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ABSTRACT

Defining the impact of missense mutations on the
recognition of DNA motifs is highly dependent on
bioinformatic tools that define DNA binding ele-
ments. However, classical motif analysis tools re-
main limited in their capacity to identify subtle
changes in complex binding motifs between distinct
conditions. To overcome this limitation, we devel-
oped a new tool, MoMotif, that facilitates a sensitive
identification, at the single base-pair resolution, of
complex, or subtle, alterations to core binding mo-
tifs, discerned from ChIP-seq data. We employed Mo-
Motif to define the previously uncharacterized recog-
nition motif of CTCF zinc-finger 1 (ZF1), and to further
define the impact of CTCF ZF1 mutation on its asso-
ciation with chromatin. Mutations of CTCF ZF1 are
exclusive to breast cancer and are associated with
metastasis and therapeutic resistance, but the un-
derlying mechanisms are unclear. Using MoMotif, we
identified an extension of the CTCF core binding mo-
tif, necessitating a functional ZF1 to bind appropri-
ately. Using a combination of ChIP-Seq and RNA-Seq,
we discover that the inability to bind this extended
motif drives an altered transcriptional program as-
sociated with the oncogenic phenotypes observed
clinically. Our study demonstrates that MoMotif is a
powerful new tool for comparative ChIP-seq analysis
and characterising DNA-protein contacts.

INTRODUCTION

Aberrant transcription factor (TF) activities or non-coding
mutations located at promoters, enhancers or chromatin
domain boundaries drive diverse pathologies, including a
range of cancers (1–4). Biological investigation into the
pathology of such events necessitates high-throughput se-
quencing based epigenomic approaches such as ChIP-Seq
(5) and Hi-C (6). These epigenomic endeavors are expen-
sive and require substantial quantities of biological samples
(7). However, the development and fine-tuning of comple-
mentary bioinformatic analyses allow us to infer biologi-
cal impact and subsequently predict sensitivity to personal-
ized therapies. In particular, identifying context-dependent
modifications of DNA-binding motifs specific to TFs is im-
portant for our understanding of cancer biology as motifs
are frequently mutated, and mutated TFs may recognize al-
tered motifs.

For the task of identifying DNA motifs, motif discov-
ery tools, such as GADEM (8) or MEME (9), coupled with
DNA motif databases for TFs, such as JASPAR (10), CisBP
(11) and UniPROBE (12), are widely used. By comparing
the immediate DNA sequence surrounding an oncogenic,
non-coding, mutation to an online TF motif database, one
can predict which TF or family of TFs is likely to experience
hindered DNA binding at this locus and from such predic-
tions, the mechanisms of oncogenic progression may be sur-
mised. For example, multiple oncogenic non-coding vari-
ants were identified to colocalize with the core recognition
motif of CCCTC-binding factor (CTCF) (13–17), a multi-
functional 11-Zinc Finger DNA binding protein involved
in transcriptional regulation through the organization of
3D chromatin structure (18,19). When coupled with avail-
able Hi-C datasets, motif driven hypotheses provide mech-
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anistic insights into the role of these non-coding variants
through altered chromatin looping at key, actionable, onco-
genes (20). Although current tools are well-suited to de-
tect the presence of a known binding motif in the examples
above, they are limited in their capacity to detect changes
in motif recognition upon introduction of variables into a
system. This is especially true when subtle modifications
or extensions of known binding motifs are involved. Fur-
ther, defining subtle motif variances between sites located
proximal different structural features, such as comparing
TF binding motifs proximal to topologically associated do-
main (TAD) boundaries versus those proximal to transcrip-
tion start sites, also represents a challenge.

Motif discovery is studied in diverse biochemical envi-
ronments, each approach with their pros and cons. In sil-
ico DNA motif discovery tools can identify binding mo-
tifs by computing a position weight matrix (PWM), de-
rived from normalized relative frequencies of each nucleic
acid base, within the aligned TF binding sites identified by
experiments such as ChIP-seq (21). Compared to in vitro
techniques, such as protein binding microarrays (PBM),
which test for motifs directly involved in TF-DNA inter-
action (22), motifs discovered by in silico analysis of ChIP-
Seq datasets are influenced by cellular conditions. For in-
stance, both methods will identify a similar motif for a TF
whose binding is primarily driven by direct DNA-protein
interactions. Alternatively, if a TF motif is acutely influ-
enced by chromatin state (23), cofactor interaction (24) or
recruitment by another TF (25), then the identified motif
will be markedly different if discovered from a ChIP-Seq or
a PBM experiment. As such, these two complementary ap-
proaches of motif discovery are competent to predict the
primary recognition motif of a given TF, be it a direct or
indirect DNA interaction. However, both fail to identify
underrepresented motif variability. Subtle changes, or ex-
tensions to a core motif are statistically overlooked by the
strict thresholding required for motif discovery from ChIP-
Seq. Further, condition-dependent motif alterations can-
not be detected in vitro, as current tools are programmed
to identify motifs within a given group of sequences, com-
pared to background or a complementary set of sequences,
but not to compare the motifs, and surrounding nucleotides,
themselves. Thus, discerning subtle motif alterations or ex-
tensions influencing TF binding after introducing variables,
such as mutations, post-transcriptional modifications, small
molecules or ligands, represents a major challenge.

For instance, the biological impact of the mutation of the
first zinc finger (ZF1) of the epigenetic regulatory protein
CTCF, such as the H284N mutation, exclusive to breast
cancer and prevalent in hormone resistant breast tumors
(26), has remained elusive. Interestingly, CTCF mutations
are among the most enriched in metastatic breast tumors
compared to primary tumors, behind only ESR1 mutations
(27). In contrast to oncogenic mutations located within
CTCF ZF3-7 (28), involved in CTCF’s ability to bind its
core motif (29,30) present in ∼90% of CTCF binding sites
(CBS) (31–33), CTCF ZF1 remains uncharacterised be-
cause its crystal structure has not be obtained (34). Al-
though the truncation of CTCF ZF1 was shown to al-
ter RNA dependent binding of CTCF to specific sites, the
H284N mutation did not display such function (35). Also,

CTCF ZF1 displays the weakest affinity for DNA of all
CTCF zinc fingers and is not required for the binding of
CTCF to its core binding motif (29,34). It is known that
bases outside the core binding motif modulate CTCF bind-
ing (29,36), but it remains unknown whether CTCF ZF1
mutations (ZF1M) regulate binding to an extended motif,
or alternatively influence CTCF binding affinity through
impeding its interaction with non-coding RNAs (35). How-
ever, computational tools designed to directly compare mo-
tifs between discriminative conditions are lacking. There-
fore, we would expect current bioinformatic approaches to
fall short in identifying possible motifs variations associ-
ated to differential binding of ZF1 mutated CTCF, because
subtle changes would be ‘drowned’ by the highly conserved
elements of CTCF core binding motif. As such, new tools
are required to predict the pathogenic mechanism of mu-
tated DNA binding proteins, such as CTCF ZF1 mutations
in breast cancer.

To meet this challenge, we developed a new R pipeline,
in which we designed a new tool, MoMotif (modification
of motif analysis at single base-pair resolution). Our R
pipeline incorporates, and builds upon, the three central
analysis steps to mine ChIP-Seq data for DNA-binding mo-
tifs that discriminate between biological conditions. First,
csaw (37) is used for the identification of differentially
bound sites. Second, rGADEM (8) allows for the discovery
of enriched motifs from the given list of binding sequences.
Third, our novel tool MoMotif is capable of detecting small
or subtle variations around identified motifs, essential to an-
alyze complex motif modifications and allowing for high-
resolution identification of any discriminative motifs. Typi-
cally, each step requires multiple independent software ap-
plications (38–40). However, this R-based analysis pipeline
allows us to streamline the complete analysis sequence and
improve result visualization and interpretation of discrimi-
native motifs between biological conditions.

