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The kidney is one of the most energy-demanding organs that require abundant and healthy 
mitochondria to maintain proper function. Increasing evidence suggests a strong 
association between mitochondrial dysfunction and chronic kidney diseases (CKDs). 
Lipids are not only important sources of energy but also essential components of 
mitochondrial membrane structures. Dysregulation of mitochondrial oxidative metabolism 
and increased reactive oxygen species (ROS) production lead to compromised 
mitochondrial lipid utilization, resulting in lipid accumulation and renal lipotoxicity. However, 
lipotoxicity can be either the cause or the consequence of mitochondrial dysfunction. 
Imbalanced lipid metabolism, in turn, can hamper mitochondrial dynamics, contributing 
to the alteration of mitochondrial lipids and reduction in mitochondrial function. In this 
review, we summarize the interplay between renal lipotoxicity and mitochondrial dysfunction, 
with a focus on glomerular diseases.
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INTRODUCTION

Measurement of resting metabolic rates shows that the kidney and heart have the highest 
resting energy expenditure among major organs and tissues in adults (Wang et  al., 2010). 
Mitochondria provide energy to support kidney functions such as removing waste and balancing 
fluid. The energy currency ATP is mostly generated by oxidative phosphorylation (OXPHOS) 
coupled to electron transport through the mitochondrial respiratory chain (MRC). Increasing 
evidence indicates that mitochondrial damage and dysfunction are major contributors to the 
pathogenesis of chronic kidney disease (CKD) (Che et  al., 2014). Lipids serve as a source 
and reservoir of energy supply. However, lipid surplus can hamper mitochondrial dynamics, 
contributing to increased reactive oxygen species (ROS) production and mitochondrial 
dysfunction. Conversely, impaired mitochondrial function can disturb the balance between 
lipid availability and lipid use, further increasing lipid accumulation (Schrauwen-Hinderling 
et  al., 2016). Excess renal lipids have been reported in CKD of different origin, suggesting 
the existence of renal lipotoxicity (Gai et  al., 2019). Although it has been suggested that 
both lipid dysmetabolism and mitochondrial dysfunction contribute to CKD, it remains to 
be  established whether renal lipotoxicity is the cause or the consequence of mitochondrial 
dysfunction in the pathogenesis of CKD.
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While tubular cells are mainly responsible for fluid and waste 
balance and account for most of the energy metabolism in the 
kidney, mitochondrial dysfunction and lipotoxicity were recently 
also described in diseases of glomerular origin. This is of 
particular importance as, different from tubular cells, key 
glomerular cells forming the kidney filtration barrier such as 
podocytes are terminally differentiated and, once injured, are 
unlikely to be  replaced, thus causing proteinuria and disease 
progression (Kriz et  al., 1998). Unlike tubular epithelial cells 
which preferentially use fatty acid (FA) β-oxidation as the main 
energy source (Kang et  al., 2015), podocytes, endothelial cells, 
and mesangial cells in glomeruli highly rely on glucose as the 
substrate for energy production, while FA is used as an alternative 
substrate (Abe et  al., 2010; Fink et  al., 2012; Czajka and Malik, 
2016). In the diabetic kidney, glucose oxidation in glomerular 
cells is disrupted and could account for the switch to FA 
oxidation (Forbes and Thorburn, 2018). In support, Imasawa 
et al. reported an oxidative shift during podocyte differentiation, 
where the expression of most glycolytic enzymes is decreased 
while the expression of proteins that are involved in FA β-oxidation 
is up-regulated (Imasawa et  al., 2017). Peroxisome proliferator-
activated receptor (PPAR)-γ coactivator (PGC)-1α expression 
can also induce a shift from their baseline glucose preference 
toward FA usage in podocytes (Li et  al., 2017). Glomerular 
diseases, either primary or secondary to systemic diseases, 
represent an important cause of CKD (D’Agati et  al., 2011). 
While we previously discussed how lipid accumulation contributes 
to mitochondrial dysfunction (Ducasa et al., 2019a), the current 
review focusses on and highlights the “two-way” interaction 
between lipids and mitochondria. More precisely, we summarize 
the findings observed in the setting of glomerular diseases with 
the goal to link lipotoxicity and mitochondrial dysfunction to 
irreversible podocyte injury and glomerular diseases.

MITOCHONDRIAL FUNCTION AND 
BIOGENESIS

Mitochondria fulfill several pivotal roles in cellular metabolism. 
In aerobic organisms, mitochondria are mostly responsible for 
the conversion of nutrient-derived energy in the form of ATP 
molecules through the mitochondrion-housed pathways of the 
Krebs cycle, FA β-oxidation, and OXPHOS (Lenaz and Genova, 
2010). The complete oxidation of sugars and fats to carbon 
dioxide is achieved in the Krebs cycle and is paired with the 
concomitant conservation of free energy in the form of  
the reducing equivalents, nicotinamide-adenine dinucleotide 
(NADH), and flavin-adenine dinucleotide (FADH2). The metabolic 
intermediate oxidized in the Krebs cycle, acetyl-coenzyme A 
(acetyl-CoA), derives from pyruvate generated by glycolysis in 
the cytosol and from the breakdown of FA. FA β-oxidation 
occurs primarily in mitochondria through a series of four 
enzymatic reactions that constitute the predominant energy-
producing pathway in the kidney (Bhargava and Schnellmann, 
2017). In mitochondria, both the Krebs cycle and FA β-oxidation 
generate NADH and FADH2, which in turn transfer electrons 
to the MRC. Here, energy is further converted into an 

electrochemical gradient across the mitochondrial inner membrane. 
This conversion is achieved by the coupling of electron transfer 
through the MRC components to the final electron acceptor, 
molecular oxygen, with proton translocation from the 
mitochondrial matrix to the intermembrane space. Lastly, the 
protein gradient is used as the source of energy to drive ATP 
synthesis. The MRC is formed by four multimeric complexes 
(CI–CIV) embedded in the mitochondrial inner membrane and 
two mobile electron carriers, coenzyme Q (CoQ) and cytochrome c. 
Together, the MRC and ATP synthase (or CV) constitute the 
mitochondrial OXPHOS system (Lenaz and Genova, 2010).

