distributions of
moderate length, we will always choose X to be the identity
matrix of dimension J; that is, γ = eβ.

Estimation by penalized likelihood

To be able to estimate J elements in the original but latent
distribution γ from I < J observed counts yi, we must make ad-
ditional assumptions, because otherwise the problem would
be ill defined. We assume that the distribution γ is smooth,
that is, that neighboring elements in γ do not differ dras-
tically. This smoothness assumption is implemented in a
roughness penalty on the coefficients β, which implies the
smoothness of γ, since γ = eβ. Roughness here is measured
by the second-order differences of the neighboring coeffi-
cients (15), and it is computed by the difference matrix
D2 (Appendix 1). The penalty is P ¼ D2β

2 ¼ βTDT
2D2β: It

is weighted by a parameter λ > 0 and subtracted from the
Poisson log-likelihood, giving the penalized log-likelihood

l� ¼ l� λ

2
P ¼

XI

i¼1

ðyi ln μi � μiÞ �
λ

2
P;

where the μi are linearly composed from γ. For a fixed value
of λ, the penalized likelihood l* can be maximized by a mod-
ified version of the iteratively reweighted least-squares algo-
rithm, as was shown previously (5). The parameter λ balances
fidelity to the data and smoothness of the solution β, and it
has to be chosen optimally. To determine λ, we minimize

…… ……

Ungrouped Distribution
γ = (γ1,. . ., γJ)T

μ = C γ

yI
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μ1 μI

μ = C γ
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~
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Figure 1. Statistical model for grouped data. The distribution of inter-
est γ is defined on a fine scale. Grouping composes several values of
γ to the values of μ, which are the expected counts for the grouped
distribution. The observed data y are realizations of Poisson random
variables with expected values μ. The latent distribution γ is to be
estimated from the grouped counts y, which can be achieved by
assuming that γ is smooth.

Ungrouping of Coarse Histograms 139

Am J Epidemiol. 2015;182(2):138–147



AIC, which is equivalent to AIC(λ) = Dev(yjμ) + 2d, where
Dev(yjμ) is the deviance and d is the effective dimension
of the model (for details, refer to Appendix 1). AIC is com-
puted for a sufficiently fine grid of λ values (on a log scale),
and its minimal value is determined over this grid. The esti-
mating procedure was implemented in R (16) (R Foundation
for Statistical Computing, Vienna, Austria), and the code can
be found in Appendix 2. In Appendix 1, we also discuss un-
certainty estimates for β̂ and γ̂; respectively.

DATA AND APPLICATIONS

Simulation study

We conducted a simulation study to demonstrate the per-
formance of the penalized composite link model approach.
We applied it to various scenarios (distributions, grouping
strategies, sample sizes), and we compared it with alternative
methods for ungrouping (17, 18). The design of the simula-
tion study and the summary of results are presented in Web
Appendices 1 and 2 available at http://aje.oxfordjournals.org/,
respectively. The quality of the results was assessed by pro-
ducing plots of the estimates and boxplots for the integrated
absolute error (Web Figures 1–4). The full details of the sim-
ulation study are reported in Web Appendices 3–5 (Web Fig-
ures 5–31). In several scenarios the penalized composite link
model performs best. Most importantly for the purpose of our
study, it prevails when unbinning histograms with wide bins
and open-ended intervals.

Cause-of-death data

We now illustrate the proposed approach by studying age-
at-death distributions for different causes of death for the
United States in 2009. The death counts by underlying causes

were taken from the Centers for Disease Control and Preven-
tion Database (19). The data are classified according to the
International Classification of Diseases, Tenth Revision.
We look at the following distributions: deaths from diseases
of the circulatory system (codes I00–I99), neoplasms (codes
C00–D48), diseases of the blood and blood-forming organs
and disorders involving the immune mechanism (codes
D50–D89), and infectious and parasitic diseases (codes
A00–B99).
The age-at-death distributions are documented by single

year of age from 0 to 99 years, with a final open-age class
for ages≥100 years. To assess howwell the proposed method
works, we grouped the death counts into 5-year age classes
up to age 84 years and created a wide, open-ended age inter-
val starting at age 85 years. This grouping structure was used
inmany data sources until recently, and it is still used in some.
We apply the penalized composite link model to the coarsely
grouped data and compare the estimated ungrouped results
with the empirical death counts.
The distribution of ages at death should be used with care

in comparisons, as it conflates the size of past cohorts and
mortality (20). Age-specific rates, which may require the un-
grouping of deaths and exposures, are more appropriate, and
we address this problem at the end of the section.

