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& Thorsten Pöschel1
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We study the packing of fine glass powders of mean particle diameter in the range (4–52) mm both
experimentally and by numerical DEM simulations. We obtain quantitative agreement between the
experimental and numerical results, if both types of attractive forces of particle interaction, adhesion and
non-bonded van der Waals forces are taken into account. Our results suggest that considering only
viscoelastic and adhesive forces in DEM simulations may lead to incorrect numerical predictions of the
behavior of fine powders. Based on the results from simulations and experiments, we propose a
mathematical expression to estimate the packing fraction of fine polydisperse powders as a function of the
average particle size.

T
he packing behavior of powders can be strongly influenced by inter-particle attractive forces of different
types, such as adhesion and non-bonded van der Waals forces1–6. The relevance of the different types of
attractive interactions for the packing density of powders of different materials and particle size distributions

is, however, largely uncertain. That is, it is a challenging problem to predict the packing density of a certain
granular system specified by the particle size distribution and the material properties of the particles7,8.

Numerical simulations by means of the Discrete Element Method (DEM)9,10 can offer a helpful tool in the
investigation of the packing behavior of powders. In this type of numerical simulations, Newton’s equation of
motion is solved for all particles simultaneously by taking into account the forces and torques acting on each
particle, both due to external fields and due to interactions with other particles in the system. However, in order to
make reliable predictions of the behavior of the bulk from DEM simulations, an accurate physical modeling of the
relevant forces governing the interactions between the particles is required.

Most previous studies of density of dry powder packings using DEM simulations were focused on mono-
disperse systems and included either van der Waals interactions7,11,12 or adhesive forces during contact13,14.
Indeed, typical powders are poorly sorted and may contain a broad interval of particle sizes. For fine powders,
the attractive interactions between particles of different sizes should have an important effect on the dynamics,
since cohesive forces become increasingly relevant compared to gravitational forces as the particle size decreases4.
Therefore, particle size distribution plays an essential role not only due to geometrical constraints15–20 but also
because attractive forces have different influence for particles of different size. Consequently, the size distribution
of particles and the adequate description of attractive forces acting on particles of different size should be taken
into account in DEM simulations in order to yield a predictive description of fine powders.

The aim of our work is to provide numerical evidence that DEM simulations are able to describe the packing of
fine powders correctly, that is in quantitative agreement with experiments, provided both the particle size
distribution and the adequate model of attractive particle interaction are taken into account. We will show that
this model should contain both relevant contributions due to adhesion (here modeled through JKR theory21) and
van der Waals interactions. Neglecting any of these contributions leads for the case of fine powders to unac-
ceptable deviations, that is the DEM method renders unreliable. We believe that this result, obtained for the
packing of fine glass powders will be of relevance also for other systems, in particular, when the system contains a
significant fraction of small particles or a wide distribution of particle sizes.

We characterize the particle size distribution by means of q3(d) ; dQ3(d)/dd where Q3(d) is the fraction of
mass of all particles of diameter d or smaller, relating to the probability density of particle diameters, p(d), via

q3 dð Þ~ d2p dð ÞÐ?
0 p d’ð Þ d’ð Þ2dd’

: ð1Þ
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Figure 1 shows the size distribution, q3(d), of our experimental sam-
ples, each of them averaged over 5 independent measurements. For

each sample, Tab. I provides the mean diameter, dh i:
ð?

0
q3 dð Þddd,

and the obtained packing fraction, Q, again averaged over 5 inde-
pendent measurements. Further, the corresponding 1%, 50%, and
99% quantiles, d1,3, d50,3, and d99,3, respectively, are given defined as
dx,3:Q{1

3 x=100ð Þ, where Q{1
3 is the inverse of Q3(d). The values

from Tab. I are used furtheron for reference in the subsequent
figures.

We simulate the process using DEM, that is, simultaneously solv-
ing Newton’s equations of translational and rotational motion for all
particles. There is a variety of models to describe the contact forces in
DEM simulation, suitable for different particle geometry and mater-
ial behavior, for an overview see, e.g.10,22–24. In the present paper, we
assume viscoelastic interaction in normal direction25 and apply a
modified Cundall-Strack model9 for the tangential direction26. The
corresponding forces read