ROS are byproducts of mitochondrial respiration, generated 
by electron “leakage” to oxygen, mainly at the level of CI and 
CIII of the MRC, to form superoxide anion (Stowe and Camara, 
2009). In vivo, superoxide radicals have a short half-life and 
are rapidly converted into hydrogen peroxide by the action 
of superoxide dismutases, SOD1 and SOD2, located in the 
mitochondrial intermembrane space and matrix, respectively. 
While at low levels, ROS fulfill physiological functions as 
signaling molecules, mitochondrial dysfunction is commonly 
associated with a cellular energy deficit and increased ROS 
production, leading to the oxidative damage of cellular structures 
(Vafai and Mootha, 2012). Free FA, when in excess, can act 
as mitochondrial respiration uncouplers and MRC CI inhibitors 
and can also cause oxidative stress. To avoid lipotoxicity, FA 
levels in mitochondria are tightly controlled. FAs are stored 
in cytosolic lipid droplets (LDs), which exhibit close physical 
and metabolic interactions with mitochondria (Aon et al., 2014).

Furthermore, mitochondrial dysfunction is also frequently 
characterized by structural and morphological alterations. 
Mitochondria form a complex and highly dynamic network 
inside cells, which is continuously shaped by the processes of 
mitochondrial fusion and fission (Lackner, 2014). Mitochondrial 
hyperbranching, fragmentation, and loss of the mitochondrial 
inner membrane invaginations, known as cristae, have been 
observed in pathological conditions associated with mitochondrial 
respiratory defects and stress (Vincent et  al., 2016). In addition 
to their role in cellular energy production, mitochondria are a 
hub for anabolic reactions, since the Krebs cycle provides 
intermediates for a wide range of biosynthetic pathways. These 
include precursors for amino acids, nucleobases, the antioxidant 
molecule glutathione, and metal prosthetic group biosynthesis. 
Notably, the Krebs cycle intermediate citrate is exported into 
the cytosol, where it is used as a substrate for FA and cholesterol 
synthesis (Owen et  al., 2002). Among lipids, the synthesis of 
cardiolipin (CL) takes place in mitochondria. CL is the signature 
lipid of the mitochondrial inner membrane, which has an essential 
structural role in cristae formation and is required for optimal 
MRC assembly and function (Claypool and Koehler, 2012).

Mitochondria are organelles of endosymbiotic origin and still 
retain their genome, the mitochondrial DNA (mtDNA), and 
gene expression machinery, the mitochondrial ribosomes. In 
humans, the mtDNA encodes for a complete set of tRNAs,  
the ribosomal RNAs, and a handful of proteins, all catalytic 
subunits of the OXPHOS system. It has been estimated that 
the mitochondrial proteome could comprise about 1,500 proteins 
(Vafai and Mootha, 2012). With only 13 polypeptides encoded 
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by the mtDNA, most of these proteins, including the remaining 
subunits of the OXPHOS system, are encoded by nuclear genes, 
synthesized in the cytosol, and imported into mitochondria. 
Mutations in both nuclear and mitochondrial genes are causes 
of major energetic deficits associated with severe hereditary 
diseases known as mitochondrial disorders (Turnbull and Rustin, 
2016). While defects in nuclear genes follow Mendelian inheritance, 
mutations in the mtDNA are maternally transmitted. Since each 
cell contains hundreds to thousands of mtDNA molecules, 
wildtype and mutant genomes can co-exist, a condition known 
as heteroplasmy. Clinical manifestation appears only when the 
fraction of mutated molecules reaches a certain threshold, which 
can be  tissue-specific (Turnbull and Rustin, 2016). Primary 
mitochondrial disorders are multisystemic diseases, although 
high energy demanding organs, such as heart and brain, are 
frequently the most affected. Kidneys also require large amounts 
of energy, mainly for tubular reabsorption (Hansell et al., 2013). 
In several instances, renal manifestations have been reported 
in patients affected by mitochondrial disorders (Finsterer and 
Scorza, 2017). In addition to primary mitochondrial diseases, 
mitochondrial dysfunction has been shown to be  involved in 
the etiology and progression of numerous human pathologies, 
including kidney diseases and, in particular glomerular diseases, 
which are the focus of this review.

MAJOR GLOMERULAR DISEASES DUE 
TO MITOCHONDRIAL CYTOPATHIES

Genetic defects in mtDNA or nuclear DNA (nDNA) that encode 
mitochondrial proteins can result in mitochondrial cytopathies. 
Though most mitochondrial disorders with a renal phenotype 
are characterized by tubular dysfunction, mtDNA 3243A  >  G 
mutation and CoQ10 biosynthesis defects (due to nDNA 
mutation) are associated with two mitochondrial cytopathies 
primarily causing glomerular diseases, most commonly focal 
segmental glomerulosclerosis (FSGS).

Mitochondrial DNA Mutations Associated 
With Glomerular Diseases
Thirteen proteins are encoded by the mitochondrial genome, 
all of which are subunits of the MRC (Anderson et  al., 1981; 
Di Donato, 2009). Mutations in mtDNA cause defects in the 
mitochondrial OXPHOS, resulting in energy deficiency and 
increased ROS. The most common mtDNA point mutation 
3243A > G in the tRNALEU gene is associated with mitochondrial 
encephalomyopathy, lactic acidosis, and stroke-like episodes 
(MELAS) syndrome. Representing one of the most frequent 
mitochondrial disorders, MELAS syndrome could be considered 
as an underlying cause of primary FSGS, as several studies 
reported glomerular manifestation, often presents as FSGS 
(Kurogouchi et  al., 1998; Cheong et  al., 1999; Hotta et  al., 
2001; Gucer et  al., 2005; Rudnicki et  al., 2016; Narumi et  al., 
2018). In patients with MELAS syndrome and renal symptoms, 
the renal disease initially manifests with proteinuria and 
typical changes of the glomerular basement membrane (GBM) 
(Kurogouchi et al., 1998; Cheong et al., 1999; Narumi et al., 2018).  