Ungrouping the age-at-death histograms

We first apply the approach to deaths from diseases of the
circulatory system. The results are shown in Figure 2. The
open-ended age class collects the observations made for indi-
viduals older than the starting age for the interval (here, age
85 years). Although in theory the tail area could be unlimited,
in most applications there is a maximal number beyondwhich
no observation is expected or is even possible. As the penal-
ized composite link model smoothly redistributes the grouped
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Figure 2. Ungrouping of the age-at-death distribution for diseases of the circulatory system, United States, 2009. The original data taken from
the Centers for Disease Control and Prevention database were grouped in 5-year bins plus a wide class for ages ≥85 years. An additional bin
with 0 counts between ages 115 and 130 years was added. This histogram was ungrouped by the penalized composite link model. A) Grouped
histogram, original data (black line with overplotted points) and ungrouped data (solid gray line). B) The value of the smoothing parameter λ was
chosen by minimizing Akaike’s Information Criterion (AIC); λ varied on a fine grid, and the value that gave the minimum of AIC led to
log10(λ) = 5.5.
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observations into the tail area, such information, if available,
should be provided. For the present application, the age of
115 years was set as the maximum, and the histogram was
complemented with an age group from 115 to 130 years
with 0 counts. The penalized composite link model can easily
deal with longer stretches of 0 counts.

The model is estimated for a sequence of values for the
smoothing parameter λ, and AIC is computed for each (Fig-
ure 2B). The minimal value is obtained for log10(λ) = 5.5, and
the corresponding estimate for the latent distribution γ (solid
gray line) is shown, together with the grouped data (histogram)
and the original counts (black linewith overplotted points up to
age 99 years, and the last age group from 100 to 115 years), in
Figure 2A. The degree to which the original data and the esti-
mates after ungrouping correspond is striking.

The same approach was applied to the age-at-death distribu-
tion for the other 3 causes of death. The results are illustrated
in Figure 3. These 3 distributions were chosen because they
allow us to demonstrate the performance of the method in
various circumstances. The age-at-death distribution for neo-
plasms (Figure 3A) is unimodal, whereas the age-at-death
distribution for infectious and parasitic diseases (Figure 3C)
has a bimodal shape. Because we assume only that the latent
distribution γ is smooth, the model performs well in either
case, independent of the shape of the distribution. Further-
more, the sample sizes of these age-at-death distributions vary
considerably: There were 9,643 deaths due to diseases of the
blood and immune system (Figure 3B) but 582,219 deaths due
to neoplasms—60 times as many. These differences in sample
size do not undermine the accuracy of the obtained estimates.
Because of the large sample sizes in these examples, standard
errors were very narrow, and confidence intervals could hardly
be seen, so we did not include them in the figures.

Appreciable differences between the original and un-
grouped counts occur at age 0 years (infant deaths) for diseases
of the blood and immune system, as well as for infectious and
parasitic diseases. As infants constitute a group at particularly
high risk for both causes of death, the assumption of smooth-
ness is violated here. Explicitly including a point mass at age 0
years can remove this effect.

Extending the model to ungroup rates

In many cases, the age-specific rates, rather than the absolute
numbers of events, are of interest. Thus, the counts of events
as well as the numbers of exposures may be grouped into age
classes. The parameters of interest are now the ungrouped
latent rates, and we continue to denote the unknowns by γ =
(γ1, . . ., γJ)

T; that is, the vector γ now represents rates, not
counts. Consequently, the expected number of cases at age
aj is given by ejγj, where e = (e1, . . ., eJ)

T denotes the corre-
sponding exposure numbers. As before, the expected number
of events after grouping results from composing these ejγj to
obtain the μi. If we modify the composition matrix such that
each column j is multiplied by the respective ej, we again can
write μ =Cγ and proceed in the same way as for ungrouping
histograms. If the exposure numbers are available at a detailed
resolution, as is often the case for population data at the na-
tional level (21), we directly use these ej in the composition
matrix C. If the exposures are also binned in age groups, we

first ungroup them using the penalized composite link model
and insert the estimates êj into the composition matrix C.

