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ABSTRACT: Single-molecule experiments offer a unique means to probe molecular properties of individual molecules−yet they
rest upon the successful control of background noise and irrelevant signals. In single-molecule transport studies, large amounts of
data that probe a wide range of physical and chemical behaviors are often generated. However, due to the stochasticity of these
experiments, a substantial fraction of the data may consist of blank traces where no molecular signal is evident. One-class (OC)
classification is a machine learning technique to identify a specific class in a data set that potentially consists of a wide variety of
classes. Here, we examine the utility of two different types of OC classification models on four diverse data sets from three different
laboratories. Two of these data sets were measured at cryogenic temperatures and two at room temperature. By training the models
solely on traces from a blank experiment, we demonstrate the efficacy of OC classification as a powerful and reliable method for
filtering out blank traces from a molecular experiment in all four data sets. On a labeled 4,4′-bipyridine data set measured at 4.2 K,
we achieve an accuracy of 96.9 ± 0.3 and an area under the receiver operating characteristic curve of 99.5 ± 0.3 as validated over a
fivefold cross-validation. Given the wide range of physical and chemical properties that can be probed in single-molecule
experiments, the successful application of OC classification to filter out blank traces is a major step forward in our ability to
understand and manipulate molecular properties.
KEYWORDS: machine learning, single-molecule junctions, one-class modeling, molecular electronics, Gaussian mixture model,
support vector machine

■ INTRODUCTION
Chemists have long been able to determine the chemical
properties of a single molecule by making bulk measurements
of the compound of interest, a remarkable feat that we often
take for granted. In common techniques such as ultraviolet−
visible (UV−vis) spectroscopy, infrared spectroscopy, or
nuclear magnetic resonance spectroscopy, determining the
chemical properties is largely possible because blank measure-
ments can be used to subtract the background contributions
from the matrix or solvent.1 Subsequently, we assume that the
remaining signal originates from the molecule of interest and
interpret the results accordingly. While there can be a degree of
variability between the contributions of the individual
molecules in the sample, each experiment measures the

average signal from numerous molecules. This averaged signal
is the result that is reported for a compound. This workflow is
depicted in the top row of Figure 1.
Single-molecule measurements provide a new perspective on

molecular properties. By definition, the idea of blank
measurements seems unnecessary as we directly measure the
properties of the single molecule of interest. The molecule-to-
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molecule variability, unavoidably averaged in bulk measure-
ments, becomes evident in successive single-molecule measure-
ments. To determine the average behavior of a molecule, we
average some numbers of single-molecule measurements. For
instance, it is common to compile thousands of measured
samples into 1D- and 2D histograms that provide information
about the average properties of the measured molecule, such as
conductance or indicate subpopulations. This workflow is
depicted in the bottom row of Figure 1.
In the course of making repeated single-molecule measure-

ments, sometimes the matrix or solution is measured instead of
the molecule of interest. Consequently, the signal from these
blank or background samples can impact the averaged
observables, potentially obscuring rare events or altering the
accuracy of results. Although each individual sample that
makes up the 1D- and 2D-histograms is available, there is no
straightforward method to remove the signal originating blank
samples, as is possible in absorption spectroscopy. This
inability to remove the background is partly because we do
not know the exact number of blank traces in the molecular
data nor their exact form.
To minimize the impact of background signal on the

accuracy of results, a number of different methods to filter
blank traces have been developed, including clustering
techniques,2−5 principal component analysis method,6−9 and

custom filtering algorithms.10−36 The widespread use of
filtering blank by several different group traces underlines the
need for a structured and robust approach to this problem.
Alternatively, methods have been developed that circumvent

the need to remove blank traces entirely. For instance,
Bamberger et al.37 have developed a method to extract traces
with molecular features that were initially invisible in the
combined raw data. They also developed a method to extract
the main plateau of each trace,38 which they later used to
explain large variations in the reported conductance of
different stilbene derivatives.
Reliable distinction between blank traces and traces with a

molecular plateau enables new types of studies. For example,
Fu et al.39 correlate the existence of a molecular junction with
experimentally measured features of each junction. Thus, they
can investigate the conditions influencing junction formation.
Single-molecule transport experiments are gaining impor-

tance as a tool to monitor chemical reactions at the single-
molecule level and in the chemical and biological sciences in
general.40−42 For example, in cases where the analyte has a low
junction formation probability, the overabundance of blank
traces can obscure the molecular signal from the analyte.
In addition, removing unwanted signal from blanks and