~Fn~min 0,{rj3=2{
3
2

Anr
ffiffiffi
j

p
_j

� �
~en, ð2Þ

where
j~R1zR2{~r1{~r2j j ð3Þ

is the compression of particles of radii R1 and R2 at positions~r1 and
~r2, and~en: ~r1{~r2ð Þ=~r1{~r2j j is the normal unit vector. The elastic
parameter of Eq. (2), r, is a function of the Young’s modulus, Y, the
Poisson’s ratio n, and the effective radius Reff ; R1R2/(R1 1 R2),

r:
2Y

3 1{n2ð Þ
ffiffiffiffiffiffiffiffi
Ref f
p

, ð4Þ

and the dissipative parameter, An, depends, moreover, on the mater-
ial viscosities. For details see25. While r can be computed directly
from material characteristics which are easily available for a variety of
materials, the viscosities needed for An are not directly available. To
determine An, therefore, we use a relation between the coefficient of
restitution, e, for the collision of two isolated particles and An

27–29

where the Padé approximation from30 was employed.
The tangential force reads26

~Ft~{min m ~Fn

�� ��, ð
path

4G
2{n

ffiffiffiffiffiffiffiffiffiffi
Ref f j

p
dszAt

ffiffiffiffiffiffiffiffiffiffi
Ref f j

p
vt

2
64

3
75~et , ð5Þ

where m is the Coulomb friction coefficient and G is the shear modu-
lus, which is given by the equation, 2G 5 Y/(1 1 n). The integral in
Eq. (5) is performed over the displacement of the particles at the
point of contact for the duration of the contact9 and~vt~vt~et stands
for the relative tangential velocity at the point of contact, where~et is
the corresponding unit vector. The tangential dissipative parameter,
At, characterizes the surface roughness and is chosen such that the
prefactors of the normal and tangential deformation rates ( _j and vt)
in Eqs. (2) and (5), respectively, are of the same order of magnitude31.
Using this assumption, Ref. [32] found excellent agreement between
simulation results and experimental values of particle velocity pro-

Figure 1 | Experimental particle size distributions. The figure shows the volume density distributions q3 (see Eq. (1)) of the samples a–i used in the

experiments. Each plot gives the volume density distribution q3(d) as a function of the particle diameter d in the sample.

Table I | Summary of the powder characteristics of samples a–i:
Quantities d1,3, d50,3 and d99,3; mean particle size Ædæ, and
obtained packing fraction Q. Samples a–i correspond to the sub-
plots of Fig. 1

sample d1,3/mm d50,3/mm d99,3/mm Æd æ/mm Q

a 1.05 3.22 9.51 3.88 0.20
b 1.40 4.47 12.33 5.36 0.19
c 2.65 5.35 10.79 6.03 0.29
d 6.31 12.49 23.89 13.96 0.40
e 9.18 17.81 33.44 19.87 0.47
f 2.87 24.47 44.94 27.21 0.51
g 15.78 29.56 53.74 32.83 0.52
h 14.15 38.37 89.13 44.38 0.51
i 25.27 46.85 85.05 52.04 0.54
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files in a gravity-driven shearing experiment. By comparing Eqs. (2)
and (5), we obtain At < AnY/(1 2 n2).

Adhesion is taken into account via the JKR model14,21,33,34

~FJKR~4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa3cY

2 1{n2ð Þ

s
~en, ð6Þ

where a is the contact radius, related to the deformation j through

j~a2
�

Ref f {
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 1{n2ð Þpac=Y

p
, ð7Þ

and c is the surface energy density, which is a characteristic of the
particle material35.

To compute the force, ~FJKR, through Eq. (6), the contact radius,
a(j) is determined from Eq. (7) as a function of the deformation j.
Thus, Eq. (7) can be rewritten in the form14

a4{ 2Ref f j½ �a2{ 8 1{n2
� �

pcR2
ef f

�
Y

	 

az R2

ef f j
2	 


~0: ð8Þ

This equation can be solved analytically to obtain the contact radius,
a, see Eq. (18).

For the case of fine powders, van der Waals force may have a non-
negligible influence on the dynamics of the system. It is given by36,37

~FvdW~

AHRef f

6D2
min

~en if jw0,

AHRef f

6 j{Dminð Þ2
~en if { Dmaxƒjƒ0

0, if jv{Dmax,

8>>>>>>><
>>>>>>>:

ð9Þ

where j is given by Eq. (3). The Hamaker constant is related to the
surface energy density via2

AH~24pD2
minc: ð10Þ

Furthermore, Dmin is a parameter introduced to avoid the singularity
of the Hamaker equation at j 5 0. As a matter of fact, the surface of
the particles is not smooth, such that there is always a minimal
distance Dmin between the particles at contact38,39. Here we take the
value Dmin 5 1.65Å2,39. Finally, Dmax is the maximal (cutoff) distance
of the van der Waals interaction, which is set as 1 mm.