To demonstrate the performance of the extended approach,
we apply it to diseases of the circulatory system and compare
estimated and original age-specific death rates. The exposure
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Figure 3. Ungrouping of the age-at-death distribution for neoplasms
(A, log10(λ) = 6.5), diseases of the blood and blood-forming organs
and disorders involving the immune mechanism (B, log10(λ) = 5.25),
and infectious and parasitic diseases (C, log10(λ) = 5.25), United
States, 2009. Histogram, original data from the Centers for Disease
Control and Prevention database (black line with overplotted points)
and results from ungrouping (solid gray line). Optimal values of the
smoothing parameter were chosen byminimizing Akaike’s Information
Criterion.
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data were taken from the Human Mortality Database (21).
They were provided by single year of age from 0 to 109 years,
with a last age class of ≥110 years. We produced ungrouped
estimates of the exposures after grouping them in the same
age classes as the event counts. Again, the results are reassur-
ing (Figure 4A). In Figure 4B and 4C, 2 versions of estimated
death rates are shown. In Figure 4B, only the event counts were
ungrouped, but the exposures were taken by single year of age
from the Human Mortality Database. In Figure 4C, both the
number of events and the exposures were ungrouped. First,
the ungrouped exposures were inserted into the composition
matrix C, and the rates were estimated from this second penal-
ized composite link model. The model succeeds in producing
accurate results not only when the events are binned in inter-
vals but also when the exposure numbers come in age groups.
In both cases, the steep decline in death rates after age 0 years
counteracts the idea of smoothness that underlies the penalized
composite link model; however, this feature could be captured
by a single point component.
A third and perhaps more straightforward approach turned

out to be less successful: If the event counts and the exposures
are ungrouped separately and the rates are estimated as the ratio
of these 2 ungrouped sequences, then the resulting rates differ
more strongly from the original estimates, particularly for wide
intervals, such as the open-ended final age class. Inserting the
ungrouped exposures into the composition matrix of the sec-
ond step leads to a considerable improvement.

DISCUSSION

We have demonstrated how binned data can be efficiently
ungrouped by using the penalized composite link model. The
only assumption that is made about the original distribution is
smoothness, which is usually met in practice. As no specific
target model needs to be chosen, this approach is suitable for
all kinds of applications and, as was shown in the examples,
the method can recover features such as multimodality. It also
is transparent because it essentially emulates the grouping
process in a statistical model. The approach can easily deal
with wide, open-ended intervals, and it can incorporate extra
information about how the tail area may actually be occupied,
if such information is available. As the estimation is based on
a version of the iteratively reweighted least-squares algorithm,
results are obtained in a few iterations, and computation is
therefore fast. Selection of a smoothing parameter through the
minimization of AIC was straightforward and generated ap-
pealing results in all of the examples. This approach works not
only for histograms but also can be applied to rates if both the
event counts and the exposures are grouped.
Here we presented a frequentist approach to the problem of

ungrouping a histogram. A Bayesian version of the penalized
composite link model was suggested previously (22), but
open-ended last intervals and the treatment of rates were not
discussed. A fully Bayesian approach has the advantage that
all uncertainty is incorporated in the posterior distribution of
the estimated parameters. In a frequentist setting, the estimated
standard errors usually assume a fixed value of the smoothing
parameter (23). We studied the performance of 2 common
approaches to determine the variance of the estimates by
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Figure 4. Ungrouping of the age-specific exposure to risk values
and estimating age-specific death rates for diseases of the circulatory
system, United States, 2009. A) The original exposures taken from the
Human Mortality Database were grouped in 5-year bins plus a wide
class for ages ≥85 years and an additional bin with 0 counts between
ages 115 and 130 years. This histogram was ungrouped with the
penalized composite link model. Histogram, original data (black line
with overplotted points) and results from ungrouping (solid gray line).
The optimal value of the smoothing parameter was log10(λ) = 3.75.
B) Death rates obtained from grouped death counts and original expo-
sure to risk values. Death counts taken from the Centers for Disease
Control and Prevention Database were grouped in 5-year bins plus an
open-ended class for ages ≥85 years. The optimal value of the
smoothing parameter was log10(λ) = 5.75. C) Estimated death rates
when both the death counts and the exposure numbers were grouped
and then ungrouped by the penalized composite link model. The
model for the rates had a composition matrix that contained the un-
grouped exposures shown in A. The optimal value of the smoothing
parameter was log10(λ) = 5.75. In each panel, the original rates (black
line with overplotted points) are compared with smoothly estimated
rates (solid gray line).
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simulation, and we present the details in Appendix 1. The re-
sults demonstrate that the additional uncertainty, which is in-
troduced by the choice of the smoothing parameter but is not
reflected in the common approaches to variance estimation,
can be notable. Theoretical results on the asymptotic properties
of the penalized composite link model have not been derived
yet. However, the results of our simulation studies, which are
presented in Web Appendices 2–5, underpin the good asymp-
totic properties (such as consistency) of the penalized com-
posite link model approach. Analytical derivations of these
properties are considered to be future work.