In this study, we profile the potential of MoMotif by
identifying the protein–DNA affinity changes conferred by
the CTCF H284 mutation and characterizing altered mo-
tif recognition ability of CTCF ZF1M. As a model we en-
gineered untransformed mammary epithelial cells to carry
solely H284N mutated CTCF. Next, we employed MoMo-
tif to best discriminate between lost or gained CTCF sites,
compared to invariant sites, upon mutation of ZF1. MoMo-
tif revealed an extension of the CTCF motif which requires
an intact ZF1 for CTCF to bind. Further, we discovered
that the loss of binding, driven by mutant CTCF ZF1 drives
changes in gene expression characteristic of the clinical phe-
notypes of CTCF mutated breast tumors.

MATERIALS AND METHODS

Cell culture

The mammary epithelial cell line MCF10A and mutant
derivatives were maintained in DMEM/F12 50/50 (Wisent,
#319-085-CL) supplemented with EGF (100 �g/ml,
Wisent, #511-110-UM), Insulin (10 mg/ml, Wisent,
#H511-016-U6), hydrocortisone (1 mg/ml, Sigma,
#H0888-1G), horse serum (2%, Wisent, #065150) and
Choleratoxin (1 mg/ml, Sigma, #C8052-2MG) in an
incubator at 37◦C and 5% CO2.
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CRISPR/Cas9 editing

CTCF H284N knock-in was performed similarly to those
we previously described in Hilmi et al. (41). sgRNA guides
targeting the genomic region around the nucleotide triplet
coding for CTCF H284 were inserted into the vector back-
bone pSpCas9(BB)-2A-GFP (PX458) (Addgene, #48138)
(Supplementary Table S1). A 250 base pair DNA donor, ho-
mologous to the region, but replacing the CAC, coding for
H284, by AAC, coding for H284N, were also designed and
ordered with IDT (Supplementary Table S1). Introduction
of plasmids and donor to 1 × 106 MCF10A cells was carried
out in a 6 cm dish using Lipofectamine 3000 (Invitrogen,
# L3000001), 6 �g of pCas9+ guide and 12 �l of 10mM
DNA Donor. Two days later, GFP-positive cells were se-
lected by fluorescence-activated cell sorting of individual
cells into 96-well plates. To screen for CTCF H284N mutant
cell clones, we isolated genomic DNA of each clone and am-
plified proximal sequences surrounding the Cas9 targets by
polymerase chain reaction. Positive clones were first iden-
tified using the SURVEYOR Assay Kit (IDT, #706020).
Then, individual alleles of positive clones were validated
by Sanger Sequencing (GenomeQuebec) following PCR
amplification and Zero Blunt TOPO PCR insertion and
Cloning (Invitrogen, #45-0245). Genomic DNA sequences
were also compared to CTCF coding sequence using BlastX
(blast.ncbi.nlm.nih.gov), to validate the presence of a muta-
tion at the H284 position (Supplementary Figure S1A).

Western blotting

Western blots were carried out as previously described (42).
Cells are lysed in whole-cell lysis buffer [20 mM Tris (pH
7.5), 420 mM NaCl, 2 mM MgCl2, 1 mM EDTA, 10%
glycerol, 0.5% NP-40, 0.5% Triton X-100, supplemented
with fresh 1 mM dithiothreitol, phenylmethylsulfonyl fluo-
ride, protease inhibitor cocktail (Roche) and phosphatase
inhibitors, bis-glycerol phosphate, and NaF] for 15 min,
then spined at 13 000 rpm at 4◦C for 15 min to pellet cellular
debris. Then, the protein concentration of the supernatant
is assessed using a Bradford assay (Fisher, #1856209). 40 �g
of proteins are loaded on 8% acrylamide gel and elec-
trophoresed 120 V for ∼1 h. Gel-separated proteins are
transferred to nitrocellulose membranes (Pall, #66485) at
4◦C, 34 V, overnight. The membrane is then blocked with
5% milk in TBST [20 mM Tris base, 137 mM NaCl and
0.1% Tween 20] for 3 h at 4◦C. The membrane is subse-
quently incubated with primary antibodies (mouse anti-
CTCF, BD, #612149; mouse anti-�-Actin, Sigma, #A5316)
overnight at 4◦C. Membranes are rinsed and washed for 10
min twice with TBST prior to secondary antibody incuba-
tion with goat anti-rabbit (SeraCare, #5220-0458) or anti-
mouse (SeraCare, #5450-0011) diluted 1/10 000 or 1/20 000
in 5% milk in TBST. Membranes are washed again for 10
min in TBST 3 times, then revealed using ECL (Biorad,
#170-5061).

ChIP-seq

70–80% confluent cells are first fixed 10 minutes in 4%
formaldehyde and stored at −80◦C. The pellets are resus-
pended in 1ml of ChIP-buffer [0.25% NP-40, 0.25% Triton
X-100, 0.25% sodium deoxycholate, 0.005% SDS, 50 nM

Tris (pH 8), 100 mM NaCl, 5 mM EDTA, 1× PMSF, 2 mM
NaF, 1× P8340 Cocktail Inhibitor (Roche)] and sonicated
with a probe sonicator (Fisher Scientific Sonic Dismembra-
tor Model 500) using the following cycles: 5 cycles at 20%
power, 5 cycles at 25% power, and 5 cycles at 30% power.
Each cycle is fixed at 10 s, and the samples are kept on
ice between each cycle to avoid overheating. The samples
are then spined and protein concentration is measured us-
ing Bradford assay, as described above. Samples are diluted
to 2 mg/ml protein in ChIP-buffer and 50 ul/ml of Pro-
tein G Plus-Agarose Suspension Beads (Calbiochem, IP04-
1.5ML) are added for 3 h to preclear. 2% of the sample is
collected as input and kept at −20◦C until DNA purifica-
tion. Immunoprecipitation is done at 4◦C overnight with
1ml of samples, 60 ul of beads and 2 �l of anti-CTCF anti-
body (Millipore, #07-729). The beads are then washed once
with Wash1, Wash2, and Wash3, varying in their NaCl con-
tent [0.10% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM
Tris (pH 8), 150/200/500 mM NaCl for Wash 1, 2, 3, re-
spectively]. Subsequently, beads are washed with Wash LiCl
[0.25M LiCl, 1% NP-40, 1% sodium deoxycholate, 1 mM
EDTA, 10 mM Tris (pH 8)] and finally, twice with TE buffer
[10 mM Tris (pH 8), 1 mM EDTA]. Next, beads are resus-
pended in elution buffer [1% SDS, 0.1 M NaHCO3]. The
samples are then decrosslinked overnight at 65C. 1 �g of
Proteinase K (Sigma, # 39450-01-6) is added for 1 h at 42◦C
and the samples DNA is purified using BioBasic DNA col-
lection column (BioBasic, #SD5005). DNA concentration
is assessed via Picogreen assay (Invitrogen, #P7589). Mini-
mally 15 ng of each ChIP samples was sent to GenomeQue-
bec for library preparation and next-generation sequencing.

ChIP-seq quality control and genome alignment

Quality control of reads and sequencing was assessed
before and after trimming by FastQC (Babraham Bioin-
formatics). Reads were trimmed with Trimmomatics
(43) using the following parameters: ILLUMINA-
CLIP:$Adapters:2:30:10, LEADING:30, TRAILING:30,
SLIDINGWINDOW:4:30, MINLEN:30. Aligned on
hg19 human genome was performed using BWA (44).
Sam file generated by BWA is converted to bam format
using Samtools (44). Genomic distribution and Reactome
Pathway enrichment were performed using clusterProfiler
pipeline (45).

ChIP-Seq heatmaps, profile plot, tracks

Heatmaps, profile plot and tracks were generate using deep-
Tools (46). Heatmaps and Profile plot were generated using
3kb regions centered around the differential peakset. Both
the computeMatrix and plotHeatmaps were used with de-
fault parameter; yMax, zMax and colors were adjusted in
each condition to better represent the results. Tracks were
generated as profile plot of the single genomic regions of
interest with a gene annotation track from IGV (47) under
each figure to represent the relative location of the gene of
interest.