Results
For the simulation we adopt the mass fractions of each particle size in
the sample as obtained from the corresponding volume density dis-
tribution used in the experiment, Fig. 1. Silica glass particles are
deposited in a rectangular box of lateral dimensions Lx 3 Ly, where
Lx 5 Ly 5 12 Ædæ, with Ædæ standing for the mean particle size, specific
for each sample. We apply periodic boundary conditions in the
directions x and y (Fig. 2). A frictional wall is placed at the floor,
z 5 0, while the height of the box (Lz) is set large enough such as to
produce packings with depth larger than 30 Ædæ. The equations used
for computing the forces between particles and the frictional wall at
the bottom are the same used for modeling particle-particle collisions
where one of the contact partners is of infinite mass and radius. For
particle-wall contacts we neglect attractive forces.

For initial conditions, we place the particles at random positions
(initial space filling Q(0) < 0.2) such that the particles do not touch
one another (Fig. 2a). At time t 5 0 the particles are released from rest
and are deposited at the bottom due to gravity. The density of the
sediment, Q, was computed after full relaxation, indicated by vanish-
ing kinetic energy of the particles, via

Q:

P
i

4
3 pR3

i

LxLy Hu{Hlð Þ , ð11Þ

where the sum runs over all particles whose position is within the
range (Hl, Hu) 5 (0.3, 0.7)zmax with zmax being the vertical position of
the highest particle in the packing. We found that the value of Q
obtained for a specific particle size distribution and inter-particle
force model varies by a negligible amount over different realizations.
Therefore, the values of Q presented in the following were obtained

Figure 2 | Numerical simulation of the powder packing. The figure

displays a packing of 6172 cohesionless spherical particles of size

distribution shown in Fig. 1i. The box size is Lx 5 Ly 5 0.3351 mm

(periodic boundary conditions) and Lz 5 4.2 mm. Figures a–c show

snapshots at time (in milliseconds) 0, 20 and 140.

Figure 3 | Packing fraction as a function of the average particle size.
Empty symbols show experimental results for samples a–i, each

corresponding to a different particle size distribution, specified by Fig. 1

and Tab. I. Results of the simulation are shown by filled symbols: Circles:

no attractive forces; diamonds: with adhesion (JKR model); squares: with

both adhesion and non-bonded van der Waals interactions. The lines show

the best fit to the data using Eq. (12).
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by dividing both lateral dimensions of the box in two equal parts and
averaging over the 4 resulting boxes, whereas the corresponding
standard deviation associated with the different simulation data is
indicated by the error bars in Fig. 3.

Figure 3 shows the packing fraction for the samples a–i as obtained
in the experiment and the simulations. In the experiment, we find
nearly constant packing fraction, Q, for samples f–i where
dh i *w 25 mm (see Figs. 1f–i) while for smaller particles Q decreases

rapidly. Such a behavior of increasing porosity with decreasing par-
ticle size was also noted in previous experiments, and has been
attributed to the tendency of fine particles to form tree- or chain-
like packing structures as well as large agglomerates1.

In order to understand the effect of inter-particle forces on the
packing properties and, thus, the dependence of the packing fraction
on the average particle size, we performed three different groups of
simulations, which are described below.

Pure viscoelastic interaction. In the first group of simulations, the
packings are produced by neglecting attractive interaction forces,
resulting in almost constant packing fraction (filled circles in
Fig. 3) in disagreement with the experimental data. In fact we
observe even a small (statistically not significant) increase of the
packing fraction for small average particle size. This effect may be
understood since the samples of smallest average size reveal the
largest width of the distribution (Figs. 1a,b and Tab. I). Therefore,
the small particles can efficiently fill the pores between the large ones,
thus leading to lower porosity values. The effect of pore filling in
polydisperse packings has been extensively studied in the past and
provides the physical mechanism exploited in the search for the
optimal packing of non-cohesive granular materials15–20.

Adhesive viscoelastic interaction. In the second group of simula-
tions, the adhesive force model (Eq. (6)) is incorporated leading to a
decrease of the packing fraction for all samples and in particular for
small particles (filled diamonds in Fig. 3). Obviously, for small
particles, adhesion becomes dominant over gravity and, thus,
particles tend to stick to one another leading to higher porosity,
resulting in a decay of the packing fraction with decreasing particle
size. While the decay follows the experimental data for dh i *w 20 mm,
in agreement with earlier findings obtained for monosized
particles13, for smaller particles the data disagree due to increasing
importance of van der Waals forces neglected here. Moreover, for all
particle sizes, there is a significant offset between the experimental
and numerical data.