The model can be further extended to simultaneously un-
group several distributions, such as age-at-death distributions
for adjacent years. It can also be used to ungroup 2-dimensional
histograms, and a Bayesian version of the penalized compos-
ite link model for this problem was presented (24).

The estimation of the ungrouped distribution could be im-
proved further if, in addition to the number of counts in each
bin, the mean and possibly also the standard deviation were
given for each interval. We are aware that such information
is rarely provided, but if it were available, the penalized com-
posite link model could be extended by 2 additional composi-
tion matrices to incorporate the 2 interval-specific moments.
This could allow even very wide bins to be ungrouped more
accurately and could offer a solution if data need to be grouped
coarsely to prevent the identification of single individuals or
households. The provision of extra information, such as the
group means, would not reveal unwarranted details but would
improve the estimates of the ungrouped distribution.
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APPENDIX 1

Estimation Procedure of the Penalized Composite Link Model for Ungrouping

Here the roughness of the coefficients β is measured by second-order differences, which can be done by multiplying with the
difference matrix D2 of dimension (J− 2) × J:

D2 ¼

1 �2 1 0 � � � 0

0 1 �2 1 � � � ..
.

..

. ..
. . .

. . .
. . .

. ..
.

0 � � � � � � 1 �2 1

0
BBBB@

1
CCCCA:

The roughness penalty is P ¼ ðD2βÞ2 ¼ βTDT
2D2β; that is, the squared length of the vector of second-order differences. The

penalty P is weighted by half the smoothing parameter, λ/2, and is subtracted from the Poisson likelihood. (Different penalty
orders can be readily implemented by changing the difference matrix D accordingly.)
For a fixed value of λ, estimates of the coefficients β can be obtained by a modified version of the iteratively reweighted

least-squares algorithm (14). The system of equations, in matrix notation, of the penalized composite link model becomes

ð�X0 eWeX þ λDT
2D2Þβ ¼ �X

0 eW ½ eW�1ðy� eμÞ þ �Xeβ�;
where �X has elements �xik ¼

P
jcijxikγj=eμi and can be interpreted as a “working X” in the iteratively reweighted least-squares

algorithm, and eW ¼ diag(eμÞ: The tilde indicates the current values in the algorithm. To start the algorithm, we chose an initial
value, eβ ¼ logðPI

i¼1 yi=IÞ, and repeatedly calculated new values for β from the matrix equation until the absolute difference
between 2 successive values of β was smaller than a threshold (e.g., 10−6).
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Appendix Figure 1. Gompertz distribution with grouping width 5 and sample size (A andC, n = 200; B andD, n = 1,000). The solid black line gives
the standard deviation of 500 penalized composite link model estimates obtained in this setting. The gray lines summarize the distribution of the 500
estimates of the standard error derived from the sandwich estimator (A and B) and from the Bayesian estimator (C and D), with median (solid gray
line), 25%–75% quantiles (dashed gray lines), and 1%–99% quantiles (dotted gray lines), respectively.
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To choose the value of λ, we minimized Akaike’s Information Criterion (AIC),

AIC ¼ DevðyjμÞ þ 2d ¼ 2
XI

i¼1

yi ln
yi
μi

� �
þ 2d;

where Dev(yjμ) is the deviance, and d is the effective dimension of the model. Following the method of Hastie and Tibshirani
(25), the effective dimension d is given by the trace of the so-called “hat matrix,”which is implicit in the linearized system of the
iteratively reweighted least squares and is d = trace �Xð�X0

W �X þ λDT
2D2Þ�1ð�X0

WÞÞ.
To obtain the variance-covariance matrix of β̂, 2 approaches are commonly used as described by Wood (23): The so-called

sandwich estimator can be used, which for our particular model is

varðβ̂Þ ¼ ð�X0
W �X þ λDT

2D2Þ�1ð�X0
W �XÞð�X0

W �X þ λDT
2D2Þ�1Þ: ðA1Þ

An alternative estimate follows from a Bayesian approach, and for our model this estimator is

varðβ̂Þ ¼ ð�X0
W �X þ λDT

2D2Þ�1: ðA2Þ

In both cases, the value of the smoothing parameter λ is treated as fixed; uncertainty that is introduced by choosing an optimal
value for λ is ignored. Standard errors are obtained by taking the square root of the diagonal elements of Equations A1 and A2,
respectively. As γ̂ ¼ eβ̂; standard errors for the estimated γ̂ are obtained by applying the delta method.