Biopsy samples from these patients show abnormal mitochondria 
in podocytes, as well as foot process effacement (Gucer et  al., 
2005; Narumi et  al., 2018). Patients with other point mutations 
(m.A4269G, m.A5728G, and m.A5843G) that affect mitochondrial 
tRNAs present with various severe clinical phenotypes, from 
fatal cardiomyopathy to multi-organ failure. These mutations are 
not associated with MELAS but were also reported to be associated 
with an FSGS phenotype (Taniike et  al., 1992; Scaglia et  al., 
2003; Meulemans et  al., 2006). Interestingly, deafness was also 
described in individuals with MELAS syndrome, which resembles 
the symptom of another rare genetic disease characterized by 
mutations of another important constituent of the GBM, i.e., 
type IV collagen (Alport syndrome). Besides, FSGS has been 
reported in a case of Kearns-Sayre syndrome due to mtDNA 
deletion (Becher et  al., 1999). It is worth noting that mtDNA 
mutations associated with glomerular diseases affect overall 
mitochondrial gene expression and, in consequence, cause 
combined MRC enzymatic deficiencies, commonly associated 
with very severe outcomes.

Mutations in nDNA That Encodes 
Mitochondrial Proteins Associated With 
Glomerular Diseases
Besides the 13 proteins encoded by the mitochondrial genome, 
there are over 1,158 other nuclear-encoded mitochondrial proteins 
(Calvo et  al., 2016). The enzymes of the CoQ10 biosynthetic 
pathway are encoded by nuclear CoQ genes. Located mainly in 
the mitochondrial inner membrane, CoQ10 is a carrier that 
transfers electrons from complex I  and II to complex III of the 
MRC (Ernster and Dallner, 1995). At least 15 genes are required 
in CoQ10 biosynthesis (Desbats et  al., 2015). Mutations in these 
genes may cause CoQ10 deficiency, some of which were reported 
to be associated with glomerular involvement. In humans, prenyl 
(decaprenyl) diphosphate synthase subunit 1 (PDSS1) and PDSS2 
are responsible for the synthesis of the prenyl side chain of 
CoQ10 (Saiki et  al., 2005). Deficiency in CoQ10 content was 
reported in a patient carrying compound heterozygous mutations 
in PDSS2. The patient was diagnosed with Leigh’s syndrome 
with nephropathy (Lopez et  al., 2006). Dietary supplementation 
with CoQ10 was shown to rescue proteinuria and interstitial 
nephritis in Pdss2kd/kd mice (Saiki et  al., 2008) and diabetic 
nephropathy in db/db mice (Sourris et  al., 2012). Gasser et  al. 
analyzed patients with FSGS and collapsing glomerulopathy for 
PDSS2 polymorphisms. Surprisingly, they found a reduction of 
CoQ10 content, irrespectively of the PDSS2 haplotype (Gasser 
et  al., 2013). Vasta et  al. also reported that one patient carrying 
a PDSS1 mutation presented with nephrotic syndrome (Vasta 
et  al., 2012). Pathogenic CoQ2 variants are another cause of 
primary CoQ10 deficiency. Patients with CoQ2 mutations have 
been reported to exhibit nephropathy that can be  treated  
by CoQ10 supplementation (Starr et  al., 2018). Moreover, 
loss-of-function mutations in CoQ6 have been described as a 
cause of glomerular damage, and patients manifested with FSGS 
in renal biopsy (Heeringa et  al., 2011). It is important to note  
that genetic testing in patients with steroid-resistant nephrotic  
syndrome identified mutations in several genes involved in 
mitochondrial function and CoQ10 biosynthesis, including AarF 
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domain-containing kinase 4 (ADCK4), CoQ6, CoQ2, and PDSS2 
(Lovric et al., 2016). Patients who carry mutations in the ADCK4 
gene may present with CoQ10 deficiency and mitochondrial 
nephropathy manifesting as FSGS (Ashraf et al., 2013; Yang et al., 
2018; Widmeier et  al., 2020). ADCK4 interacts with members 
of the CoQ10 biosynthesis pathway and is involved in CoQ 
biosynthesis, although its function remains to be  characterized.

MITOCHONDRIAL DYSFUNCTION 
RESULTS IN RENAL LIPOTOXICITY

Mitochondrial dysfunction can lead to lipid metabolism disorders 
in several cell types. Vankoningsloo et  al. studied preadipocytes 
incubated with inhibitors of mitochondrial respiration (antimycin A) 
and found that mitochondrial dysfunction induces triglyceride 
accumulation. This process is mediated by reduced PPARγ activity 
leading to decreased expression of muscle isoform of carnitine 
palmitoyltransferase I (CPT1) and FA β-oxidation. Direct conversion 
of glucose into triglycerides and activation of carbohydrate-responsive 
element-binding protein (ChREBP), a lipogenic transcription factor, 
were also observed (Vankoningsloo et al., 2005). Boren and Brindle 
observed that the induction of apoptosis leads to mitochondrial 
ROS generation in murine lymphoma cells and mouse embryo 
fibroblasts, which inhibits mitochondrial FA β-oxidation but increases 
acyl-CoA synthetase activity for FA synthesis. Thereby, the switch 
from FA β-oxidation into lipid synthesis results in LD accumulation 
in the cytoplasm (Boren and Brindle, 2012).

Dysregulated Mitochondrial Lipid 
Utilization in Kidney Diseases
Mitochondrial FA β-oxidation is the major energy pathway of 
the kidney. Mitochondrial dysfunction leads to compromised 
lipid utilization, eventually resulting in lipid accumulation, which 
is toxic to cells in the kidney. Herman-Edelstein et al. measured 
genes and enzymes involved in the FA β-oxidation pathway 
in kidneys of patients with diabetic nephropathy compared to 
healthy kidneys. The genetic analysis revealed the downregulation 
of some key transcriptional regulators of FA β-oxidation, such 
as PPARα, PPARγ, CPT1, and Aconitase 2 (ACO2) (Herman-
Edelstein et al., 2014). Interestingly, upregulation of low-density 
lipoprotein receptor (LDLR) and cluster of differentiation  
36 (CD36), downregulation of liver X receptor α (LXRα), 
ATP-binding cassette transporter A1 (ABCA1), ATP-binding 
cassette transporter G1 (ABCG1), and apolipoprotein E (APOE) 
were also detected, indicating alterations in cholesterol metabolism 
(Figure 1; Herman-Edelstein et al., 2014). In addition to diabetic 
nephropathy phenotypes including podocyte process effacement, 
thickening of the GBM, and mesangial expansion, electron 
microscopy analysis also showed extensive accumulation of LDs 
in podocytes, tubular epithelial cells, mesangial cells, and 
fenestrated endothelial cells (Herman-Edelstein et  al., 2014). 
Consistently, CD36, PPARα, PPARγ, and LDLR were found to 
be  genes with the highest connectivity to diabetic nephropathy 
progression in a study comparing human-mouse cross-species 
glomerular transcriptional networks (Hodgin et  al., 2013).