ChIP-Seq MACS2 and DiffBind

Comparative peak calling was performed with MACS2
(48) under default conditions, with normalization on the

http://blast.ncbi.nlm.nih.gov
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respective Input datasets of each cell lines. Differentially
binding regions were quantified using DiffBind 3.0 (49).
Bam and narrowPeak files for each samples and bam
files of the corresponding input were used. CTCF nor-
malization and analysis was performed with the follow-
ing parameters: normalize = DBA NORM DEFAULT, li-
brary = DBA LIBSIZE PEAKREADS, background = F,
bREtrieve = F. Threshold of significance were set at FDR
≤ 0.05.

MoMotif analysis pipeline

The analysis sequence for the discovery of modification of
motif is comprised of three principal steps: Step1: identi-
fication of sites of differential DNA binding; Step 2: dis-
covery of motifs enriched within DNA binding sites that
are either gained, lost or stable binding under experimental
conditions; and Step 3: learning the discriminative motifs.
These steps are conducted using three R packages: csaw,
rGADEM and MoMotif, as illustrated in Figure 2. The
first two packages have been widely utilized by the scien-
tific community, but MoMotif, written in R, was developed
specifically for this project.

Step 1: Differentially binding analysis: csaw: The first step
involves quantifying binding intensity/counts from the
aligned ChIP-Seq reads and de novo detection of differ-
entially bound regions while controlling the genome-wide
false discovery rates (FDR). For these processes, we rely
on an existing R package, csaw (37). csaw uses a sliding
window-based approach to summarize read counts across
the genome. It examines the differential binding at the
window level using quasi-likelihood F-tests with empir-
ical Bayes-based dispersion estimations, which naturally
handle low, over dispersed counts with a limited number
of replicates (50). csaw then aggregates adjacent windows
into regions for output. The P-values for the aggregated
regions are calculated using Simes’ method (51), which
correctly controls FDR at the region level. Our detailed
steps for this differential binding analysis are summarized
in Supplementary Figure S2A. We used a window of size
of 10 bp with spacing of 50 bp to count the aligned reads.
The differentially bound regions were detected using an
FDR cut-off of 0.05. The outputs from this csaw pipeline
are three sets of genomic regions (of varying lengths);
experimentally-induced (i) gain of binding, (ii) lost bind-
ing and (iii) binding regions with no statistically significant
differences between control and experimental conditions.
Hereafter we refer to these three sets of genomic sequences
as gained, lost and constant clusters.

Step 2: de novo motif discovery, rGADEM: Once lists of
binding regions are returned by csaw, the next step of
our new pipeline involves discovering enriched motif mod-
els. For this step, we rely on another existing R package
rGADEM (52) (Droit A, et al. R package version 2.42.0),
built upon the GADEM algorithm (8). GADEM is an
efficient de novo motif discovery method that combines
the two commonly used techniques for pattern match-
ing; word enumeration and probabilistic local search. Enu-
merative methods identify motifs by counting all m-letter
patterns, such as the method Drim (53). Probabilistic ap-
proaches model starting positions of motif patterns as la-
tent variables and infer the final motif models using the

Expectation-Maximization (EM) algorithm; such meth-
ods include MEME (54,55) and fdrMotif (56). Specifi-
cally, GADEM constructs spaced dyads by enumerating
candidate words (4 to 6 nucleotides), and then uses them
as starting positions to guide an EM algorithm for unbi-
ased motif discovery.

We applied rGADEM to the three clusters of sequences
obtained from the differential binding analysis step. To ease
the computational burden and to focus on the most robust
differentially bound motifs, we performed the motif discov-
ery analysis exclusively on the top 1000 regions in the gained
and lost clusters, and the bottom 1000 regions (with the
largest adjusted P-values) in the stable cluster, separately.
The main outputs include the enriched motif models for
each cluster, represented by either position weight matri-
ces or consensus logos. Along with a specific motif, rGA-
DEM also reports other helpful information, including all
sequences in the input data incorporating this motif and
the location of the identified motif patterns in the original
sequence data. This information is subsequently employed
as the input for the following discriminative motif analysis
step.

Step 3: Discriminative motif analysis and result visualization,
MoMotif: To detect small or subtle variations built upon a
primary known motif, we have developed a new discrim-
inative motif analysis tool, MoMotif, that represents the
concluding step in our pipeline. This approach starts with
the short core motif reported by rGADEM, which incor-
porates the core pattern of our primary known motif. We
then retrieve and align all sequences carrying this core mo-
tif, referred to as core sequences, for each cluster. For a
comprehensive characterization of subtle variability oc-
curring within and around the core motif, we extend both
ends of the core sequences by several base pairs (a user-
chosen parameter permitting versatility). This strategy re-
sults in a set of adequately aligned long sequences of the
same lengths, which allows us to compare the nucleotide
distribution at each single base-pair to see which base pairs
seem to distinguish clusters.

Next, we are able to compare the extended sequences in
the lost or gained cluster to the stable cluster by assessing
the statistical significance of differences in nucleotide fre-
quency at each position. We used the Pearson’s chi-square
test to assess the statistical significance of the difference in
nucleotide distribution at one position between two sets of
aligned sequences (lost vs. stable or gained vs. stable). For a
given position, let n j

i be the number of sequences in Group
i that have nucleotide j at this position, where i = 1, 2
and j = A, T, G and C. Let ni be the total number of
sequences in Group i , n j be the number of sequences with
nucleotide j at this position in both groups, and n be the
total number of considered sequences, i.e. n = n1 + n2 =
n A + nT + nG + nC. These notations are summarized in the
following contingency table:

A T G C Total

Group 1 n A
1 nT

1 nG
1 nG

1 n1
Group 2 n A

2 nT
2 nC

2 nG
2 n2

Total n A nT nG nC n
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Figure 1. H284N mutation of CTCF ZF1 alters a subset of DNA binding sites. (A) Enrichment of copy number loss of CTCF in ZF1M in tumors of all
origin (N = 13, P = 0.0018) and ZF1M in breast tumors (N = 6, P < 0.0001) compared to Non-WT Non-ZF1M CTCF tumors (N = 258). (B) Bar chart
representation of the increased frequency of CTCF LOH in CTCF ZF1M in BRCA (N = 5) compared to CTCF WT BRCA (N = 1045) and CTCF WT
tumors of all cancer (N = 10 607). (C) CTCF ChIP-Seq heatmaps of commonly constant, gained and lost CBS (csaw, FDR < 0.05). (D–F) Pie Charts of
the number of CBS commonly altered or uniquely altered CBS in each clone, coupled with profile plot representation of read density at these specific sites.
Beside the 1013 uniquely lost in ZF1M/-, all groups of altered CBS display nearly identical changes in read density in both mutant cell lines.
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Figure 2. Flowchart representation of an R pipeline utilizing newly developed software MoMotif to identify complex DNA binding motifs based on
ChIP-seq profiling.

Specifically, the chi-square test compares the observed
frequencies in each subcategory with the frequencies one
would expect if the two groups had the same nucleotide dis-
tribution. The expected frequencies, denoted as E j

i , are of
the form:

E j
i = ni × n j

n
for i = 1, 2 and j = A, T, G, C.

Then the observed chi-squared test statistics can be cal-
culated as

obs χ2 =
∑

i∈{1, 2}

∑
j∈{A, T, G, C}

(
n j

i − E j
i

)2

E j
i

.

The P-value for the chi-squared test is thus defined as the
right-tailed probability in a χ2 distribution with degrees of
freedom 3, i.e.

P-value = P(χ2
3 > obs χ2).

We repeated the test for all positions in the extended se-
quences and reported the p-values for each position. To
control the family-wise error rate at a 5%, we suggest a strin-
gent P-value threshold of 1 × 10–10 for declaring signifi-
cance of a single position, which was derived from the ap-
proximate total number of 50M nucleotides in a small hu-
man chromosome. We also provided visualization to com-
pare the significance level at each position relative to the
overall significance level in the extended region. Therefore,
discriminative motif models are then identified as the small-
est sub-region containing all sites reaching our stringent
threshold of significance.