other traces could also find utility in single-molecule transport
experiments used for driving and catalyzing electric field-
induced chemical reactions.43−45 These experiments have
opened up new avenues for understanding and controlling
chemical processes, enabling unprecedented precision in
chemical transformations. Consequently, efficient removal of
unwanted signal from, for example, starting material could
facilitate the automation potential of such experiments.
In this paper, we show that the inclusion of blank

experiments in a calibration step in single-molecule transport
studies can improve the description of those experiments. We
present the use of OC classification methods as a method to
filter blank traces by training only on data from a blank
experiment. This approach will allow us to perform the same
background-subtracting step as in spectroscopy. Instead of
using the blank measurement as a simple scalar to subtract, the
OC model identifies the characteristic patterns of blank traces,
allowing us to filter them out. This allows us to adaptively
handle the inherent variability in single-molecule transport
experiments. Thus, our methodology reinterprets the use of
blank measurements, offering a dynamic and more precise tool
for the removal of blank traces.
OC classification methods differ fundamentally from other

commonly used methods to analyze single-molecule data sets

Figure 1. Comparison of UV−vis and single-molecule transport
experiments. The top row depicts the standard UV−vis experiment
(left), in which light passes through the solution of analyte (purple)
and solvent (green), producing a spectrum that shows the wavelength
at which the solution absorbs light. The bottom row displays a typical
break-junction experiment (left), which produces thousands of
samples with varying amounts of tunneling/contaminant signal
(green) and analyte signal (purple). To understand the average
trend of the molecule, normally all samples are compiled into a
histogram (right).

Table 1. Summary of Data Sets

aThis data set contains samples from a molecular experiment, each subsequently labeled as either ‘molecular’ or ‘blank’. bRT = Room temperature.
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such as supervised machine learning (ML) or clustering.
Supervised ML, in particular, which is used to classify between
two or more classes, relies on a training set containing at least
one example of each class. However, the generation of such a
training set in single-molecule transport studies can be
challenging due to the nontrivial task of determining the
class to which a trace belongs. On the other hand, no training
set is needed when using clustering. Instead, practitioners
choose a clustering algorithm, a similarity metric, and
oftentimes, how many classes are expected. Subsequently, the
algorithm groups similar samples together. In this way, no
specific characteristics are assumed about any of the classes.
In contrast with these two methods, OC classification

exploits the only class we can consistently generate large
amounts of samples of blanks. Running a blank experiment in
single-molecule transport studies is commonly performed
before any measurements on the molecule of interest to
ensure that the experimental setup is functioning correctly.

■ METHODS
Our exploration of OC classification involves analyzing four distinct
data sets from three separate laboratories, with two collected at
cryogenic temperatures and the remaining two at room temperature.
Three of the data sets was collected using mechanically controlled
break junction and the fourth with scanning tunneling microscopy
break junction. An overview of these varied experimental conditions is
presented in Table 1. In spite of these varied conditions, the OC
classification method exhibits robust performance as we show in the
following.
First, we analyze a data set of 4,4′-bipyridine that was measured at

4.2 K.7 It is the only data set in this paper that is fully labeled (by
inspection), allowing us to quantify the performance of the tested
models. We refer to this data set as 4K-bpy.
Next, we analyze a data set of ferrocene measured at 5 K.32 With no

labels, we rely on a qualitative evaluation of the performance of our
models. We compare 1D- and 2D-histograms of the traces classified to
be blanks and not-blanks with traces from the blank experiment. We
also analyze the traces classified as not-blanks to investigate the nature
of the outliers. We refer to this data set as Fc.
The final data set we analyze is of 4,4′-bipyridine measured at room

temperature. We refer to this data set as RT-bpy. In addition to the
qualitative examination, we perform a comparison of 2D-correlation
histograms of the raw and the filtered RT-bpy data set. Notably, we
observe a shift from a slightly positive correlation to a negative
correlation in certain parts of the 2D-correlation histograms
highlighting the impact of blank traces.
In the Supporting Information, we have included an analysis of a

fourth data set which is 1,6-hexanedithiol measured at room
temperature. Despite the increased amount of noise in this data set
compared to the cryogenic data sets, we are still able to filter out a
considerable number of blank traces from a molecular experiment. We
refer to this data set as C6-thiol.
The first type of model used to filter blank traces is the one-class

support vector machine (OC-SVM). It was originally proposed by
Schölkopf et al.46 as a tool for novelty detection.
Consider some training data x x, ..., n1 where n is the number

of training samples. To obtain a more complex, nonlinear decision
boundary, the OC-SVM uses a transformation function referred to as
the feature map, F: , that maps each of the training samples
into a new higher-dimensional space. The OC-SVM will only need
the inner product between the samples in this higher-dimensional
space, but this inner product might be computationally expensive to
compute directly. Fortunately, we can make use of the so-called
‘kernel trick’:47