Full model, including viscoelastic, adhesive, and van der Waals
interaction. For the third group of simulations we applied the full
model of particle interaction, that is Eqs. (6) and (9) (filled squares in
Fig. 3). The resulting packing fraction agrees rather well with the
experiment, as compared with the previous simulations where
parts of the interaction force were neglected. In particular, for
small particles, dh i *v 20 mm, the packing fraction decreases
rapidly, in agreement with the experiment. For larger Ædæ, we
obtain essentially the same packing density as found in simulations
including only adhesive forces, since the ratio of van der Waals forces
(which scale with R; cf. Eq. (9)) and particle weight (which scales with
R3) decreases as 1/R2. Therefore, the contribution of van der Waals

forces renders negligible as the particle size increases. The full line in
Fig. 3 shows the best fit of the function

Q~Q?{
C
dh ia , ð12Þ

to the numerical data, where Q‘ < 0.64 is the packing density in the
limit of large particles, where attractive forces are negligible. In this
limit the packing fraction approaches the value found for
cohesionless particles (filled circles in Fig. 3). Table II shows the fit
parameters, C and a, together with the corresponding values for the
experimental data (dashed line in Fig. 3), being in good agreement.

Obviously, the function Eq. (12) cannot be universal as limÆdæR0 Q
R 2‘, however, for particle sizes in a certain range,
100

*v dh i
�

mm *v 102 it describes the packing fraction rather well.
Indeed, we have showed, for the first time, that both experimental
and numerical data of the packing fraction of fine powders as a
function of the average particle size can be fitted by a surprisingly
simple expression (Eq. (12)), which contains only 2 fit parameters.
However, certainly Eq. (12) is not unique since the values of the fit
parameters depend on material properties, in particular on the cohe-
sion energy density, c which was not investigated here.

Discussion
We studied the packing fraction, Q, of fine glass powders of given
particle size distribution by means of DEM simulations in compar-
ison with experimental results. Three sets of simulation were per-
formed, assuming different particle interaction forces.

For pure viscoelastic interaction (set I) we obtain packing fraction
almost independently of the mean particle size, Ædæ, with a slight
tendency of increasing Q for small particles which may be explained
by geometric effects (pore filling). This behavior, Q < const., agrees
with the experiment for large particle size, dh i *w 40 mm but disagrees
for smaller particle size.

Simulations incorporating JKR-type adhesive forces (set II) reveal
a clear decay of Q with decaying Ædæ and we obtain a good agreement
with the experiment for dh i *w 20 mm while the data diverge for smal-
ler particles.

The third set of simulation assumed inter-particle forces due to
viscoelastic, JKR-adhesive and non-bonded van der Waals inter-
action (set III) which finally allowed to reproduce the experimentally
found packing fraction for the full interval 4 mm *v dh i *v 52 mm.

Therefore, we conclude that for a predictive simulation of fine
powder behavior, both adhesive and van der Waals forces are essen-
tial and should, thus, be considered in DEM simulations. Neglecting
any of these contributions in simulation of fine powders may lead to
unreliable results.

We believe that this result, obtained for the packing of fine glass
powders will be of relevance also for other related systems40, in par-
ticular, when the system contains a significant fraction of small part-
icles or a wide distribution of particle sizes. The present study should
be now continued by performing a detailed investigation of the dif-
ferent packing structures obtained in experiments and simulations
using different material properties and particle size distributions.
Such an investigation could be conducted by using e.g. scattering or
tomography to directly compare spatial correlations between experi-
mental and modelled particles and to shed further light on the role of
polydispersity on the packing behavior of the powder system.

We note that other factors may further influence the exact value of
the packing fraction. In particular, experimental spherical particles
generally display small variations from the perfect spherical shape,
which can affect local properties of the packing. In order to account
for rolling resistance of slightly non-spherical particles, the DEM
simulations of Ref. [41], which used a linearized version of Eq. (9),
included an empiric model for rolling friction. However, Ref. [41] did
not consider the contribution of adhesive forces predicted by the JKR
theory (see Eq. (6)). Indeed, recent DEM simulations of packings of

Table II | Fit parameters of Eq. (12) for the experimental and
numerical data and the corresponding correlation coefficient

C a correlation coeff.