In addition, the MoMotif package contains functions
for various output visualizations, including bar-plots show-
ing the frequency for each nucleotide in a given set of
sequences, sequence logo for the identified discrimina-
tive motif models and their position to the core motif
of our interest. In our data analysis, we treated the 10th
nucleotide in the canonical CTCF motif, shown in Fig-
ure 3A, as the center and extended by 30 bp on both
directions.
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Figure 3. MoMotif identifies a unique motif enriched for CBS compromised upon mutation of ZF1 (A) Classical CTCF motif outputted by rGADEM. (B)
Frequency of overlap with CTCF-Like motif in each 1000 sites subset. (C) MoMotif analysis of base frequency difference and p-value of bases distribution
difference around CTCF-Like motif in common lost and gain CBS subsets compared to common constant subset. The purple line represents the middle of
the CTCF Motif. The dotted line represented the selected region shown in (D) (D) MoMotif results depiction as the height of each nucleotide representing
the Shannon Entropy of its occurrence frequency at each position in each subset. Highlighting the extended motif (40A, 43G, 46C) in the lost subset. (E)
Bar chart representing the relative presence of each individual and combined element of the extended motif in each subset. Showing an enrichment of the
partial or complete extended motif in the lost subset, while the complete or partial extended motif is absent from the gain sites. Highlighting a role for
CTCF ZF1 in the recognition of this sequence.
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MEME suite––SEA (simple enrichment analysis)

The same subset of the top 1000 constant and lost sites from
CTCF ZF1M/ZF1M used for MoMotif analysis were used
for SEA analysis. SEA was run on the MEME suite web
tool (https://meme-suite.org/meme/tools/sea), using the op-
tion ‘Shuffled Input Sequences’ for the motif enrichment in
mutant cell line alone and ‘User-provided Sequences’ for the
comparative enrichment analysis of lost sites against con-
stant sites.

Individual zinc finger motif prediction

Human CTCF amino acid sequence from Ensembl (https:
//useast.ensembl.org) was inputted in Perkov et al. (57,58)
webtool (http://zf.princeton.edu/b1h/index.html). 3bp pre-
dicted sequence from the F2 model were used for our anal-
ysis.

RNA-seq

RNA-Seq sample preparation and sequencing. Total RNA
was extracted according to Sigma RNA Extraction Kit
(Sigma, #RTN350-1KT) protocol. RNA quantity and
quality was measured using Nanodrop. RNA was sent to
Genome Quebec for polyA RNA library preparation using
NEBNext Ultra II Directional RNA Library Prep Kit for
Illumina and sequencing of 50M 100 bp Paired-End reads
per replicate on Illumina NovaSeq 6000 platform.

RNA-Seq data processing and analysis. The overall qual-
ity of reads and sequencing was assessed before and af-
ter trimming using the FastQC package (Babraham Bioin-
formatics). Prior to mapping, reads were trimmed with
Trimmomatics (43) using the following condition: IL-
LUMINACLIP:$Adapters:2:30:10:8:true, HEADCROP:4,
SLIDINGWINDOW:4:30, LEADING:3, TRAILING:3,
MINLEN:30. Alignment on hg19 human genome was per-
formed with STAR (59) default parameters, and converted
into bam format using Samtools (44). Differential expres-
sion analysis was generated using FeatureCounts count
matrix (60) followed by DESEQ2 analysis (61), using de-
fault parameters and prefiltering, for comparison across
samples.

RNA-Seq dot plot. Dot plot representation of the RNA-
Seq results was generated using the DESEQ2 calculated
log2FC and −log(adjusted P-value) of the respective mu-
tant MCF10A compared to CTL MCF10A for every gene
with a basemean >100. Genes with P-value <0.05 were rep-
resented in grey. Genes with log2FC > 1 were represented in
orange. Genes with log2FC <−1 were represented in purple.

RNA-Seq GSEA pathway analysis. Pathway analysis was
performed using GSEA tools (62) default setting on the
read count matrix of all genes (basemean > 10). All gene
sets shown were significant for both P-value (<0.001) and
FDR (<0.25). Pathway names were shortened for esthetic
purposes in the Figure 5B, with the full name of each path-
way being written in Figure 5C.

RNA-Seq heatmaps. Heatmaps were generated using the
log2FC with CTL MCF10A of genes with the high-
est absolute log2FC from the following significantly al-
tered pathways: ‘GOBP RESPONSE TO XENOBIOTI
C STIMULUS’; ‘REACTOME EXTRACELLULAR M
ATRIX ORGANIZATION’

TCGA RNA-Seq analysis. Average gene expression of
each gene in breast cancer patient with CTCF ZF1M was
compared to average gene expression in CTCF WT breast
tumors. Log2FC of significantly altered genes in patients
were then compared to log2FC of significantly altered genes
in MCF10A CTCF ZF1M/ZF1M and CTL.

Hi-C

Hi-C Sample preparation and sequencing. Hi-C data was
generated from two biological replicates of 1M CTL
MCF10A cells, using the Arima-HiC kit, according to
the manufacturer’s protocols (Arima Genomics). Library
preparation was performed using KAPA Hyper Prep
Kit (#07962312001) following Arima protocol for library
preparation. Libraries were sent at TCAG at SickKids Hos-
pital for next-generation sequencing using Illumina No-
vaseq S1 flowcell (paired-end 50 bp sequencing, ∼300M
reads per replicate)

Hi-C data processing and analysis. Quality control of
reads and sequencing was assessed by FastQC (Babraham
Bioinformatics). Raw sequencing read were mapped, fil-
tered and binned using the runHiC pipeline (63). Contact
matrix were binned at 5 and 10 kb resolution and stored in
‘.cool’ format.

Hierarchical TAD calling. Hierarchical TAD calling was
performed using the hiTAD function of the TADLib pack-
age (63) and SpectralTAD package (64), using the 10 kb
resolution contact matrix and default settings.

Colocalization analysis. TSS of altered genes
(FDR < 0.05) and altered CTCF sites were mapped
to TAD/subTAD boundaries (±1 resolution bin/10 kb) or
within each TAD/subTAD. The distribution of strongly
gained and lost gene (abs(logFC) > 1) compared to all
mapped genes was measured and compared using a ChiSQ
test in each distribution of: TAD/subTAD, TSS location
and CTCF status.

Quantification and statistical analysis

Unless stated otherwise, all graphical representations dis-
play the mean and SEM of the sample’s distribution and P-
values are determined with Student’s one-tailed T-test. Un-
less stated otherwise, graphics were generated using Graph-
Pad Prism 9.1, GraphPad Software, San Diego, CA, USA,
www.graphpad.com. CTCF visual model and figures were
drawn and arranged using Inkscape (https://inkscape.org/).

RESULTS

CTCF ZF1M is associated with CTCF LOH in breast cancer

To gain insight into the biological importance of CTCF
ZF1 mutation, we first sought to interrogate the clinical

https://meme-suite.org/meme/tools/sea
https://useast.ensembl.org
http://zf.princeton.edu/b1h/index.html
http://www.graphpad.com
https://inkscape.org/
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Figure 4. Extended Motif of CTCF is associated to an altered binding conformation. (A) Predicted 3bp sequences recognized by each ZF of CTCF by
Persikov et al. (57,58). (B) Alignment of the predicted motif to the motif identified by MoMotif for Constant and Gain CTCF binding sites. (C) Alignment
of the predicted motif to the extended motif identified by MoMotif for Lost CTCF binding sites. For (B) and (C), colored vertical bars represent a match
between the primary called base at each position and grey vertical bars represent a match between a secondary called base and a primary base.

correlation between ZF1 mutation and CTCF Loss of Het-
erozygosity (LOH). CTCF LOH is observed in a majority
of breast tumors and we investigated a potential association
or exclusivity of CTCF ZF1M and CTCF LOH to iden-
tify the most common clinical genotypes of CTCF ZF1M
in breast tumors. Using copy number variation data from
cancer patients within the TCGA 2018 dataset, we detect
a significant downregulation of copy number in patients
with CTCF ZF1M, of which CTCF H284N was the most
common, compared with patients with other CTCF muta-
tions or with WT CTCF (Figure 1A). Among CTCF muta-
tions across tumor types, the association between ZF1 mu-
tation and CTCF LOH is the most pronounced, especially
in breast tumors (Figure 1A). Indeed, ∼83% of breast tu-
mors with CTCF ZF1M co-occur with CTCF LOH (Fig-
ure 1B). Comparatively, CTCF LOH is detected in ∼52% of
breast tumors and ∼16% of other types of tumors when WT
CTCF is expressed from the second allele. Therefore, we
conclude that a significant co-occurrence of CTCF ZF1M
and CTCF LOH is found within breast tumors.