We define a kernel function that satisfies the following equation

= ·k x x x x( , ) ( ( ) ( )) (1)

With an appropriately defined kernel function, we circumvent the
need to calculate the inner product in the higher-dimensional space
and instead get it directly from k. One popular choice of k is the radial
basis function (RBF) kernel

=k x x x x( , ) exp( )2 (2)

Here, x and x′ are input vectors, and γ is one of the hyperparameters
that can be tuned for the model to obtain a better fit. Intuitively, γ
defines how far the influence of a single-training example reaches. The
larger the γ is, the closer the other examples must be to be affected.
The kernel function is used to lift the data into a higher-dimensional
vector space where it is potentially easier to separate our classes.
In the following, we will also make use of the linear kernel which is

defined as

= ·k x x x x( , ) T (3)

The goal of the OC-SVM is to draw a boundary around our data.
We want to do this in a way that contains the maximum number of
points, while keeping the boundary as small as possible. To achieve
that, the following constrained optimization problem has to be solved

+
=

w
n

min
1

i

n

i
w, ,

2

1 (4)

subject to

·w x( ( )) , 0i i i (5)

Here, w is the components of the hyperplane separating the positive
from the negative samples, εi are slack variables that control how
tightly our decision boundary encloses our data, n is the number of
samples, and ρ is an offset. The parameter ν is similar to the
regularization parameter C in classical SVMs and helps to control the
trade-off between the volume of the sphere and the fraction of
outliers.
It can be shown that solving eq 4 leads to a decision function of the

form

=f kx x x( ) sgn( ( , ) )
i

n

i i
(6)

where αi are the parameters solved for.
In OC-SVMs, ν set the upper bound on the fraction of outliers and

a lower bound on the fraction of training examples used for modeling
in the OC-SVM. We are certain that there are no molecular traces in
our training data, so we set ν = 0.01.
The hyperparameter γ controls the width of the Gaussian of the

RBF kernel (see eq 2) and its optimal value depends entirely on the
data set. By default, γ is calculated with the following equation

=
×n
1

2 (7)

where n is the number of features and σ2 is the variance of the input
samples. For the two data sets measured at cryogenic temperatures,
we calculate γ using eq 7. For the room-temperature data sets, we set γ
= 0.0009 and γ = 0.004 for C6-thiol and RT-bpy, respectively.
In an ideal scenario, the choice of an optimal γ would be based on

the performance of the model on a test data set, with both ‘normal’
and ‘abnormal’ classes. However, due to the lack of labels, we
manually calibrated γ by gauging the appearance of molecular peaks in
the 1D- and 2D-histograms. To prevent false positives, we set the
value of γ such that there was no appearance of a peak at the
molecular conductance in the class labeled as blanks. This
conservative approach prioritizes classifying blank traces as molecular.
We reasoned that this bias presents a lesser risk to subsequent
analyses than misidentifying molecular traces as blanks. We note that
the optimal γ setting might vary based on any specific subsequent
analysis at hand. In scenarios where minimizing false negatives is
crucial−avoiding the misclassification of tunneling traces as molecular,
for instance−a different γ adjustment may be warranted. Hence, our
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chosen setting for γ reflects an appropriate decision only under these
assumptions rather than a universally optimal one.
The second type of model used to filter blank traces is a Gaussian

mixture model (GMM). These models consists of a weighted sum of
m Gaussian densities of the form

| = |
=

p w wgx x( , , ) ( , )i i i
i

n

i i i
1 (8)

Here, n is the number of samples, x is the D-dimensional input
vector, wi are the mixture weights, g(x|μi, Σi) are the Gaussian
densities, μi are the mean vectors of each Gaussian, and Σi are the
covariance matrices. The mixture weights satisfy the constraint

== w 1i
n

i1 .
Each of the Gaussians are a D-variate Gaussian of the form

| =
| |

i
k
jjj y

{
zzzg x x x( , )

