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Abstract. Aligning thousands of images from serial imaging tech-
niques can be a cumbersome task. Methods ([2,11,21]) and programs
for automation exist (e.g. [1,4,10]) but often need case-specific tuning of
many meta-parameters (e.g. mask, pyramid-scales, denoise, transform-
type, method/metric, optimizer and its parameters). Other programs,
that apparently only depend on a few parameter often just hide many of
the remaining ones (initialized with default values), often cannot handle
challenging cases satisfactorily.

Instead of spending much time on the search for suitable meta-
parameters that yield a usable result for the complete image series, the
described approach allows to intervene by manually aligning problematic
image pairs. The manually found transform is then used by the automatic
alignment as an initial transformation that is then optimized as in the
pure automatic case. Therefore the manual alignment does not have to
be very precise. This way the worst case time consumption is limited
and can be estimated (manual alignment of the whole series) in contrast
to tuning of meta-parameters of pure auto-alignment of complete series
which can hardly be guessed.

1 Introduction

The general approach to reconstruct 3D by 2D serial sections (also termed array
tomography) is long known and can be applied with various imaging techniques
[2,7,22,30]. This method has the common drawback that the images of the serial
sections need to be aligned to the image of the adjacent slice. While this can be
done manually with various programs (e.g. midas of IMOD, Fiji/ImageJ, VV,
Gimp, PhotoShop), this can be very tedious labour. Although visual inspection
seems easy, it often is hard to decide which transform is the “best”, one reason
being the fact that adjacent images in general contain similar but not equal
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content due to the structure change in the 3rd dimension. This becomes of
particular importance when employing registration allowing local deformations,
because the natural 3D structure change is not meant to be corrected by local
deformation.

Therefore, various procedures for digital automatic alignment have been
investigated, which in general are based on finding a transformation that opti-
mizes a metric (a well defined quantification in contrast to visually “best”).
Many types of transformations, metrics and optimizers have been developed of
which specific ones need to be chosen depending on the given data and desired
results. Apart from the parameters of the transformation that get optimized
during the processing, parameters of the chosen optimizer, metric and general
ones such as denoising, size/shape of a mask and pyramid resolutions need to
be set before the processing can start [4,10,32]. These parameters are referred
to as meta-parameters and need to be tuned with expert knowledge in order to
get an acceptable results for as many consecutive images as possible. The more
serial sections the image series contains, the more difficult and time consum-
ing this task can become. Experience shows, that for a series of a few hundred
up to a few thousand realistic (i.e. non-ideal) images, the finding of suitable
meta-parameters can take a few weeks, without a guarantee to succeed at all.

In order to have a better guarantee to succeed in practice, the procedure
described in this paper limits the time consumption to that needed for a pure
manual alignment of the whole series, while trying to use automation as much
as possible.

2 Method

First Elastix [10], later SimpleElastix [16] was chosen as the framework that
provides the means for automated registration. In general other implementa-
tion could be chosen, however Elastix (based on ITK [8]) already accepts initial
transformations. Even if an initial transformation is provided by manual align-
ment, it can still enter the automatic optimization and therefore get improved
quantitatively as in the default case of pure automated optimization. In other
words, if the automated optimization gets trapped in a local optimum i.e. fails
to find the global optimum, a manual initial transform provides a different start
point for the optimization such that the global optimum is reached.
The work presented here is based on three distinct pieces of software:

1. The Python-implemented registration program recRegStack.py which
employs SimpleElastix.!

2. Extra programs and commands needed to convert gigapixel slice scans from
a Carl Zeiss slide scanner (in CZI fromat) to an image series usable by
recRegStack.py.

! http://github.com/romangrothausmann /elastix_scripts/.
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3. A build and invocation system to apply these to a full-size image series, with
adjustments needed for the specific data at hand, using gnuplot [31] and

GNU Parallel [29].2
AN |
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Fig. 1. Processing dependencies

Schematic flow graph to visualize the dependencies involved in the iterative process.
Images are represented by squares, text-files by ovals. The parameters used by default
(dfl. PF, dPF) during the registration (reg.) need to be tuned for the integral image
series (2D series) in order to reduce the need for manual interactions. The first image at
the start is copied unchanged. The last aligned image (ali. Img) is used as fixed image
(fix. Img, fT) for registering the next image from the series (mov. Img, mI). In the case
that the default parameters do not yield an acceptable result for an individual image
pair, it is possible to supply a manual initial transform (man. iT, mIT) and/or provide
individual registration parameters (idv. PF, iPF). Tuning the default parameters (dPF)
is the most difficult (time consuming, red) task, adjusting some individual parameters
less problematic (iPF, yellow) while creating a manual initial transform (mIT, green)
with e.g. midas is easiest. In case some images need to be re-scanned (due to scan-
artefacts, defocus, etc), the transform parameter files (tra. PF, tPF) can be used to
register the new image exactly the same way (reprod.) or the registration process can
be re-initiated to make use of the improved image quality.

recRegStack.py takes an Elastix/ITK parameter file (containing the defini-
tion of various meta-parameters) into account, which allows changing the default
values used by SimpleElastix. The last transformed image is used to register the
following one, see Fig. 1.