In light of these observations, we decided to explore the
biological impact of CTCF ZF1M in breast epithelium us-
ing two relevant models. First, the ZF1M/- model, in which
the CTCF H284N mutation is inserted into one allele while
the second allele of CTCF is knocked-out, similar to the
most commonly observed genotype in the clinic. Second,
the ZF1M/ZF1M model, in which a biallelic insertion of
the CTCF H284N mutation results in the sole expression
of the mutated form of CTCF at the same expression level
as the control cell line, to account for any biological effects
of the lower CTCF protein levels in the ZF1M/- cell line.
Using CRISPR-Cas9, we generated clonal lines for each of
these genotypes, by knocking-in the CTCF H284N muta-
tion or knocking-out CTCF in MCF10A cells (Supplemen-
tary Figure S1A, B). MCF10A were chosen as they are im-
mortalized, but not transformed, mammary epithelial cells,
suitable to study the impact of the CTCF ZF1M in early
events of breast cancer formation, without confounding ef-
fects of complex oncogenic mutations carried in breast can-
cer cell models.



8450 Nucleic Acids Research, 2022, Vol. 50, No. 15

Figure 5. CTCF ZF1M drives oncogenic transcription profiles. (A) Dot plot representation of the RNA-Seq Log2FC of the individual mutant to control
MCF10A on each axis. Showing a strong correlation and reproducibility between the samples (with Pearson correlation and test P-value displayed). (B)
GSEA enrichment representation of significantly upregulated and downregulated pathways. Heatmap of the Log2FC with control MCF10A of significantly
altered genes in these pathways. Showing an upregulation of genes related to drug metabolism and downregulation of genes related to ECM. (C) Top 10 up
and downregulated pathways (sorted by GSEA FDR) in Gene Ontology and Reactome Databases. Filled orange bars are linked to drug metabolism and
filled purple bars are linked to ECM organization. Showing an over-representation of these pathways among the top altered pathways in diverse databases.
(D) CTCF ChIP-Seq track around altered genes from the RNA-Seq in MCF10A CTCF ZF1M versus CTL and in TCGA Breast Tumor CTCF ZF1M
versus CTCF WT related to Xenobiotic metabolism and extracellular matrix organization. Showing a significant loss of CTCF binding in proximity to
ADAMTS1 promoter (P = 8.91 × 10–5 and 0.003054 for ZF1M/ZF1M and ZF1M/- respectively) and within SLC20A1 (P = 7.28 × 10–5 and 0.001778 for
ZF1M/ZF1M and ZF1M/- respectively). (E) Pie chart showing a majority of genes significantly altered in the MCF10A models are also significantly altered
in the same direction in breast tumors data from TCGA database when comparing changes in gene expression associated to CTCF ZF1M. Significance of
the correlation between the alteration of gene expression of the two datasets is also shown.
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CTCF H284N mutation leads to altered DNA binding

Next, to clarify the debated importance of ZF1 for co-
ordinating CTCF-DNA interaction, we tested the hypoth-
esis that the H284N mutation might alter CTCF bind-
ing to the DNA. Towards this goal, we carried out ChIP-
Seq for CTCF using MCF10A CTL, ZF1M/ZF1M and
ZF1M/-. 48 340 CTCF binding sites (CBS) were identi-
fied in CTCF CTL cells, consistent with other studies (65).
Following csaw differential binding analysis, we identified
27997 constant CBS between all three conditions, 3812
gained CBS in both ZF1M/- and ZF1M/ZF1M and 6556
commonly lost CBS (FDR ≤ 0.05) (Figure 1C/D). Inter-
estingly, the genomic distribution of the altered CBS was
not prominently different from the constant CBS, beside a
slight enrichment of altered CBS on distal intergenic ele-
ments (Supplementary Figure S1C). Overall, the changes
in CTCF were consistent between the two mutant cell lines.
CBS gained in the ZF1M/- cell line were also gained in
ZF1M/ZF1M cells, however, without reaching a thresh-
old for significance (Figure 1E). On the other hand, sites
gained in the ZF1M/ZF1M cell line appeared as low sig-
nal CBS in CTL displaying a slightly increased read density
in both mutants, but only reaching the significance thresh-
old in ZF1M/ZF1M, likely due to the higher availability
of CTCF in this cell line, compared to the ZF1M/- cells
(Figure 1E). Similarly to gained CBS, lost CBS within the
ZF1M/ZF1M cell line were likewise frequently lost in the
ZF1M/- cells (Figure 1F), indicating a high degree of sim-
ilarity between ZF1M/ZF1M and ZF1M/- cells. The only
subset of altered CBS that did not display a strong similarity
between the 2 mutant cell lines were the 1013 CBS uniquely
lost in ZF1M/-, which are likely caused by the lower levels
of CTCF (Figure 1F).

Independent ChIP analysis from previously published re-
ports help validate our findings. We compared the CTCF
binding profile of our mutant cell lines with a CTCF WT
ChIP-Seq dataset from an independent study (66). Here, the
altered CBS called by csaw were markedly consistent (Sup-
plementary Figure S1D), with our own MCF10A dataset,
suggesting that changes in CTCF binding are intrinsic to the
mutant clones. Further, the changes in CTCF binding in our
mutant MCF10As were also consistent when the datasets
were analyzed with a different pipeline, using MACS2 (48)
for peak calling and DiffBind (49) for differential binding
analysis (Supplementary Figure S1E). Therefore, these re-
sults indicate that the CTCF H284N, ZF1 mutation, likely
induces a shift in the ability of CTCF to recognize or bind
DNA. Also, due to the strong similarity between our mod-
els, the influence of the CTCF mutation on DNA binding
seems to be largely independent of varying CTCF expres-
sion levels, hinting at a molecular mechanism underpinning
the altered binding that does not include a stochastic loss in
the general ability of CTCF to bind DNA.

Classical motif enrichment analysis

Following the identification of differentially bound sites,
our next goal (and subsequent step of our motif discovery
pipeline, represented in Figure 2) was the identification of
enriched motifs. To do so, we first constructed representa-
tive subsets of each cluster by selecting the 1000 most signifi-

cantly altered sites in the Gained and Lost clusters, based on
the FDR-adjusted q-values. In contrast, to characterize the
‘Constant subset’, of unchanged CBS, we selected the 1000
least significantly changed binding regions. Analysing these
subsets, as opposed to the entire cluster, focuses the analy-
sis on the most relevant sites, thereby filtering out less sig-
nificant differentially bound sites that might arise stochas-
tically. Also, the selection of subsets reduced the computa-
tional burden, optimizing the analysis time and making the
pipeline we developed more amenable for individuals work-
ing on less powerful hardware.

Once subsets were defined, we performed motif discovery
analysis on these three clusters using rGADEM. We addi-
tionally compared the identified motif patterns to the JAS-
PAR database and reported the significant matching motifs.
Not surprisingly, rGADEM identified the CTCF motif as
the most represented motif in all three clusters (Figure 3A).
Indeed, the core CBS is found in 78% to 93% of all CTCF
binding sites, depending on the cell line being probed (Fig-
ure 3B). However, as expected, the tools used for standard
motif discovery analysis were unable to identify changes in
motifs associated with altered binding affinity. This is ex-
pected since subtle changes would be drowned by the high
representation of the CTCF core binding motif. Therefore,
we continued our motif analysis using MoMotif.