A renal-protective effect of PPARs was also reported. The 
study by Calkin et al. suggests that the administration of PPARα, 
PPARγ, and PPARα/γ agonists in experimental mouse models 
of diabetes has renoprotective effects (Calkin et  al., 2006). 
Doxorubicin is an antitumor drug that induces renal injury, 
leading to proteinuria. Doxorubicin-induced PPARα knockout 
mice showed more severe podocyte foot process effacement 
compared with Doxorubicin-induced wildtype mice but the 
treatment with PPARα agonist fenofibrate reduced proteinuria 
and ameliorated podocyte foot process effacement (Zhou et al., 
2011). Fenofibrate has also been shown to prevent high-fat 
diet (HFD)-induced glomerular injury in an experimental  
model of diabetic nephropathy (Tanaka et al., 2011). Fenofibrate 
treatment reduces glomerular lipid (mainly triglycerides) 
accumulation, attenuates oxidative stress in kidneys of HFD-fed 
mice, and enhances the expression of lipolytic enzymes, including 
CPT1. Fenofibrate also attenuates tubulointerstitial injury by 
enhancing renal lipolysis (Tanaka et al., 2011). In the Fenofibrate 
Intervention and Event Lowering in Diabetes (FIELD) trial, a 
trend to renoprotection was observed in fenofibrate treated 
patients with diabetic nephropathy (Keech et al., 2005). PPARγ 
is also involved in renal lipid metabolism. In fact, PPARγ 
expression is reduced in glomeruli of diabetic mice, while 
activation of PPARγ inhibits the development of diabetic 
glomerular lesion (Zheng et al., 2002). Moreover, another study 
demonstrated that both PPARα and PPARγ agonists increase 
LXRα and ABCA1 gene expression and enhance apolipoprotein 
A1 (APOA1)-mediated cholesterol efflux from human mesangial 
cells (Ruan et  al., 2003). However, PPARγ2 KO mice generated 
in an ob/ob background exhibit lipid accumulation at both 
the glomerular and tubular levels, accompanied by glomerular 
damage, in addition to the original metabolic syndrome phenotype 
(Martinez-Garcia et  al., 2012). Located in the mitochondrial 
inner membrane, uncoupling proteins (UCPs) are mitochondrial 
transporters that control the level of coupled respiration (Rousset 
et al., 2004). Ke et al. reported that UCP2 expression is increased 
in human biopsy samples and mice kidney tissues with 
tubulointerstitial fibrosis but UCP2 deficient mice display reduced 
lipid accumulation and attenuated hypoxia in kidney tissue. 
Compared with wildtype mice, the expression of PPARα and 
CPT1α, which are the major regulators of lipid metabolism, 
is restored in UCP2 deficient mice (Ke et  al., 2020). Both 
CPT1 and ACO2 are the rate-limiting enzymes of FA β-oxidation. 
Idrovo et  al. demonstrated that stimulating CPT1 activity with 
a synthetic compound (C75) not only restores ATP generation 
but also improves renal function using a rat model of ischemia/
reperfusion injury (Idrovo et  al., 2012). In addition, mRNA 
levels of ACO1 and ACO2 are decreased in the tubulointerstitial 
and the glomerular compartment of non-diabetic CKD patients 
when compared to healthy controls (Hallan et  al., 2017).

Oxidative Stress Causes Renal Lipid 
Accumulation
Free FAs are sources of energy to synthesize ATP by mitochondrial 
FA β-oxidation. Palmitic acid (PA) is the predominant circulating 
saturated FA, which plays an important role in podocyte injury 
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through lipotoxicity initiated by mitochondrial superoxide 
overproduction (Lee et  al., 2017). Podocytes are vulnerable to 
PA-induced oxidative damage due to impaired peroxidase activity. 
Podocytes incubated with PA show increased FA uptake, 
mitochondrial superoxide, and hydrogen peroxide (H2O2) 
generation, as well as elevated AMP-activated protein kinase 
(AMPK) α phosphorylation (Figure  1; Lee et  al., 2017). 
Furthermore, Liu et al. demonstrated that PA induces intracellular 
lipid accumulation and LD formation. It also induces podocyte 
apoptosis through activation of the mitochondrial pathway and 
triggers the release of cytochrome c from the mitochondria 
to the cytosol (Liu et  al., 2018). In mouse podocytes, PA 
induces apoptosis by increasing cytosolic Ca2+ concentration, 
resulting from Ca2+ accumulation in the mitochondria via the 
mitochondrial Ca2+ uniporter (Yuan et al., 2017). The depletion 
of endoplasmic reticulum (ER) Ca2+ is also due to oxidative 
stress caused by PA (Xu et al., 2015). Under diabetic conditions, 
podocytes are susceptible to PA-induced oxidative damage due 
to an inadequate activity of peroxidase, the enzyme that catalyzes 

the conversion of the intracellular H2O2 to water in response 
to excess ROS generation (Lee and Lee, 2018). On the contrary, 
the nontoxic mono-unsaturated FA oleic acid (OA) inhibits 
the PA-induced ROS formation in podocytes (Lee et  al., 2017; 
Lee and Lee, 2018). OA attenuates ROS generation and protects 
the mitochondria from PA-induced oxidative stress by the 
restoration of AMPK activity (Palomer et  al., 2018).

Oxidative stress in the form of lipid peroxidation can be caused 
by the generation of lipid peroxyl radicals in podocytes. Excessive 
accumulation of lipid peroxyl radicals contributes to podocyte 
injury in CKD (Kruger et  al., 2018). It was demonstrated that 
ROS generation contributes to glomerular and tubular injury 
through lipid peroxidation of cell and organelle membranes. 
ROS-induced lipid peroxidation disrupts the structural integrity 
of the lipid bilayer and impairs the capacity for energy production 
(Baud and Ardaillou, 1993). SS-31 is a tetrapeptide that protects 
mitochondria cristae structure and matrix density in all kidney 
cells. SS-31 targets CL, the phospholipid almost exclusively present 
in the inner mitochondrial membrane (Szeto and Birk, 2014). 