1
(2 )

exp
1
2

( ) ( )i i D
i

i i i/2 1/2
1

(9)

For a more thorough introduction to GMMs, we refer to
Reynolds.48

For the GMMs, we change two hyperparameters: the number of
Gaussian densities used to fit the data (components) and the
threshold at which the data is classified as lying outside the normal
class. The number of components are noted in the text whenever we
mention a GMM model. For example, A GMM with three
components is called GMM-3. The threshold for all GMM models
is set to 0.99.
All other parameters are kept at their default values for both types

of models. We use the OC-SVM from scikit-learn49 and GMM from
scikit-lego.50

Our modeling process, including the data input and preprocessing,
varies due to the diverse nature of the data sets we analyze. These
differences in data are not only due to random noise but rather
reflections of unique molecular properties and varied experimental
circumstances. This necessitates the application of different
featurization strategies to optimally represent the characteristics of a
specific data set. A detailed summary of the featurization strategies
used for each data set can be found in Table 1. This tailored approach
allows our OC classification model to distinguish effectively between
molecular and blank traces across a wide spectrum of single-molecule
transport experiments.
For all data sets except C6-thiol, we remove any data point above

10−0.5 G0 and below 10−5 G0. For C6-thiol, we remove any data point
above 10−1 G0. We refer to this as ‘thresholding’.

For 4K-bpy, we discard any trace that have no data points after
thresholding. The remaining traces are converted into 1D-histograms
with 128 bins, serving as input for our models.
For C6-thiol, RT-bpy, and Fc, we discard any trace that has fewer

than 32 or more than 6000 data points after thresholding. Very short
(<32 data points) and very long traces (>6000 data points) are likely
to be samples where the conditions for measuring a single molecule
were not met.
We convert the traces of C6-thiol into 2D-histograms with 64 × 64

bins and the traces of RT-bpy into 2D-histograms with 32 × 32 bins.
These 2D-histograms are used as input for our models. For Fc, we
convert each trace into a 1D-histogram with 100 bins as input for our
models.
We use the number of data points in each trace as a proxy for the

length of the molecular junction. Any motivated reader will be able to
estimate the molecular junction lengths from the raw data that we
have shared and from the original publications, where present.
In what follows, we distinguish between molecular traces and traces

that are not-blanks. OC models attempt to establish a normal class
such that they can distinguish normal and anomalous/novel samples.
While the normal class is well-defined, the same cannot be said of the
anomalous class. For example, if the normal class is chairs, then the
anomalous class would be anything not a chair. Therefore, a sample
classified as an anomaly does not guarantee that the sample is a
molecular trace; instead, it could be a trace from an impurity not
present during the blank experiment. In this paper, we refer to
samples obtained from the blank experiments as “blank samples” and
samples identified as the normal class by the OC model as “blanks”
All scripts used to analyze the data in this article are available at

https://github.com/chem-william/one_class_smbj. The data sets can
be down l o aded he r e : h t t p s : / / e r d a . k u . d k/ a r ch i v e s /
5df033bfa19fd24b50c7c88300ea7640/published-archive.html.

■ RESULTS
The OC classification workflow is depicted schematically in
Figure 2. First, the raw traces (Figure 2A) are converted to a
1D- or a 2D-histogram (Figure 2B). These two representations
are common in single-molecule transport studies and show
good performance in this study. It should be noted that there
are other representation options. For example, raw traces could
directly be used as input or each trace could be characterized
by a series of descriptors such as length, mean conductance,
variance, etc.
The final step of our process involves fitting a model (Figure

2C) using exclusively the blank samples, which in our case, are

Figure 2. Schematic illustration of the OC classification workflow. (A) Simulated traces showing the idealized difference between molecular (red)
and blank (blue) traces. (B) Each individual trace is either converted to a 1D- or 2D-histogram. (C) A model is trained solely on blank traces from
a blank experiment (blue, solid circles). After training, the model classifies all traces from an experiment with a molecule. Samples that fall within its
decision boundary are labeled blank (blue, open circles), and samples that fall outside are labeled not-blank (red, solid circles).
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samples from a blank experiment (represented by blue, solid
circles). The model fits a decision boundary (black, dashed
line) that is neither too strict nor too loose, thus avoiding both
over- and underfitting. All samples from a molecular
experiment that belong to the normal class fall within the
decision boundary (blue, hollow circles), while samples that
fall outside are classified as anomalies (red, solid circles).
When we show 2D-histograms in the following, it is only the

first data set, 4K-bpy, that has had its traces aligned at 10−5G0.
Alternative alignments for each data set, relative to those
presented here in the main article, can be found in the
Supporting Information. In particular, Figures S1 and S2 in the
SI illustrate 2D-histograms for the 4K-bpy data set but without
trace alignment. In contrast, Figures S3−S8 showcase 2D-
histograms for the remaining data sets, where all traces have
been aligned at 10−5G0.
Results: Cryogenic-Temperature Experiments