The performance of the 2 alternative variance estimators was evaluated by simulation in various scenarios. The penalized
composite link model estimates γ̂j were obtained for 500 replications in each scenario, and their empirical standard deviation
was determined. Then, for each γ̂j; the sandwich estimator (Equation A1) and the Bayesian estimate (Equation A2) were calcu-
lated for each of the 500 replications. As a general result, the standard deviation is larger than the values based on the equations.
Therefore, the 2 common approaches provide a not very precise lower bound to the standard error. Appendix Figure 1 illustrates
this result for 1 scenario.

APPENDIX 2

R Code to Estimate the Penalized Composite Link Model

# Demo of the penalized composite link model (PCLM) for grouped counts
pclm <- function(y, C, X, lambda = 1, deg = 2, show = F){
# Fit a PCLM (estimate b in ) E(y) = C %*% exp(X %*% b)
# y = the vector of observed counts of length i
# C = the composition matrix of dimension IxJ
# X = the identity matrix of dimension JxJ; or B-spline basis
# lambda = smoothing parameter
# deg = order of differences of the components of b
# show = indicates whether iteration details should be shown

# Fit the penalized composite link model

# Some preparations
nx <- dim(X)[2]
D <- diff(diag(nx), diff=deg)
la2 <- sqrt(lambda)
it <- 0
bstart <- log(sum(y) / nx);
b <- rep(bstart, nx);

# Perform the iterations
for (it in 1:50) {

b0 <- b
eta <- X %*% b
gam <- exp(eta)
mu <- C %*% gam
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w <- c(1 / mu, rep(la2, nx - deg))
Gam <- gam %*% rep(1, nx)
Q <- C %*% (Gam * X)
z <- c(y - mu + Q %*% b, rep(0, nx - deg))
Fit <- lsfit(rbind(Q, D), z, wt = w, intercept = F)
b <- Fit$coef
db <- max(abs(b - b0))
if (show) cat(it, " ", db, "\n")
if (db < 1e-6) break

}
cat(it, " ", db, "\n")

# Regression diagnostic
R <- t(Q) %*% diag(c(1 / mu)) %*% Q
H <- solve(R + lambda * t(D) %*% D) %*% R
fit <- list()
fit$trace <- sum(diag(H))
ok <- y > 0 & mu > 0
fit$dev <- 2 * sum(y[ok] * log(y[ok] / mu[ok]))
fit$gamma <- gam
fit$aic <- fit$dev + 2 * fit$trace
fit$mu <- mu
fit

}

# Simulate latent data
m <- 130
x <- 1:m
xmean <- 80
xsd <- 10
set.seed(2012)
f <- dnorm(x, xmean, xsd)
mu <- 1e4 * f
z <- rpois(m, lambda = mu)

# Compute the group counts
gr <- seq(1, 86, by = 5)
bnd <- 114
ilo <- c(gr, bnd)
ihi <- c(seq(5,85,5),115,130)
n <- length(ihi)
ihi[n] <- m
y <- g <- 0 * ihi
for (i in 1:n) {

y[i] <- sum(z[ilo[i]:ihi[i]])
}
y <- c(y[1:17],sum(y[18:19]),0)
for (i in 1:n) {

g[i] <- y[i] / (ihi[i] - ilo[i] + 1)
}

# Make C matrix and (trivial) basis B
C <- matrix(0, n, m)
C[1:17, 1:85] <- kronecker(diag(17), matrix(1, 1, 5))
C[18, 86:115] <- 1
C[19, 116:130] <- 1
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B <- diag(m)

# Solve PCLM
lambda <- 10^7
mod <- pclm(y, C, B,lambda = lambda, deg = 2)
cat("lambda, ED & AIC:", lambda, mod$trace, mod$aic, "\n")

# Plot data and fit
plot(x, mu, type = "l", xlim = c(50, m), ylim = range(mod$gamma), lwd = 2,

xlab = "Age", ylab = "Number of events")
lines(x, z, col = "darkgreen")
points(x, z, pch=20,cex=0.8, col="darkgreen")

lines(ihi, g, type = "S", col = "blue")
lines(x, mod$gamma, col = "orange", lwd = 2)
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