FIGURE 1 | Schematic representation indicating how mitochondrial dysfunction induces renal lipotoxicity. High-fat diet or palmitic acid (PA) exposure increases 
mitochondrial reactive oxygen species (ROS) production. Consequently, elevated oxidative stress reduces mitochondrial fatty acid (FA) oxidation, resulting in lipid 
accumulation in the cytoplasm. Lipid accumulation is also caused by deceased cholesterol efflux mediated by ATP-binding cassette transporter A1 (ABCA1) and G1 
(ABCG1) and elevated cholesterol influx via low-density lipoprotein receptor (LDLR). AMP-activated protein kinase (AMPK) suppression due to a lipid surplus inhibits 
mitochondrial FA oxidation and lipid utilization, accompanied by downregulation of transcription factors, liver X receptor (LXR) α, peroxisome proliferator-activated 
receptor (PPAR) α, and PPARγ. ROS generation contributes to cardiolipin (CL) peroxidation and loss of mitochondria cristae membranes, thus impairing the capacity 
for energy production.
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CL peroxidation alters mitochondrial cristae formation (Szeto, 
2014), thus disrupting the functional and structural integrity 
of respiratory supercomplexes (Pfeiffer et  al., 2003). Moreover, 
during apoptosis, CL binds to cytochrome c to form peroxidase 
complexes capable of catalyzing CL peroxidation and promoting 
cytochrome c release from mitochondria (Kagan et  al., 2005). 
SS-31 selectively binds to CL, preventing CL from converting 
cytochrome c into a peroxidase while maintaining its function 
as an electron carrier (Szeto, 2014). The study of Szeto et  al. 
described changes in mitochondrial structure in glomerular 
endothelial cells, podocytes, and proximal tubular epithelial cells 
after HFD induction. HFD increases mitochondrial ROS 
generation, causing CL peroxidation and loss of mitochondria 
cristae membranes. Increased ROS limits mitochondrial FA 
β-oxidation, which in turn causes cellular lipid accumulation 
and inhibits AMPK activity (Figure  1; Szeto et  al., 2016). By 
preserving normal mitochondrial cristae structure, SS-31 treatment 
was able to restore AMPK activity and prevent intracellular 
lipid accumulation, ER stress, and glomerular inflammation 
(Szeto et  al., 2016). AMPK is a cellular energy sensor that 
regulates glucose, lipid, and protein metabolism. During energy 
shortage, AMPK is activated and promotes ATP production 
(Hardie et al., 2012). On the contrary, AMPK is down regulated 
under conditions of energetic oversupply (Picard et  al., 2012). 
Mice fed on a HFD show increased glomerular area and matrix 
accumulation. A significant rise of cholesteryl esters and 
phospholipids in the kidneys was also observed, in association 
with reduced AMPK activity. Reduced AMPK activity was also 
described in kidneys from both diabetic mice and in patients 
with diabetes (Dugan et  al., 2013). Conversely, the activation 
of AMPK reverses the accumulation of cholesteryl esters and 
phospholipids in kidneys of mice fed a HFD (Decleves et  al., 
2011, 2014). Improving mitochondrial biogenesis and function 
by AMPK activation was found to be  a therapeutic approach 
in a rat model of diabetic nephropathy (Zhou et  al., 2019). 
The administration of AMPK activators increased the expression 
of PGC-1α, which induces a ROS scavenging mechanism, 
including the expression of SOD2  in the presence of ROS, 
protecting cells against ROS generation and damage (Spiegelman, 
2007; Zhou et al., 2019). Similarly, AMPK activation in diabetic 
mice restores mitochondrial content and function while improving 
DKD progression (Figure  1; Dugan et  al., 2013).

INHERITED LIPID DISORDERS ARE 
ASSOCIATED WITH RENAL INJURY

Defects in genes relevant to lipid metabolism result in inherited 
diseases associated with renal lipotoxicity. Tangier disease is a 
rare disorder characterized by reduced levels of high-density 
lipoprotein (HDL) in the blood. Patients with Tangier disease 
have mutations in the ABCA1 gene and present with mild 
proteinuria and foamy podocytes in kidney biopsy (Ferrans and 
Fredrickson, 1975; Schaefer et al., 2010). Similarly, foamy podocytes, 
vacuolated tubular epithelial cells, and interstitial foam cells were 
described in a case report of a patient with Niemann-Pick disease, 
an inherited condition with an accumulation of sphingomyelin 

in various organs, including kidneys (Grafft et  al., 2009). Caused 
by the accumulation of cholesterol in blood and tissue, familial 
lecithin-cholesterol acyltransferase (LCAT) deficiency is another 
genetic disorder, where some patients present with kidney injury. 
Renal biopsies of patients with LCAT deficiency identified LDs 
in mesangial and endothelial cells (Ossoli et al., 2015). Borysiewicz 
et al. described that patients with LCAT deficiency show disturbance 
of lipid metabolism and accumulation of lipids in the kidneys, 
eventually leading to end-stage kidney disease (Borysiewicz et  al., 
1982). In addition, transgenic mice with LCAT deficiency develop 
proteinuria and glomerulosclerosis characterized by the accumulation 
of free cholesterol and polar lipids in glomeruli (Lambert et  al., 
2001). Disturbed lipid metabolism was also reported in rare cases 
of lipoprotein glomerulopathy. Patients with an APOE gene mutation 
are characterized by proteinuria and hyperlipidemia. It has been 
suggested that the mutation of APOE increases the affinity of 
lipoproteins for glomerular capillary walls and promotes the 
formation of lipoprotein aggregates (Sam et al., 2006; Tsimihodimos 
and Elisaf, 2011). The evidence that genetic impairment of genes 
regulating cholesterol efflux leads to glomerular disease strongly 
suggests a causative link between altered renal lipid metabolism 
and kidney disease. This is very different from genetic disorders 
of hyperlipidemia, such as familial hypercholesterolemia (FH), 
where the high level of circulating lipids does not necessarily 
translate into an increased accumulation of renal lipids and does 
not always cause a renal phenotype. While this remains controversial, 
a recent association between FH and CKD was reported 
(Emanuelsson et  al., 2018), and a patient with homozygous FH 
was found to develop FSGS (Elmaci et  al., 2007). Similarly, the 
accumulation of lipids was found in the renal parenchyma of 
patients affected by FH (Buja et  al., 1979). Although some of 
these studies suggest a link between systemic hyperlipidemia and 
CKD, most of the studies have demonstrated that statins may 
partially reduce proteinuria but this does not result in the prevention 
of CKD progression (Agarwal, 2006).