We start by applying OC classification models to two data sets
obtained at cryogenic temperatures. Conducting experiments
at such low temperatures reduces thermal noise, enhancing the
contrast between ‘blank traces’ and ‘molecular traces’, thereby
facilitating easier data analysis and interpretation. The first data
set, 4K-bpy, is also the only data set that has been fully labeled,
allowing us to quantify the performance of our models.
4K-bpy. In Figure 3, we present the 4K-bpy data set. The

experimental setup for gathering the data has been explained in
a previous publication.7 After preprocessing, it consists of 3219
blank traces and 1863 molecular traces. In Figure 3A,B, we
show 10 blank and molecular traces, respectively. In Figure
3C,D, we show 1D-histograms of all traces labeled as blank and
molecular traces, respectively. Finally, in Figure 3E,F, we show
2D-histograms of all traces labeled as blank and molecular
traces, respectively.
As all traces have been labeled, we can quantify the

performance of any given model. In Table 2, we report the
mean accuracy and mean area under the receiver operating
characteristic curve (AUROC) along with the standard
deviation over a fivefold cross-validation. In the Supporting

Information (Figure S9), we plot the receiver operating
characteristic curve. Previously, we have shown why it is
important to report more than just the accuracy.51

Except for the OC-SVM with a linear kernel, all models do
an excellent job at distinguishing between blank and molecular
traces despite having only been trained on blank traces. The
best-performing model is the OC-SVM with an RBF kernel
with an accuracy of 96.9 ± 0.3%. This model is slightly better
than the GMM with one component, which has an accuracy of
95.6 ± 0.7%. Increasing the number of components in the
GMM seems to slightly reduce the performance.
While quantifying the performance of models is important, it

is also informative to gauge their performance qualitatively. In
the left column of Figure 4, we show 1D-histograms of the 4K-
bpy data set after each trace has been classified. In the right
column, we show 2D-histograms of all the traces that have
been classified as blank traces. Each row corresponds to a new
model: an OC-SVM with a linear kernel is used in Figure 4A
and B; an OC-SVM with an RBF kernel in Figure 4C,D; a
GMM with one component in Figure 4E,F; and a GMM with
three components in Figure 4G,H.
Clearly the performance of the models qualitatively matches

what we expected from the accuracy and AUROC reported in
Table 2. The OC-SVM with a linear kernel performs very
poorly as it barely classifies any traces as blank. The
performance could potentially be improved by choosing a
different feature set.
As is also clear from Table 2, the OC-SVM with an RBF

kernel is the best model, although the two GMM models
perform similarly. However, a slight bump is visible in the 1D-

Figure 3. Visualization of the 4K-bpy data set. (A) Example traces labeled as blanks. (B) Example traces labeled as molecular. (C) 1D-histogram of
all blank traces. (D) 1D-histogram of all molecular traces. (E) 2D-histogram of all blank traces. (F) 2D-histogram of all molecular traces.

Table 2. Performance on fivefold Cross-Validationa

model accuracy (%) AUROC

OC-SVM (linear) 37.9 ± 2 67.4 ± 2
OC-SVM (RBF) 96.9±0.3 99.5±0.3
GMM-1 95.6 ± 0.7 99.0 ± 0.2
GMM-3 95.0 ± 0.8 97.9 ± 0.4

aErrors are the SD.
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histograms from the two GMM models at the molecular peak,
suggesting that some molecular traces may have been
mislabeled as blank traces (see Figure 4E,G).
In the Supporting Information, we also test five different

clustering algorithms that have been reported in the
literature.52−55 The best-performing clustering algorithm is a
GMM achieving an accuracy of 92.1% with 1D-histograms as
input. Except for the OC-SVM with a linear kernel, all OC
models perform better than the best clustering algorithm. At
the end of the manuscript, we discuss why such a comparison,
while informative, can also be problematic.
Through an initial analysis using the 4K-bpy data set, we