experiment 1.049 0.587 0.981
simulation 0.990 0.676 0.987

www.nature.com/scientificreports
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monosized rods with adhesion forces modeled with the JKR theory13

suggested that a slight degree of non-sphericity should cause neg-
ligible change in the solid fraction of the bulk. For spherical particles,
rolling friction plays a minor role for particle motion compared to
sliding friction42. Further, the effect of adhesion on the bulk solid
fraction is predicted to be greater the larger the particles’ aspect
ratios13. To simulate powder particles of irregular shapes, our model
should be thus extended in order to incorporate the multisphere
method (see e.g. Refs. [10, 13, 43] and references therein), while
accounting for both adhesion and non-bonded van der Waals forces
between the particles as described in the present work.

Moreover, attractive forces due to the formation of liquid bridges
between the particles39 that have been neglected in the present simu-
lations will also play an important role in the experiments since these
were performed under ambient conditions in the laboratory at a
relative humidity of around 40%. Indeed, the values of surface energy
density and Hamaker constant used in the simulations are consistent
with those applied in previous experiments under comparable
experimental conditions3. However, while we have shown that a
remarkable improvement in the quantitative agreement between
numerical and experimental measurements of the solid fraction of
fine polydisperse powders can be obtained by including adhesive and
non-bonded van der Waals forces in DEM simulations, our study
must be further improved in the future by inclusion of liquid bridges
in the DEM simulation. This further extension of the DEM model
certainly should further improve the quality of the agreement
between numerical predictions and experimental results.

Experimental particles of different sizes may also have different
friction coefficients, which may further affect the value of bulk packing
fraction Q. However, the effect of m on Q was shown in many previous
DEM simulations to be negligibly small (less than 10%; see e.g. Refs.
[44, 45]) compared to the strong dependence of Q on Ædæ found in our
experiments (Fig. 3). Moreover, fluid friction on air is known to affect
the deposition dynamics of fine particles46,47, however, clearly the
cohesive properties of such particles dominate the static behavior of
the bulk. Furthermore, it is well known that the solid fraction of a
granular system may be influenced by the assembly procedure10,48.
Therefore, our expression for predicting the packing fraction of pow-
ders as a function of the average particle size, Eq. (12), should be tested
not only for different size distributions and material properties but
also for different assembly procedures. Indeed, the bulk solid fraction
of granular systems made of non-cohesional spherical particles is close
to 0.64 (the random close packing49, consistent with our simulation
results denoted by the black circles in Fig. 3), and is well reproducible
by many different assembly procedures50,51. In contrast, numerical
simulations41,52 show that the packing behavior of cohesive powders
under compression may strongly depend on the preparation method.
However, the aim of our work is to reproduce the specific conditions
of the experiments, in which the powder is deposited into a recipient
and is not subject to compression (see for instance previous DEM
simulations of Refs. [7, 11, 13, 16, 44, 45]). Therefore, on the basis of
the exposed above, we conclude that attractive particle interaction
forces play a major role for the bulk solid fraction of fine polydisperse
powders made of spherical particles, while additionally including the
aforementioned factors should further improve the quantitative
assessment of the packing behavior of cohesive granular systems.

Methods
Experimental details. Commercially available, spherically-shaped glass particles
SiLibeads Type S (0–20 mm, 0–50 mm, 40–70 mm, Sigmund Lindner GmbH) have
been classified using a 50 ATP Turboplex air classifier (Hosokawa Alpine AG) to
obtain glass powders of different particle size used in the experiment.

The particle size distributions of the samples a–i of glass powders have been
obtained by laser diffraction particle sizing using a Mastersizer 2000/Hydro 2000S
(Malvern). An aqueous suspension of the glass particles has been diluted as appro-
priate prior to measurement with deionized water. In each measurement, the
respective scattering intensity raw data of the dispersed particles are collected by a
detector array in dependency on the scattering angle and converted to particle size

distributions by a Mie theory algorithm that is implemented in the Mastersizer 2000
software. As Mie scattering describes the scattering of electromagnetic radiation by a
homogeneous sphere, reliable size distributions are obtained in the case of the almost
transparent and spherical glass beads considered in this study. For evaluation a
refractive index of 1.52 for the glass beads and 1.333 for water was used, respectively.