GLOMERULAR LIPID ACCUMULATION 
RESULTS IN MITOCHONDRIAL 
DYSFUNCTION

Podocytes rely on a constant supply of lipids and proteins to 
form foot processes (Simons et  al., 1999; Fornoni et  al., 2014). 
However, lipid overload causes lipotoxicity. Lipid accumulation 
and increased inflammation accelerate lipotoxicity induced 
glomerular disease (Martinez-Garcia et  al., 2015). Among 
glomerular cells, podocytes are terminally differentiated cells 
that are most susceptible to damage caused by lipid overload. 
The podocyte slit diaphragm is assembled as a lipid-raft  
like structure, enriched with lipids including sphingolipids  
and cholesterol. Plasma membrane and intracellular lipids can 
affect podocyte function (Fornoni et  al., 2014). Localized to 
lipid raft domain, sphingomyelinase-like phosphodiesterase 3b 
(SMPDL3b) is a sphingolipid-related enzyme that modifies  
the plasma lipid composition and modulates intracellular 
inflammatory pathways in podocytes (Heinz et  al., 2015;  
Yoo et al., 2015). Moreover, cholesterol is required for the proper 
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function of the slit diaphragm (Simons et  al., 2001), while 
excessive accumulation of cholesterol causes podocyte injury and 
proteinuria (Merscher-Gomez et  al., 2013; Pedigo et  al., 2016).

Hyperlipidemia and Hyperlipidemia-Induced 
Lipotoxicity
Foam cells are macrophages that ingest low-density lipoprotein 
(LDL) during hyperlipidemia. Their formation represents the 
hallmark of atherosclerosis (Yu et  al., 2013). Interestingly, foam 
cells also appear in various glomerular diseases, including diabetic 
nephropathy, FSGS, nephrotic syndrome, and Alport syndrome 
(Nolasco et  al., 1985; Stokes et  al., 2006; Wu et  al., 2009; Eom 
et  al., 2015), indicating lipid-mediated toxicity. However, it is 
not established whether foam cells generated during the 
pathogenesis of kidney diseases are renal resident cells or 
infiltrating macrophages from the circulation (Eom et al., 2015). 
It is certain that glomerular cells can uptake LDL. In fact, the 

activity of lipoprotein receptors in cultured epithelial cells of 
the human glomerulus was characterized in the early 1990s. 
Grone et  al. demonstrated that cultured glomerular epithelial 
cells show lipoprotein receptor activity, which mediates the 
uptake of apolipoprotein B (APOB)‐ and APOE-rich lipoproteins, 
contributing to lipid accumulation and oxidative stress (Grone 
et al., 1990). In addition, the accumulation of APOB and APOE 
in immune deposits could lead to GBM damage (Figure  2). 
Heymann nephritis is a rat model of membranous nephropathy 
characterized by the formation of subepithelial immune deposits 
in the GBM (Heymann et  al., 1959). In Heymann nephritis, 
Kerjaschki et al. demonstrated that antibodies targeting megalin 
(an LDL-related protein) inhibit megalin-mediated binding and 
clearance of APOE and APOB, leading to the accumulation of 
apolipoproteins in immune deposits. The lipid environment is 
associated with lipid peroxidation, injury of the GBM, and 
proteinuria (Kerjaschki et  al., 1997). Oxidized LDL has also 

FIGURE 2 | Schematic representation indicating how lipid accumulation/peroxidation induces mitochondrial oxidative stress and dysfunction. Podocyte lipid 
accumulation and increased peroxidation induces ROS production and mitochondrial dysfunction. (1) In the presence of hyperlipidemia, increased uptake of 
apolipoprotein B (APOB)‐ and apolipoprotein E (APOE)-rich lipoproteins occurs in podocytes through the LDLR, resulting in a lipid-rich environment. (2) 
Hyperglycemia disrupts the feedback regulation of sterol regulatory element-binding proteins (SREBPs), causing further lipid accumulation. (3) Cellular lipids, mainly 
in the form of triglycerides, stored in lipid droplets (LDs) are hydrolyzed and delivered as FAs to mitochondria by autophagic clearance. The inhibition of autophagic 
clearance of lipids is associated with increased lipid endocytosis. (4) Downregulation of ABCA1 impairs reverse cholesterol transport, resulting in the accumulation of 
cholesterol and CL and peroxidation of CL. Together, the accumulation of lipids in podocytes induces ROS production and mitochondrial dysfunction.
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been found to directly damage podocytes via the chemokine 
ligand 16 (CXCL16), as well as induce ROS production in 
podocytes (Bussolati et al., 2005; Gutwein et al., 2009a). CXCL16 
is a major scavenger receptor for oxidized LDL in human 
podocytes. Both glomerular levels of CXCL16 and oxidized 
LDL are increased in patients with diabetic nephropathy and 
membranous nephropathy (Gutwein et  al., 2009a,b).

Experimental evidence also supports a role of lipid-lowering 
agents in the protection of kidney diseases. For example, 
treatment of patients with lipid-lowering agents such as the 
hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase 
inhibitor atorvastatin was able to lower serum lipids and 
glomerular lesions but to a lesser extent than the blockage of 
the renal angiotensin system with quinapril. In fact, the renal 
protective effect of atorvastatin is associated with lipid-related 
and non-lipid-related effects (Blanco et  al., 2005). Once more, 
however, the renal protective effects of statin treatment  
remain to be confirmed in patients affected by CKD. Interestingly, 
hypercholesterolemia associated with nephrotic syndrome  
can be  ameliorated by inhibiting proprotein convertase 
subtilisin/kexin type 9 (PCSK9), a posttranscriptional regulator 
of the LDL receptor. PCSK9 targets LDLR for degradation 
and thereby reduces the clearance of LDL from the circulation 
(Shrestha et  al., 2019). Inhibition of PCSK9 decreases the 
proportion of APOB-associated cholesterol (VLDL and LDL) 
and increases the proportion of HDL-associated cholesterol, 
producing a more protective lipoprotein profile (Haas et  al., 
2016). Currently, the monoclonal antibodies evolocumab and 
alirocumab are approved PCSK9 inhibitors for therapeutic use 
and are effective and safe in patients with mild to moderate 
CKD (Schmit et  al., 2019). However, it would be  important 
to study if PCSK9 inhibitors can also alleviate proteinuria and 
CKD progression in patients with advanced CKD, such as 
nephrotic syndrome. Studies in cultured vascular smooth muscle 
and endothelial cells suggest that inhibition of PCSK9 attenuates 
ROS production, while PCSK9 overexpression increases ROS 
generation in a concentration-dependent manner (Ding et  al., 
2015). The crosstalk between PCSK9 and mtDNA damage in 
vascular smooth muscle cells is thought to be partially mediated 
by mitochondria-derived ROS (Ding et  al., 2016). Lastly, more 
studies are needed to assess the contribution of LDL apheresis 
to the treatment of proteinuric kidney disease, in order to 
gain a better understanding of whether the antiproteinuric 
effects are linked to LDL apheresis or related proteins.