have demonstrated the qualitative and quantitative efficacy of
the examined OC classification models, which exhibit excep-
tional performance on high-quality experimental data. As we
explore data sets without labeled tunneling and molecular
traces, it is reassuring to note that our intuition of what
constitutes a good model translates into robust quantitative
metrics. This alignment bolsters our confidence in applying
these models to the unlabeled data sets.
Fc. In Figure 5, we present the Fc data set. This experiment

measures ferrocene, a very short molecule compared with 4,4′-
bipyridine measured in the 4K-bpy data set. Therefore, even
traces that have a molecular plateau are expected to be short.
The experimental setup for gathering the data has been
explained in a previous publication.32 After preprocessing, the

data set consists of 7916 blank traces and 6167 traces from an
experiment with molecules. In Figure 5A,B, we show 10
individual traces from a blank experiment and from an
experiment with a molecule added, respectively. In Figure
5C,D, we show 1D-histograms of all traces from the blank and
molecular experiments, respectively. Finally, in Figure 5E,F, we
show 2D-histograms of all the traces from the blank and the
molecular experiments, respectively.
In Figure 6, we show the results of filtering blank traces from

the Fc data set. In the left column of Figure 6, we show 1D-
histograms of the Fc data set after each trace has been
classified. In the right column, we show 2D-histograms of all
the traces that have been classified as blank traces. Each row
corresponds to a new model: an OC-SVM with a linear kernel
is used in Figure 6A,B; an OC-SVM with an RBF kernel in
Figure 6C,D; a GMM with one component in Figure 6E,F; and
a GMM with three components in Figure 6G,H.
Again, the OC-SVM with a linear kernel performs poorly

compared to the other models. The OC-SVM with an RBF
kernel and the two GMMs perform similarly well. The GMMs
classify slightly more traces as blanks. In the 1D-histograms of
the GMMs, there seems to be a slight hint of a peak at the
molecular conductance around 10−2G0. In the 2D-histograms,
there also seems to be a slightly higher number of data points
at 10−2G0. Both details indicate that the GMMs might classify
some molecular traces as blank traces.
For the 4K-bpy data set, we are able to ascertain that almost

all traces are correctly classified because the entire data set is
labeled. We do not have the same certainty with the traces
from the Fc data set and subsequent data sets. Therefore, we
further analyze the traces labeled as not-blank.
For the next steps, we use all the traces that an OC-SVM

model with an RBF kernel classified as not-blank. Qualitatively,
approximately three different types of traces appear to be
present. In Figure 7, we show these three classes (Figure 7A−
F) alongside the traces from the blank experiment (Figure
7G,H). In the Supporting Information, we show all the traces
labeled as not-blank in a single 2D-histogram (Figure S11).

Figure 4. Left column shows 1D-histograms of classified molecular
(green, solid line), classified blank (orange, solid line), and the
reference blank traces (blue, dashed line) for the 4K-bpy data set. The
right column shows 2D-histograms of the classified blank traces. We
show the following models: (A,B) OC-SVM with a linear kernel,
(C,D) OC-SVM with an RBF kernel, (E,F) GMM with one
component, and (G,H) GMM with three components. The %B
denotes the percentage of traces out of the full data set that have been
labeled as blank traces.

Figure 5. Visualization of the Fc data set. (A) Example traces from a
blank experiment. (B) Example traces from an experiment with the
molecule added. (C) 1D-histogram of all traces from the blank
experiment. (D) 1D-histogram of all traces from the experiment with
the molecule added. (E) 2D-histogram of all traces from the blank
experiment. (F) 2D-histogram of all traces from the experiment with
the molecule added.
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There, we also explain how we extracted the three different
classes.
We show individual traces from each class in the top row of

Figure 7, and we plot a 2D-histogram of each class in the
bottom row. In Figure 7A,B, we show examples of the class
predominantly consisting of molecular traces. In Figure 7C,D,

we show examples of traces that could be unusual molecular
traces or traces from contaminants. In Figure 7E,F, we show
examples of traces that are very similar to prototypical blank
traces. For comparison, we have plotted the traces from the
blank experiment alongside the rest in Figure 7G,H.
As expected, a subset of the traces identified as ‘not-blank’

displays a molecular signal, as shown in Figure 7A,B. These
traces display distinct features indicative of the presence of
molecules. On the other hand, the traces in Figure 7C,D are
likely not molecular traces, but they differ from the blank traces
shown in Figure 7G,H. These traces were omitted in the
original publication as they are indicative of a junction that did
not have a gold point contact before rupture.32