Novel MoMotif analysis

To detect single nucleotide changes in the binding sequences
of Lost or Gained CTCF sites, we aligned and extended the
CTCF-like motifs to a 61-bp sequence centred at the mid-
point of the canonical CTCF motif (represented by the pur-
ple dotted line in Figure 3C). The extension of the sequence
allows us to focus on single nucleotide changes, within and
outside of the classical ∼15 bp CTCF motif, that poten-
tially influence CTCF binding affinity. Then, using MoMo-
tif, we calculated frequency differences and P-values at each
nucleotide within the extension, comparing the Lost and
Gained subsets to the Constant subset, within the common
altered sites (Figure 3C) and in each mutant cell line indi-
vidually (Supplementary Figure S3A, B). We defined a sec-
tion of the extended sequences containing every position
reaching the required statistical threshold (P < 1 × 10–10)
and a frequency differences greater than 0.1, in the lost or
gained sites. Specifically, from position 25 to 48, as indicated
by the black dashed line in Figure 3C, which encompass a
downstream extended CTCF core binding motif. We there-
fore defined this subsection of the original 61 bp sequence
as our newly-identified nucleotide region capable of influ-
encing CTCF binding affinity in the context of the H284N
mutation. Akin to the alteration of CTCF binding between
our two mutants cell lines, the changes in nucleotides fre-
quency were also markedly consistent (Supplementary Fig-
ure S3A, B).

By depicting these new motifs with the height of each nu-
cleotide representing the Shannon Entropy of its occurrence
frequency at each position (Figure 3D), we visually high-
light the unique extended motif enriched at each position.
This reveals an extended motif specific to the lost sites de-
fined by an A at position 40, a G at position 43 and a C
at position 46. Interestingly, the G at position 43 also dis-
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plays the lowest p-value and highest frequency difference
when comparing lost sites to constant sites in all condi-
tions (Figure 3C, Supplementary Figure S3A, B). Further-
more, the extended motif identified with MoMotif is homol-
ogous to the previously defined module 4 of CBS, carry-
ing a very weak consensus, identified by ChIP-exo (36) (30).
Although a mechanism explaining how CTCF recognizes
this motif was not revealed in prior publications, module
4 of the CTCF binding motif has been associated with a
stronger DNA-binding affinity of WT CTCF. This conclu-
sion is supported by our observations (Supplementary Fig-
ure S4A) and these results, from independent studies, vali-
date the predictive value of MoMotif.

The extended motif influencing the association of CTCF
to DNA through ZF1 appears to be mediated by three nu-
cleotides at position 40, 43, 46. The enrichment of the ex-
tended motif in the sites lost in cells carrying the H284N
mutant becomes even more prominent when investigating
the proportion of the 1000 sites that display a combination
of two or three of these specific nucleotides. Indeed, 24%
of common sites lost across both our mutant cell lines, co-
localizing with a CTCF-like motif, displayed the three defin-
ing nucleotides of the extended sequence. In contrast, only
6% and 2% of Stable and Gained sites, respectively, carried
this motif. Furthermore, the combination of at least two of
these nucleotides was found in 66% of Lost sites, compared
to 33% and 8% of Stable and Gained Sites, respectively. The
exclusion of this extended sequence in the Gained Sites is
also represented in the proportion of CTCF-like sites that
do not include any of the three nucleotides, being 54% in the
Gained Sites, compared to only 6% in the Lost Sites (Figure
3E).

As a comparison, we analysed the lost sites using the clas-
sical motif enrichment tool SEA, from the MEME Suite.
SEA identified the CTCF core binding motif as the most
enriched motif in the lost sites (Supplementary Figure S4B),
similarly as earlier steps in our pipeline. When using the
MEME suite software to carry out motif enrichment analy-
sis comparing the lost CTCF sites with constant sites, SEA
identified differentially enriched motifs in a small subset
of lost sites, with low frequency of True Positives (TP) be-
low 10% for each motif. These marginally differentially en-
riched motifs are also located in regions surrounding the
center of the sequences, where a consensus CTCF motif
is located (Supplementary Figure S4C), inconsistent with
a ZF1-specific effect. However, software from the MEME
suite, such as SEA, does not identify unique motifs, differ-
entially enriched between conditions, or motifs only par-
tially present in both, a necessity to output a single nu-
cleotide analysis of the modification of a specific motif be-
tween the conditions. Therefore, classical motif enrichment
analysis is competent to identify TFs showing differential
binding between conditions, but can not precisely identify
changes to a specific motif under variable conditions, as
summarized in Supplementary Figure S4D.

In sum, MoMotif can be used to facilitate the discovery
of subtle motif changes after the introduction of experimen-
tal variables. As will be detailed below, MoMotif may also
be used to compare DNA motifs within subsets of single
datasets, including ChIP-seq and Hi-C. Regarding CTCF,

we used MoMotif to define a unique DNA motif that re-
quires CTCF ZF1 for recognition. This motif is strongly
associated with the sites lost upon ZF1 mutation and was
ignored by classical motif analysis tools. These data sug-
gest a model where the CTCF ZF1 mutation induces a loss
of function rendering the mutant CTCF unable to bind,
or recognize, the extended sequence, leading to its stochas-
tic redistribution on CBS without this sequence, specifically
those that do not require ZF1 to bind appropriately.

Structural analysis of CTCF zinc finger-DNA contacts sug-
gests conformation changes imparted by zinc finger 1 muta-
tion

CTCF is known to use variable combinations of zinc fingers
to flexibly bind diverse sites on the DNA (67). Therefore, we
investigated whether the modified CTCF motif identified
by MoMotif was recognized by a specific combination of
CTCF zinc fingers requiring ZF1. We used per-domain pre-
dictions of CTCF ZFs DNA-binding specificity using the
software and databases from Persikov et al. (57,58), to iden-
tify 3bp sequences that are recognized by individual CTCF
zinc finger (Figure 4A). CTCF ZF3 to ZF7 are known to
mediate strong binding to the CTCF core binding motif
(29,30). When aligning the ZF3-7 consensus motif with the
motifs identified in the constant and gained clusters, a ma-
jority of the bases identified at each position match be-
tween motifs (92.8% and 85.7% against the constant and
gain motifs respectively) (Figure 4B). These associations
indicate that CTCF recognizes the motif identified within
the constant and gained sites independently of CTCF ZF1
and is therefore not directly hindered by the mutation of
ZF1. In contrast, the extended motif enriched in the lost
cluster aligns with a different combination of ZFs. Indeed,
although ZF7 to ZF4 match similarly to the first half of
the extended motif (Figure 4C), the primary DNA base
matches with ZF3 at the constant sites is replaced by sec-
ondary matches at lost sites. Further, a strong de novo pri-
mary match motif is observed at both ZF2 and ZF1 within
the sites lost in ZF1M cells (Figure 4C). These results hint
at an enrichment, at lost sites, of sequences that require the
combination of ZF4-7 and ZF1-2, with a possible variation
in ZF3 binding, to be appropriately recognized and bound
by CTCF. As CTCF H284 is necessary for the coupling of
the zinc ion, crucial to the ZF structure, it is expected that
ZF1M structure would be aberrant and therefore, unable to
carry out its function. In turn, blocking the ability of the
ZF1-2 tandem to properly recognize the A and G of the ex-
tended motif, resulting in a dissociation specifically at these
sites. However, the zinc finger structure alone can not ex-
plain the presence of an extended motif from position 46 to
48, primarily defined by a C at position 46, hinting that a
secondary binding mechanism of ZF1, beyond its binding
of 3 core bp is at play, or alternatively, a protein, or RNA co-
factor may influence the DNA recognition by CTCF ZF1.
Overall, this analysis strongly supports our model that ZF1-
mutation of CTCF is unable to bind an extended motif at a
subset of CBS, and this pool of CTCF is then redistributed
to gained sites stochastically, where ZF1 binding is not re-
quired.
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MoMotif reveals increased stability of the core CTCF binding
motif at domain boundaries

MoMotif is a versatile computational tool that may not
only be used to compare DNA-binding motifs across ChIP-
seq samples, but can also be used to compare complex DNA
motifs present within subsets of a single ChIP-seq dataset.

CTCF plays an essential role in the organization of chro-
matin conformation, in part by defining the boundaries of
Topologically Associated Domains (TADs). Therefore, we
asked whether ZF1 mutation impacted differentially the
binding of CTCF at sites maintaining 3D chromatin orga-
nization. Towards this goal, we used the genomic coordi-
nates of TADs and subTADs (defined as self-associating
domains within TADs), binned at 10kb, using our Hi-C
datasets from CTL MCF10A to provide topological context
to our CTCF ChIP-Seq. TAD and subTADs were called
using the hierarchical TAD caller hiTAD (63), ranked best
TAD caller in term of average concordance over normaliza-
tions and resolutions in Zufferey et al. 2018 (68). Further, as
different TAD callers may output variable boundaries from
a same sample, we also used SpectralTAD (64) to call and
compare boundaries at 10kb resolution. Overall, ∼97% of
boundaries called by hiTAD in our CTL MCF10A were
called in the same region (± 1

2 bin/5kb) by SpectralTAD
(Supplementary Figure S5A), confirming the reproducibil-
ity of the topological context we provided.