Intrarenal Lipid Accumulation in 
Glomerular Diseases
Lipid distribution among plasma, tissues, and cellular organelles 
can be  altered by inflammatory stress (Ruan et  al., 2009). In 
addition to the uptake of plasma lipids into cells via lipoprotein 
receptors, other factors that mediate lipid accumulation in 
glomerular cells, thus contributing to disease development and 
progression, have been described in several kidney diseases. Among 
them, we  have demonstrated that glomerular TNF is a major 
driver of lipid dysmetabolism in FSGS (Pedigo et  al., 2016). Our 
group reported the accumulation of cholesterol in kidney cortices 
in mouse models of diabetes (Ducasa et  al., 2019b), Alport 

syndrome, and FSGS (Pedigo et  al., 2016; Mitrofanova et  al., 
2018). Impaired ABCA1 mediated reverse cholesterol transport 
in a mouse model of FSGS was rescued by genetic ABCA1 
overexpression. Similarly, treatment with hydroxypropyl-β-
cyclodextrin (HPβCD) was found to reduce cholesterol accumulation 
in kidney cortices and was found to protect from renal failure 
in mouse models of FSGS, Alport syndrome, and DKD (Pedigo 
et  al., 2016; Mitrofanova et  al., 2018). Additionally, lipid 
accumulation is associated with the downregulation of ABCA1 in 
podocytes treated with sera from patients diagnosed with type 
1 diabetes or type 2 diabetes (Pedigo et  al., 2016; Ducasa et  al., 
2019b). Moreover, podocyte-specific deletion of ABCA1 renders 
mice susceptible to DKD progression, while the induction of 
ABCA1 ameliorates podocyte injury (Ducasa et  al., 2019b).

Apart from failing to remove lipids from cells, lipid oversupply 
is another major cause of renal dysfunction (Figure  2). Sterol 
regulatory element-binding proteins (SREBPs) activate genes 
involved in the synthesis and uptake of cholesterol, FAs, 
triglycerides and phospholipids, endocytosis of LDL, and glucose 
metabolism (Edwards et al., 2000; Horton et al., 2002). In DKD, 
increased expression of SREBPs is associated with the accumulation 
of triglycerides and cholesterol in the kidney, resulting in 
glomerulosclerosis and proteinuria (Sun et  al., 2002). Similarly, 
C57BL/6J mice fed on a HFD also show renal accumulation 
of triglycerides and cholesterol, accompanied by glomerulosclerosis 
due to SREBPs pathway activation (Jiang et al., 2005). Moreover, 
LDLR plays a role in the feedback system that modulates plasma 
and intracellular cholesterol homeostasis. The expression of 
LDLR is tightly regulated by SREBPs and SREBP cleavage-
activating protein (SCAP). In the presence of high glucose or 
inflammatory stress, the LDLR feedback regulation is disrupted, 
causing intracellular cholesterol accumulation and podocyte 
injury (Zhang et  al., 2015a,b). Interestingly, the up-regulation 
of hepatic PCSK9 was found to be  modulated by SREBP-2 and 
SREBP-1c, which could furthermore dysregulate LDL cholesterol 
(Jeong et  al., 2008; Rong et  al., 2017).

Lipid Burden and Mitochondrial 
Dysfunction
The turnover of lipids in podocytes regulates podocyte health. 
Serezani reported that the expression of phosphatase and tensin 
homolog (PTEN) inhibits phagocytosis, cell growth, and 
cytoskeletal remodeling (Serezani et al., 2012). The downregulation 
of PTEN is associated with increased lipid endocytosis in podocytes 
from patients with obesity-related glomerulopathy, in cultured 
mouse podocytes with PTEN knock-down and in mice with 
podocyte-specific knockout of PTEN, thus enhancing the uptake 
of lipids and causing podocyte injury and proteinuria through 
oxidative stress response (Shi et  al., 2019). On the contrary, 
elevated autophagic sequestration of LDs was reported as an 
adaption to alcoholic liver disease (Eid et  al., 2013). In the 
study of Sato et  al., podocytes with a higher level of autophagy 
are more competent to remove proteins and lipids from cells, 
suggesting a tendency to better prognosis (Sato et  al., 2006). 
Autophagy related 5 (ATG5) is a critical autophagy gene during 
nephrogenesis. Mutation of ATG5 in the kidney epithelium leads 
to FSGS in mice, accompanied by enhanced ROS generation, 
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ER stress, and mitochondrial dysfunction (Kawakami et al., 2015). 
Interestingly, autophagy regulates lipid metabolism by autophagic 
clearance of cellular lipids stored as triglycerides in LDs, which 
are then hydrolyzed and delivered as FAs for energy production 
in mitochondria (Figure  2; Singh et  al., 2009).