The traces depicted in Figure 7E,F highlight the
effectiveness of OC classification for single-molecule transport
studies. By comparing these traces with the blank traces from
the molecular experiment in Figure 7E,F, it is evident that
these two classes are not the same. Importantly, our model has
been trained solely on the examples shown in Figure 7G,H.
Our model only filtered out blank traces that resemble those

from the blank experiment. Consequently, any remaining
traces are highly likely to have originated from different
physical processes than the ones leading to the blank traces. In
this particular instance, the introduction of a molecule to the
experiment causes some of the blank-like traces to exhibit the
noisy and curved behavior seen in Figure 7E,F rather than the
clean signal of the traces shown in Figure 7G,H. The exact
physical origin of this difference is unclear based on this
experiment alone.
The utility of OC classification models in single-molecule

transport studies is further underlined with the Fc data set.
Notably, these models excel even with very short molecules
and exhibit remarkable specificity, as evident in Figure 7E,F,
where traces similar to tunneling traces from blank experiments
are not classified as such. However, this data set also
underscores the importance of a representative training set.
As depicted in Figure 7C,D, the introduction of a new type of
defect or contaminant in the molecular experiment may lead to
its correct classification as ‘not-blank’ even though the
practitioner might still have wanted it filtered out.
Furthermore, we use five clustering techniques documented

in the literature and show the results in the Supporting

Figure 6. Left column shows 1D-histograms of classified molecular
(green, solid line), classified blank (orange, solid line), and the
reference blank traces (blue, dashed line) for the Fc data set. The
right column shows 2D-histograms of the classified blank traces. We
show the following models: (A,B) OC-SVM with a linear kernel,
(C,D) OC-SVM with an RBF kernel, (E,F) GMM with one
component, and (G,H) GMM with three components. The %B
denotes the percentage of traces out of the full data set that have been
labeled as blank traces.

Figure 7. Analysis of the traces classified as not blank from the Fc data set. (A,B) Example traces that exhibit molecular features. (C,D) Example
traces that does not have a 1 G0 plateau. (E,F) Example traces that have no clear molecular plateau. (G,H) Example traces from the blank
experiment. In the top row, we show 10 individual traces for each class. and in the bottom row, we show 2D-histograms of all traces from each class.
We used the OC-SVM with an RBF kernel to classify blank traces.
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Information. We then evaluate the impact of filtering out
tunneling traces by comparing the clustering outcomes before
and after filtering the tunneling traces.
Results: Room-Temperature Experiments
Compared with experiments conducted at cryogenic temper-
atures, room-temperature experiments exhibit more noise, both
in each individual sample and in the overall phase space the
experiment samples. Even so, room-temperature experiments
are more common. Therefore, in the following, we investigate
how OC models perform on a room-temperature data set. In
the Supporting Information, we have included an analysis of a
fourth data set (the C6-thiol data set) that is also measured at
room-temperature but is from a different lab and of a different
molecule.
RT-bpy. In Figure 8, we present the RT-bpy data set. The

experimental setup for gathering the data is explained in the

Supporting Information and in previous publications.7,9 After
preprocessing, it consists of 9787 blank traces and 20,129
traces from an experiment with a molecule. In Figure 8A,B, we
show 10 traces from a blank experiment and an experiment
with an added molecule, respectively. In Figure 8C,D, we show
1D-histograms of all traces from the blank and molecular
experiment, respectively. Finally, in Figure 8E,F, we show 2D-
histograms of all traces from the blank and molecular
experiment, respectively. Please note the increased variance
of the samples compared with the samples from the 4K-bpy
data set or the Fc data set.
In Figure 9, we show the results of filtering blank traces from

the RT-bpy data set. In the left column of Figure 9, we show
1D-histograms of the RT-bpy data set after each trace has been
classified. In the right column, we show 2D-histograms of all
the traces that have been classified as blank traces. Each row
corresponds to a new model: an OC-SVM with a linear kernel
is used in Figure 9A,B; an OC-SVM with an RBF kernel in
Figure 9C,D; a GMM with three components in Figure 9E,F; a
GMM with nine components in Figure 9G,H; a GMM with 12
components in Figure 9I,J; and a GMM with 20 components
in Figure 9K,L. We test more models and with a higher
amount of components due to the higher complexity of the