For the proof of principle, midas of the IMOD package [19] was chosen for
manual alignment due to its superior precision and interaction possibilities. Man-
ually created initial transform files (mITs, Fig. 1) will then be taken into account

2 http://github.com/romangrothausmann/CZIto3D.
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by recRegStack.py when continuing the automated alignment. In addition, it
is possible to adjust the meta-parameters for individual image pairs (iPF, Fig. 1)
in case the mIT together with the global defaults (dPF, Fig.1) do not lead to
a satisfactory result.® This can happen for example if the fixed image (fI) and
the moving image (ml) come from different section bands, possibly differing
significantly in focus quality.

3 Application and Results

The described approach was applied to an image series of about 2600 histological
serial section of lung tissue (rat, details can be found in [27]), referred to as K2-
dataset. An EM UC7 microtome (Leica, Germany) was used to cut semi-thin
sections with a thickness of 1 wm connected to bands of about 1 to 20 sections.
These bands were placed on 177 glass slides (where possible as a single row)
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Fig. 2. Bands of serial sections of stained lung tissue on glass slides

Some exemplary thumbnails of slide scans with bands of serial sections of lung tissue
stained on glass slides. Ranging from good (left, one band well aligned and no signif-
icant staining variations) to bad (right, broken bands with unobvious order, staining
variations and slice loss due to folds and extending slide border). Lines indicate different
glass slide.
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3 The iPF also allows to suppress further auto adjustments of an mIT in case the
global optimum does not represent the correct transformation, which can happen
for very destorted slices with repetitive, similar structures.
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Fig. 3. Exemplary image pairs

Left column: fixed image, middle column: moving image, right column: Magenta-Green
overlay of the image pair (similar to midas). Image pair rows:

1. ideal (no mIT or iPF needed).

2. dirt (mIT but no iPF needed).

3. defocus (no mIT or iPF needed).

4. folds (no mIT or iPF needed).

Metric for 3 without mIT is 34974 and with mIT 20214. (Color figure online)
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see Fig.2. After staining with toluidine blue, the slides were digitalized at a
magnification of 10X by an AxioScan Z1 (Zeiss, Germany) using a single-channel
fluorescence camera with a very low transmission light in order to get greyscale
images (in CZI format) with a dynamic range above 8-bits.

The build and invocation system for this image series can be found in http://
gitlab.com/romangrothausmann /K2 _fibrosis/. This git repository holds refer-
ences to the raw-data (CZIs) in an annex (https://git-annex.branchable.com/),
imports http://github.com/romangrothausmann/CZIto3D as a subtree for local
adjustments as needed for the specific data and serves as processing protocol.
recRegStack.py from http://github.com/romangrothausmann/elastix_scripts/
is invoked via a docker-image (http://www.docker.com/) containing all the
needed libraries to reproducibly register the images. There is a short (down-
scaled) image series for testing in tests/recRegStack/.
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Fig. 4. Plot of metric values with markers for mIT and iPF

The point densities of mITs and iPFs are visualized with kernel density plots on the
negative y-axis (unrelated to metric value, o = 10). Mean of metric: ~ 4100, Std. Dev.:
~ 9300, some values are outside of the plot range, iPFs (52) are needed less often then
mlTs (621), mostly in cases of high metric values. The largest interval without any
manual intervention (no mITs) is from 305 to 393 even though the default parameter
file (dPF) was tuned at different locations (e.g. slice 929, 1266 and 1379). The centre
xz- and yz-slice of the result stack (as shown in Fig.5) are plotted for comparison.
Distortions due to alignment drift can be seen, especially in the xz-slice up to slice 500.
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Fiji [6] was used to roughly mark the centre of each section in thumb-
nail images of the gigapixel scans (czi2stack/Makefile). These centres were
then used to automatically extract the region of each slice as its own image
(3000 x 3000 pixel, PNG) with bfconvert [23] (czi2stack/Makefile). In case of
broken bands, the ordering implied by the centre marks had to be adjusted
to match the physical order (czi2stack/slides/slideOrder.lst, discrepancies often
only visible after a registration). This order was then used to register the
consecutive slices (czi2stack/Makefile). The mask for registration and the
default parameter file (dPF) were adjusted to fit the K2-dataset, applying
rigid registration using a “MultiResolutionRegistration” with “AdvancedMean-
Squares” metric and “AdaptiveStochasticGradientDescent” as optimizer, see
czi2stack /parameterFile.txt for details. Still, 621 mITs (in average every 4th
image) and 52 iPF's (in average every 50th image) were needed to align all 2607
images, see Fig.4. Some exemplary image pairs (good, dirt, defocus, folds) are
shown in Fig.3. Since the registration reconstructs the spatial correspondence
in the 3rd dimension, the resulting image stack can then be regarded as a 3D
dataset of 3000 x 3000 x 2607 voxel (about 44 GB @ 16-bit), see Fig. 5.

Fig. 5. Volume rendering of the 3D stack

Volume rendered visualization of the reconstructed 3rd dimension of the lung tissue
block (sub-extent of 1000 x 1000 x 2607 voxel). Tissue dark, resin semi-transparent grey
(airspaces and blood vessels).