Next, we categorized all CBS of the CTL MCF10A cells
based on their co-localization with a TAD boundary, a sub-
TAD boundary, or not on a domain boundary, indepen-
dently of whether they are constant or lost in the ZF1M
lines. Overall, 10 276 and 4915 CBSs colocalized with a
TAD or a subTAD boundary, respectively, compared to
36 029 CBS that did not colocalized with any boundaries.
These ratios are consistent with multiple previous investiga-
tion of CTCF and TAD colocalization (69,70).

Next, we used MoMotif to identity any discriminative
modifications of the CTCF motif comparing sites at sub-
TAD boundaries, TAD boundaries, or not at boundaries
(Supplementary Figure S5B, C). We found that the CTCF
core binding motif is exquisitely consistent on subTAD and
TAD boundaries (Supplementary Figure S5B, C). However,
when comparing the CBS motif found at TAD boundaries
to CBS outside TAD and subTAD boundaries, MoMotif
detected an increased variability around ZF3 and ZF2 and
to, a lesser extend, between ZF6 and ZF7. However, no spe-
cific enrichment for a particular base was observed at these
positions. Instead, the bases recognized by these ZFs dis-
played a reduced Shannon Entropy, hinting at an increased
motif disparity for CBS found within domains compared to
CBS found at their boundaries, perhaps highlighting their
diverse roles. Interestingly, the extended motif associated
to lost CBS in CTCF ZF1M mutated cell lines is equally
present on CBS colocalizing or not with a boundary. Sup-
porting this conclusion, when comparing the genomic local-
ization of constant and lost CBS between CTL and ZF1M
MCF10A lines, the sites are distributed equally among do-
main boundaries or within domains (Supplementary Figure
S5D). These results demonstrate, in a unique context, the
sensitivity of MoMotif to identify precise regions of vari-
ability around a given motif, while showing that CTCF ex-

tended motif and its associated lost binding sites of CTCF
ZF1M are not enriched in specific topological contexts.

Gene expression changes induced by CTCF ZF1M concur
with observed clinical phenotypes

Next, we investigated whether the changes in CTCF bind-
ing might be associated with transcriptional changes that
might underpin the clinical phenotypes observed in CTCF
mutated breast tumors (26,27). First, we used RNA-Seq
to define the differences in steady state RNA levels be-
tween MCF10A CTL, CTCF ZF1M/ZF1M and CTCF
ZF1M/-. Overall, the changes in gene expression observed
were highly conserved in both mutant cell lines, highlight-
ing the impact of the H284N mutation on regulating gene
expression. Indeed, when correlating the respective log2FC
of both mutant lines with MCF10A CTL, the lines car-
rying the H284N mutation displayed a strong correlation
(r = 0.7811 and P-value < 0.0001) (Figure 5A). Approxi-
mately 95% of significantly altered genes (FDR ≤ 0.05) in
ZF1M/ZF1M cells were altered in the same direction in
ZF1M/-, while 69% and 76% of strongly up and downreg-
ulated genes (abs(log2FC) ≥ 1) in ZF1M/- were strongly al-
tered in both cell lines. Similar to the ChIP-Seq distributions
and MoMotif nucleotide frequency, the effect of the muta-
tion appears to be dominant over any effects of the LOH.

Next, we used GSEA to run pathway analysis of altered
genes in both mutant cell lines. Interestingly, pathways as-
sociated with drug metabolism were consistently among the
top upregulated pathways (Figure 5B, C). Our RNA-seq
analysis also revealed that pathways involved in extracellu-
lar matrix (ECM) organization were among the top down-
regulated pathways (Figure 5B, C). Multiple genes involved
in these pathways, such as ADAMST1 and SLC20A1, are
proximal to lost sites of CTCF in ZF1M/ZF1M or ZF1M/-
cell lines (Figure 5D). These genes are also within the ma-
jority of genes that were significantly altered in the same
direction in our model and in patient’s CTCF ZF1M breast
tumors compared to CTCF WT breast tumors from TCGA
datasets (Figure 5E). Consistent with our data, CTCF
H284N mutations are frequently enriched in hormone re-
sistant breast tumors (26). We propose that the upregula-
tion of metabolic pathways that target xenobiotics may ex-
plain this phenomenon. We also propose that changes to
the ECM may underlie the increased metastatic abilities of
CTCF mutated breast tumors (27), also consistent with pre-
vious reports (71–74).

Loss of CTCF binding within TADs is associated with the
changes in gene expression

We next sought to determine the mechanisms underlying
the transcriptional changes apparent in H284N-carrying
cells. Because CTCF modulation of transcription may be
highly dependent on the topological organization of the
chromatin (19), an altered CBS could influence the expres-
sion of a gene thousands of kilobases away. Thus, we used
the genomic coordinates of TAD and subTAD from our Hi-
C datasets from CTL MCF10A to provide topological con-
text to our RNA-Seq and ChIP-Seq results.
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TAD boundaries are known to be highly conserved be-
tween cell types, often colocalizing with ubiquitously ex-
pressed genes, while CTCF-mediated interactions within
TADs are prone to changes and less conserved between cell
types (75). Therefore, we expect that genes most strongly
deregulated by ZF1 mutated CTCF would likely be located
within TADs and not at their boundaries. To study this hy-
pothesis, we divided the TADs into two groups; TADs in
which the TSS of all altered genes (FDR < = 0.05) are
localized exclusively within their boundaries (±1 resolu-
tion bin/10 kb) (termed TAD-B) and TADs in which the
TSS of all altered genes are found exclusively within the
domains, and not at boundaries (TAD-I). Then, we com-
puted and compared the distribution of strongly altered
genes (abs(log2FC) ≥ 1) in each condition. As predicted,
the TAD-I group is significantly associated with strong al-
teration of gene expression, while the TAD-B group was not
enriched for significant changes in gene expression (Figure
6A, B).

We then layered the CBS altered in ZF1-mutant cells
onto our analysis to identify the cluster of CBS which was
the most influential for altered gene expression. Within
the TAD-I group, both the loss and the gain of CTCF
within TADs was associated with RNA-Seq alterations.
However, the association between lost CBS and changes
to gene expression was markedly more significant than for
the gained CBS (P-value = 0.0027 for CTCF Lost Sites, P-
value = 0.028 for CTCF Gained Sites) (Figure 6A, B). Sup-
porting the validity of these findings, TAD-I in which no
CBS displayed significantly less changes in transcription.
Although the TAD-B group was not associated with sig-
nificant changes in gene expression, loss of CTCF binding
at the boundaries of these TADs still led to increased tran-
scriptional variability (Figure 6A, B). In contrast, gain of
CTCF at TAD boundaries, likely brought about through a
stochastic redistribution of the mutant CTCF to strongly
conserved CBS, was significantly associated to a conserva-
tion, instead of an alteration, of gene expression (Figure
6A).

The distribution of CTCF and gene expression changes at
subTADs also supported a model where lost CTCF sites are
driving gene expression changes. When investigating sub-
TADs with TSS of altered genes colocalizing exclusively at
their boundaries (subTAD-B), the only changes in CTCF
binding promoting upregulation or downregulation of gene
expression were lost CBS located at the boundaries of these
subTADs (Supplementary Figure S6A). Overall, these re-
sults suggest that changes to CTCF binding within TADS
predicts the altered gene expression through reorganization
of intra-TAD interactions.