In order to determine the bulk density of packings we poured approx. 80 mL of the
respective glass powder into a graduated cylinder using a funnel of a total nominal
volume of 100 mL (resolution of 0.5 mL) and obtained the occupied volume from the
filling height. The funnel has top and bottom diameters of 10 cm and 1.5 cm,
respectively, and an angle of 60u, while the diameter of the cylinder is 3.5 cm. The
experiments were performed with the funnel outlet at a constant height of about
12 cm from the recipient’s bottom. For all samples, after the powder was poured from
the funnel into the recipient, the measurements of the packing fraction were per-
formed without applying any tapping or compression to the granular material. The
bulk density was obtained by dividing the mass of the material as obtained using a lab
balance (resolution 1 mg) by the occupied volume. The packing fraction, Q, is
obtained by dividing the bulk density by the density of the solid. The results obtained
for the packing fraction were found to vary only marginally over the 5 different
experimental realizations (see standard deviation indicated by the error bars in Fig. 3).

DEM. The integration was performed using LIGGGHTS26 which was extended to
account for the attractive particle interaction forces (Eqs. (6) and (9)). The Young
modulus and particle mass density are taken from the data sheet of the material used
in the experiments. For the surface energy density of the beads we use a value which is
typical for SiO2 and calculate the Hamaker constant using Eq. (10). Moreover, the
Poisson’s ratio of silica glass is used in the simulations (see e.g.53). For the friction
coefficient m we take a value that is typically used in simulations of granular materials
(see e.g.10). The numerical values are given in Tab. III.

The integration time step Dt must be small enough to accurately solve Newton’s
equations for the particle interaction. For undamped, non-adhesive collisions (An 5 c
5 0), the duration Tcol of the collision can be estimated using the equation22,

Tcol<3:21 Mef f=rð Þ2=5:v{1=5
imp , ð13Þ

where vimp is the impact velocity. Typically a timestep smaller than about Tcol/50 is
recommended54. Thus, in order to determine the timestep, first we estimate, using Eq.
(13), the collision time of the smallest particles in the particle size distribution using a
reference impact velocity vimp 5 1.0 m/s (which is in fact an upper bound for the
particle velocities observed in the simulations). Thereafter, we take Dt about 1/50 of
Tcol. For example, for the size distribution in Fig. 1i, the smallest value of particle
diameter is d < 20 mm, for which we obtain Tcol < 62 ns and thus we choose Dt < 1.2
3 1029 s.

Solution of Eq. (8). In this Section, we present the expression which we use to obtain
the contact radius a(j). This contact radius is obtained by solving Eq. (8), which is a
quartic equation in a of the form,

c4a4zc3a3zc2a2zc1azc0~0, ð14Þ

with c0~R2
ef f j

2, c1~{8 1{n2
� �

pcR2
ef f

�
Y , c2 5 22Reffj, c3 5 0 and c4 5 1. The

discriminant of Eq. (14) reads,

D~256c3
4c3

0{192c2
4c3c1c2

0{128c2
4c2

2c2
0z144c2

4c2c2
1c0

{27c2
4c4

1z144c4c2
3c2c2

0{6c4c2
3c2

1c0{80c4c3c2
2c1c0

z18c4c3c2c3
1z16c4c4

2c0{4c4c3
2c2

1{27c4
3c2

0

z18c3
3c2c1c0{4c3

3c3
1{4c2

3c3
2c0zc2

3c2
2c2

1,

ð15Þ

which becomes, by using the values of c0, …, c4 mentioned above,

D~{4096
pc

Y

h i2
R7

ef f j
3{6912

pc

Y

h i4
R8

ef f , ð16Þ

and is, thus, always negative. Therefore, Eq. (14) has 2 real roots and 2 imaginary
roots. The solution a(j) which corresponds to the contact radius of the JKR model is

the one that is larger than
ffiffiffiffiffiffiffiffiffiffi
Ref f j

p
(the contact radius associated with the non-

adhesive viscoelastic contact). Let us define the following quantities55,

Table III | Numerical values of the parameters used in the simula-
tions

parameter symbol value

particle material density 2500 kg/m3

Young’s modulus Y 63 GPa
Poisson’s ratio n 0.24
Coulomb’s friction coefficient m 0.50
surface energy density c 0.05 J/m2

Hamaker constant AH 10219 J
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The real roots of Eq. (14) are

a1~
1
2
: wz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2{4 c2zszlð Þ

ph i
, ð18Þ

a2~
1
2
: w{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2{4 c2zszlð Þ

ph i
, ð19Þ

whereas the root that is larger than
ffiffiffiffiffiffiffiffiffiffi
Ref f j

p
is the root a1. Therefore, the solution for

the contact radius from Eq. (8) is a(j) 5 a1, Eq. (18).
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