The volume in lung samples occupied by tissue is only about 10%-20% [3,7],
so there is about 90%—-80% mostly non-correlating texture in image pairs which
disturbs the registration process. This is one reason why the registration of serial
sections of lung tissue is challenging. A possible countermeasure is to “fill” the
non-tissue space with (roughly) correlating data. This can be achieved by first
auto-thresholding the image to roughly binarize tissue and non-tissue and then
generating a distance map, which is implemented in the branch ot+dm and leads


http://github.com/romangrothausmann/CZIto3D/blob/4da67edd107303b23ed00a6230cc38775a3b9007/czi2stack/Makefile#L96-L104
http://github.com/romangrothausmann/CZIto3D/blob/4da67edd107303b23ed00a6230cc38775a3b9007/czi2stack/Makefile#L179-L192
http://gitlab.com/romangrothausmann/K2_fibrosis/blob/ba87b312a8047e58dc0fcd0ebcdd000465c902fe/morph-fib/czi2stack/slides/slideOrder.lst
http://gitlab.com/romangrothausmann/k2_fibrosis/blob/ba87b312a8047e58dc0fcd0ebcdd000465c902fe/morph-fib/czi2stack/Makefile#L111-115
http://gitlab.com/romangrothausmann/k2_fibrosis/blob/ba87b312a8047e58dc0fcd0ebcdd000465c902fe/morph-fib/czi2stack/parameterFile.txt
http://github.com/romangrothausmann/elastix_scripts/tree/ot+dm
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to image pairs as in Fig. 6. However, applying this version of recRegStack.py
to the K2-dataset (K2_fibrosis@a5617581) showed, that more mITs are needed.*
A reason for this might be that this approach is more sensitive to dirt, which
ends up in the tissue segment and therefore causes significant disturbance in the
distance transform, see Fig. 6. Another promising approach could be registration
based on landmarks generated by SIFT [14,15], similar to Fiji’s “Register Virtual
Stack Slices” [4] but using Elastix/ITK in order to keep the features of manual
intervention (mIT and iPF)5.

Fig. 6. Exemplary image pair for ot+dm variant

Top row: image pair as is (no mIT or iPF needed), fixed image, moving image, Magenta-
Green overlay. Bottom row: ot+dm image pair for images on the left (blue-white-red
LUT from -50 to 50, blue: air, blood space; red: tissue, dirt). (Color figure online)

4 A full alignment with ot-+dm was not pursued further because currently SimpleITK
of SimpleElastix does not allow to set a mask for the otsu-threshold calculation
(ot-mask). Therefore, the continuation feature of recRegStack.py cannot be used
so that after each mIT creation the registration has to start from the beginning and
therefore the whole procedure needs much more time. An alternative would be to
port recRegStack.py to ITKElastix.

5 The lack of the possibility for manual intervention and a trial of more than two weeks
to find meta-parameters to register the K2-dataset with Fiji’s “Register Virtual Stack
Slices” was actually the motivation for implementing recRegStack.py.
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4 Discussion

The described proof of principle combines automated alignment with manual
intervention such that ideally the automation does the whole work but also
ensures that “in the worst case” at least the result of a pure manual alignment
will be achieved. This comes with a need to balance the two time consuming
tasks: Either tuning the meta-parameters for the automated alignment of as
many images in the series as possible (total time consumption can be unlimited)
or helping the automation with initial manual alignments (total time is limited).

While the current implementation with Makefiles serves as a proof of prin-
ciple, it can be further improved to a more intuitive and user-friendly program.
For example, by incorporating the processing done by various commands into
the Python code, as well as avoiding midas and other IMOD-tools or abort-
ing auto alignment in order to provide a manual alignment to continue with.
A graphical user interface (GUI) could provide visual feedback (similar to the
image viewer geeqie), incorporate the needed midas functionality and offer a
“manual intervention” button. In principle, a threshold on the final metric value
could be used to automatically trigger the suggestion of a manual alignment.

Another variant of recRegStack.py (branch combT_01) accumulates all for-
mer transforms and adds the newly found transform of the processed image pair
as in [21]. While the two approaches should yield similar results, accumulation
of a few hundred transforms can become problematic but in return can avoid
larger differences in case of already similarly recorded image pairs. A third vari-
ant (branch reg2tra4prevTra) uses both approaches and chooses the result with
the better metric value finally achieved.

Ideally, a (non-destructive) tomogram or some form of markers should be
used for guiding 3D reconstruction of serial sections (e.g. constrain local defor-
mation corrections and avoid continuous drift), such functionality is offered by
e.g. HistoloZee [1].

recRegStack.py provides the option to ignore some images of the series in
case some slices are too distorted for registration or lost during the preparation
(czi2stack/lostSlieds.Ist). After aligning the next usable image of the series, a
reconstruction of the lost slice can be created from the adjacent slices [14].
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assistance), Lena Ziemann (for slide scanning and creation of mITs and iPFs), Kasper
Marstal, Fabien Pertuy, Stefan Klein and Marius Staring (for feedback on use of Elastix,
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