Supporting this theory, pathway analysis of altered genes
proximal to a lost site of CTCF within a TAD (TAD-I) re-
produces the top pathways we identified in the global RNA-
Seq, being dominated by drug metabolism and ECM re-
lated pathways (Figure 6C). Therefore, our contextual anal-
ysis of ChIP-Seq and RNA-Seq revealed that the loss of
CTCF binding sites within TADs, including those sites at
the boundaries of subTADs, are the main drivers of the
changes in gene expression resultant from CTCF ZF1 mu-
tation. This supports a model where the inability of CTCF

to bind the extended recognition motif drives aberrant phe-
notypical changes.

MoMotif identifies promoter proximal variability of TF
recognition motif

Next, we wanted to validate the capacity of MoMotif to
be used as a computational tool to compare DNA bind-
ing motifs across ChIP-Seq datasets incorporating indepen-
dent experimental variables. To this end, we used previously
published ChIP-Seq datasets from diverse transcription fac-
tors and compared their recognition motif among promot-
ers (±3 kb), non-coding intronic and distal intergenic re-
gions.

First, we investigated ligand-dependant sites of Estrogen
Receptor (ER) binding from Swinstead et al. (76). Of the
8173 ligand-dependant sites identified by csaw, 988 colocal-
ized with promoter, while 6737 were found on non-coding
regions. The ER recognition motif (shown from JASPAR
database in Supplementary Figure S7A) was present in
48% of promoter proximal and 60% of non-coding bind-
ing sites (Supplementary Figure S7B). Interestingly, bases
within the core recognition motif were slightly differently
enriched following rGADEM motif discovery (Supplemen-
tary Figure S7C). These changes were validated and quan-
tified by MoMotif, which also reveal that differential motif
recognition at promoter and non-coding regions are limited
within the core recognition motif of ER, as no extensions
were detected, and the only noticeable change involves a
background enrichment of C within the spacing region of
the motif (Supplementary Figure S7D, E). These data sup-
port MoMotif as being amenable to motif discovery using
diverse datasets, and also indicate that changes in DNA-
binding motifs are not invariably identified, highlighting the
robustness of both the tool and our CTCF ZF1 mutation
data.

Secondly, we probed ZNF263 ChIP-seq data (77) us-
ing MoMotif, and again divided the called peaks by their
proximity to promoters or non-coding regions. Of the
2202 ZNF263 binding regions common among the two
published peaksets, 314 were promoter proximal, while
1729 were found in non-coding regions. ZNF263 recog-
nizes a GA rich repetitive motif without a clear consen-
sus (77,78). Using Perkisov et al. software and databases
(57,58), we validated the specificity of ZNF263 zinc-fingers
for G and A enriched motifs, as each of its zinc fingers
recognizes primarily these two bases (Supplementary Fig-
ure S7F). This hints that the repetitive motif is likely di-
rectly recognized by ZNF263 and not artificial. Follow-
ing rGADEM analysis, both groups display a G and A
rich motif, with a slightly longer motif being found in
promoter proximal ZNF263 binding sites (Supplementary
Figure S7G). Due to the repetitive nature of the mo-
tif, direct comparison of both motifs at this step is ar-
duous, as it is unknown how the two motifs align to-
gether and whether the bases present in the longer, pro-
moter proximal, motif are also present outside of the iden-
tified non-coding regions motif. However, using MoMotif
sequence alignment, extension, quantification, and analy-
sis, revealed the exclusivity of the motif extension at both
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Figure 6. Loss of CTCF binding within TADs drives oncogenic transcription. (A, B) Impact on the distribution of altered genes TSS (DESEQ2,
FDR < 0.05) and altered CBS (csaw, FDR < 0.05) in the context of TAD on the enrichment of strongly altered genes (ZF1M/ZF1M to CTL abs(log2FC)
≥ 1). Showing the most significant impact of the lost of CTCF at TADs encompassing genes within them (TAD-I), compared to gain of CTCF or at TAD
encompassing genes at their boundaries only (TAD-B) (P-value were generated from chi-square test on distribution of altered genes, −log(P-values) de-
picting significantly less strongly altered genes were turned negative in (A) to ease comprehensiveness of the graph). (C) Top 3 pathway, sorted by P-value,
of Reactome Pathway Enrichment Analysis of strongly upregulated and downregulated genes from the distribution highlighted in red in (B). Showing that
lost of CTCF within TAD is driving the major changes in gene expression observed in global GSEA analysis of the RNA-Seq.

end of the promoter proximal motif and the strong en-
richment of A at two positions within the non-coding sites
motif, while offering detailed quantification and statistical
analysis of the changes in bases frequencies (Supplemen-
tary Figure S7H/I). These observations promote the con-
cept that ZNF263 binding on promoters is dependant on a
longer combination of its zinc fingers, or cofactors beyond
its zinc-fingers, while binding at non-coding region might
be facilitated by a fewer, but more specific, combination of
zinc-fingers.

Overall, these analysis provide examples of the power of
MoMotif to expand classical motif analysis with discovery,
validation and quantification of motif variability between
experimental conditions or functional regions.

DISCUSSION

In this study, we demonstrate that single-base pair resolu-
tion analysis of changes to DNA binding motifs may pro-
vide insights into the oncogenic impact of recurrent can-
cer mutations. The role of CTCF ZF1 in directing DNA
contacts was previously quite ambiguous, yet the clinical
relevance of its mutation is emerging (26,27). Using Mo-
Motif, we were able to associate the structural function of
CTCF ZF1 to the recognition of a previously identified ex-
tended motif of CTCF. Simultaneously, we revealed a po-
tential role of ZF1 in mediating the transcriptional control
of drug metabolism and ECM related genes. Both pathways
being involved in the clinical phenotypes of CTCF mutated
breast tumors.
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Despite the strong association between the mutation of
CTCF ZF1 and its inability to bind or recognize the ex-
tended motif, the precise mechanism explaining this loss of
function remains to be elucidated. Our analysis, based on
the predicted recognition motif of each ZF, hints at a mech-
anism in which CTCF requires a specific conformation of
ZF4-7 and ZF1-2 to bind the extended motif. These results
explain, in part, the low affinity of CTCF ZF1 for DNA (29)
because it specifically recognizes the extended motif, but is
not directly involved in DNA binding at other sites. How-
ever, the presence of conserved bases immediately down-
stream of the 3 bp expected to be recognized by CTCF ZF1
could also indicate that indirect mechanisms are also play.
Such mechanisms include recruitment by partner proteins
or non-coding RNA. CTCF ZF1 is known to contribute
to RNA binding (35). As such, its mutation could hinder
the interaction with RNA-dependent co-factors (79) nec-
essary for recognition of or recruitment at this extended
motif. Future ‘enhanced CrossLink and ImmunoPrecipi-
tation and Sequencing’ (eCLIP-Seq) (80,81) investigations
of the altered RNA-binding properties of mutant CTCF
could provide further insight into this relationship. We sug-
gest that eCLIP-Seq analysis of mutated RNA-binding pro-
teins would also benefit from MoMotif. Akin to identi-
fying altered DNA recognition motifs, by identifying se-
quences of RNAs gaining or losing interaction with mu-
tated proteins, MoMotif may be applied to deepen our bi-
ological understanding of the interactome of non-coding
RNAs.

Similar to our analysis of mutated CTCF or motif vari-
ations at promoter proximal regions, MoMotif analysis of
available genomics data on DNA binding proteins and their
co-factors in varied conditions has the potential to identify
modified motifs specific to a context-dependent combina-
tion of transcription factors (TF), mutations, co-factors and
functions. For example, differences in TF recognition mo-
tifs when adjacent to TAD boundaries, transcription start
sites or at enhancer elements may be explored. Further, we
propose that mutated TFs may harbor unknown context
specific binding motifs. Factors impacting both wild-type
and mutated TF binding motifs may include proximity to
transcription start sites, proximity of co-factor binding sites,
chromatin states at binding sites or post-translational mod-
ifications. Mining available genomic databases using our
pipeline will allow the identification and association of sub-
tle motif disparities between various contexts greatly ex-
tending our compendium of knowledge regarding biolog-
ical influencers of DNA binding. In turn, this knowledge
may be helpful in identifying therapeutic vulnerabilities.

Overall, MoMotif is a powerful and polyvalent tool ca-
pable of providing additional depth to a diverse range of
previously existing, or novel, genomic studies.
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