Lipid surplus induces a vicious cycle where the accumulation 
of lipids induces ROS production and mitochondrial dysfunction. 
Conversely, dysfunctional mitochondria may decrease the  
lipid oxidative capacity, which additionally increases the lipid 
surplus (Schrauwen-Hinderling et  al., 2016). In a rat model 
of hypertension and proteinuria, increased metabolic stress was 
indicated by increased oxidized lipids derived from lipid 
breakdown in glomeruli at the early stage, causing decreased 
ATP and NADH levels. The change of metabolic aspects in 
glomeruli from these mice was associated with the activation 
of phosphoprotein-dependent signaling such as mTOR and 
AMPK (Rinschen et  al., 2019). Steinberg et  al. demonstrated 
that AMPK activity is suppressed by TNFα signaling, resulting 
in decreased FA β-oxidation and excess lipids in skeletal muscle 
(Steinberg et  al., 2006). Notably, we  previously showed that 
serum TNFR1 and TNFR2 levels are increased in patients 
with DKD and FSGS, whereas TNF levels are only increased 
in patients with DKD. More importantly, we demonstrated that 
glomerular TNF expression rather than systemic TNF causes 
free cholesterol accumulation and podocyte injury (Pedigo 
et  al., 2016). High lipid availability induced ROS production 
can furthermore cause lipid oxidation (Schrauwen-Hinderling 
et  al., 2016). Fibroblasts from patients with Tangier disease, 
who have an inherited ABCA1 mutation, show an increased 
content of the mitochondrial-specific phospholipid CL, while 
patients have reduced HDL levels in the blood (Fobker et  al., 
2001). Our group demonstrated that ABCA1 deficiency in 
human podocytes leads to CL accumulation and mitochondrial 
dysfunction. SS-31 has been used to scavenge ROS and stabilize 
CL (Zhao et al., 2004). The administration of an Abca1 inducer 
or elamipretide (SS-31) reduces CL peroxidation and ameliorates 
podocyte injury, indicating that ABCA1 deficiency causes CL 
accumulation and peroxidation, eventually leading to 
mitochondrial dysfunction (Figure  2; Ducasa et  al., 2019b).

Reduction of renal parenchymal lipids ameliorates 
mitochondrial dysfunction, thus mitigating kidney injury. FSGS 
with podocyte injury and depletion can be  mediated by 
mitochondrial oxidative damage in adjacent endothelial cells 
via endothelin-1 (EDN1) signaling. Podocyte-derived EDN1 
can act on endothelial cells, which mediates oxidative stress 
and endothelial dysfunction via EDN1 receptor type A (EDNRA) 
activation, thus promoting podocyte apoptosis. In support of 
this observation, mitochondrial-targeted ROS scavengers and 
endothelin antagonists inhibit the release of EDN1, thus 
reducing mitochondrial oxidative stress and endothelial cell 
dysfunction, thereby preventing glomerulosclerosis (Daehn 
et  al., 2014). In DKD, glomerular endothelial mitochondrial 
dysfunction is also associated with increased glomerular 
EDNRA expression and increased circulating EDN1. EDNRA 
antagonist treatment prevents mitochondrial oxidative damage 
in endothelial cells and ameliorates diabetes-induced glomerular 
injury, suggesting a crosstalk between podocytes and glomerular 

endothelial cells (Qi et al., 2017). Interestingly, EDN1 promotes 
lipid accumulation during the transformation of macrophage 
foam cells through the downregulation of ABCG1 and impaired 
HDL-mediated cholesterol efflux (Lin et  al., 2011). It is 
possible that the inhibition of EDN1 signaling could promote 
reduced renal lipotoxicity in addition to suppressing oxidative 
stress. The farnesoid X receptor (FXR) is a bile acid-activated 
nuclear receptor that regulates lipid metabolism by modulating 
renal SREBP-1 activity. Since the SREBPs play a critical role 
in renal lipid accumulation, the administration of FXR agonists 
ameliorates renal triglyceride accumulation and regulates renal 
lipid metabolism in HFD-fed mice by modulating FA synthesis 
and oxidation, improving proteinuria and kidney injury (Wang 
et  al., 2009). In addition, administration of the dual agonist 
of FXR and G protein-coupled membrane receptor Takeda 
G protein-coupled receptor 5 (TGR5) to mice decreases 
proteinuria and prevents mitochondrial impairments. This 
dual agonist modulates renal lipid metabolism and prevents 
renal lipid accumulation in mouse models of nephropathy 
associated with diabetes and obesity. Dual agonist treatment 
prevents inflammation, oxidative stress, and ER stress, as 
well as induces mitochondrial biogenesis and metabolism 
pathways (Wang et  al., 2017, 2018). Similarly, Gai et  al.  
also reported that FXR activation reduces glomerulosclerosis 
and tubulointerstitial injury in mice fed on a HFD. FXR 
agonist treated mice showed improved renal function in 
association with reduced lipid accumulation and reduced 
ROS. Additionally, FXR activation attenuated the decrease 
in autophagosomes in obese mice, maintaining effective energy 
production (Gai et  al., 2016).

CONCLUSION

Lipids are essential sources for mitochondrial energy production. 
However, abnormal lipid metabolism in many tissues or cell 
types has proven to be  detrimental and to contribute to the 
pathogenesis and progression of several disorders. We  first 
summarized glomerular diseases caused by inherited 
mitochondrial disparities, as well as by inherited lipid disorders, 
thus providing the genetic evidence in humans that both altered 
mitochondrial function and lipid metabolism may contribute 
to the pathogenesis of kidney diseases. We  then elaborated 
on the independent impacts of lipotoxicity and mitochondrial 
dysfunction on kidney diseases, especially diseases characterized 
by glomerular injury. Finally, we  reviewed the evidence that 
lipotoxicity can be the cause or the consequence of mitochondrial 
dysfunction. Lipids form the bilayer membrane structure of 
mitochondria. However, the accumulation of lipids induces 
excess ROS generation and increased mitochondrial oxidative 
stress. Meanwhile, accumulation and peroxidation of CL interrupt 
the normal structure of mitochondria and impair mitochondrial 
respiration and energy production (Figure  1). On the other 
hand, mitochondria utilize lipids as a substrate for FA β-oxidation 
in order to meet high energy demand. Increased ROS production, 
secondary to stress conditions, inhibits mitochondrial FA 
β-oxidation and lipid utilization, which in turn generates more 
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ROS (Figure  2). It is clear that ROS play a critical role in 
the interplay of mitochondrial dysfunction and glomerular 
lipotoxicity. Interweaved by ROS production, a vicious cycle 
is formed by down-regulated FA β-oxidation, accumulation of 
intracellular lipids and peroxidation of lipids (especially CL). 
Therefore, identifying therapeutic targets that break this vicious 
cycle may offer novel promising therapeutic interventions for 
the cure of glomerular diseases.
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