room-temperature data set compared with the data sets
measured at cryogenic temperatures.
We can see from Figure 9 that the OC-SVM with a linear

kernel and the GMM with three components perform the
poorest. The OC-SVM with an RBF kernel appears to perform
at the same level as the GMM with nine components.
The GMMs with 12 and 20 components (Figure 9I−L,

respectively) seem to perform the best based on the 1D-
histogram of the classified blank traces, where there is almost
no peak at the same location as the main molecular peak of the
molecular traces. The GMM with 20 components classifies
fewer traces as blanks than the rest of the models. It is difficult
to determine whether this is due to fewer misclassifications or
if there are truly fewer blank traces present.
To illustrate the impact that blank traces can have on

downstream analysis tasks, we compare 2D correlation
histograms of the filtered and unfiltered data set.56 In Figure
10A,B, we show 2D correlation histograms of the RT-bpy data
set before and after filtering, respectively.56−58 We use the
GMM with 20 components for filtering blank traces. In the
Supporting Information, we show 2D correlation histograms
for the C6-thiol and the Fc data sets.
It is clear from Figure 10B that filtering blank traces

substantially changes the correlations. The most drastic change
is seen in the blue box. In this region, parts of the traces are
initially positively correlated but become negatively correlated
after blank traces are filtered out.

Figure 8. Visualization of the RT-bpy data set. (A) Example traces
labeled as blank. (B) Example traces labeled as molecular. (C) 1D-
histogram of all blank traces. (D) 1D-histogram of all molecular
traces. (E) 2D-histogram of all blank traces. (F) 2D-histogram of all
molecular traces.

Figure 9. Left column shows 1D-histograms of classified molecular
(green, solid line), classified blank (orange, solid line), and the
reference blank traces (blue, dashed line) for the RT-bpy data set.
The right column shows 2D-histograms of the classified blank traces.
We show the following models: (A,B) OC-SVM with a linear kernel,
(C,D) OC-SVM with an RBF kernel, (E,F) GMM with three
components (G,H) GMM with nine components, (I,J) GMM with 12
components, (K,L) and GMM with 20 components. The 1D-
histograms of each class have been divided by the amount of samples
in their respective class. The %B denote the percentage of traces out
of the full data set that have been labeled as blank traces.
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The majority of filtered traces exhibit little to no signal in the
range of 10−0.5G0 to 10−3G0 (dark blue area), as shown in
Figure 9K,L. Due to the nearly uniform values in this range, it
leads to a positive correlation that obscures the underlying
negative correlation present after filtering. In the Supporting
Information, we have plotted a 2D-correlation histogram of
only the traces classified as blanks.
A smaller change is seen in the red box. In this region, the

negative correlation that is already present becomes more
pronounced after blank traces have been removed. Such
negative correlations have been reported elsewhere.56

Our findings on the RT-bpy data set echoes the findings
from the C6-thiol data set that is presented in the Supporting
Information. Despite the increased complexity of room-
temperature data sets compared with cryogenic temperature
data, the performance of our models remains robust. Notably,
correlation analysis underscores that filtering blank traces can
substantially influence subsequent analysis. As a result, the
interpretations derived from filtered data sets can be
qualitatively different from those based on the raw data set.
As with the previous, unlabeled data sets, we compare the

use of five clustering techniques before and after filtering
tunneling traces. These results are shown in the Supporting
Information.

■ DISCUSSION
In recent years, clustering techniques have become increasingly
popular for analyz ing s ingle-molecule transport
data.2−4,28,52,54,55,59−64 As mentioned in the introduction,
these are sometimes used to filter out blank traces. However,
filtering blank traces is often a byproduct of separating the
molecular traces into different classes. Moreover, the end-user
needs to decide which class (or classes) constitutes the blank
class. In contrast, OC classification specifically targets the
removal of blank traces from a molecular experiment. The
defining characteristics of these blank traces have been
explicitly learned from the training data obtained from a
blank experiment. Therefore, we can have greater confidence
that very few traces with molecular features will be included in
the blank class.
While both techniques can be utilized to filter out blank

traces, making a fair comparison between them is challenging.
One of the major obstacles is the lack of labeled data sets. On a
per-sample basis, it is difficult to determine the underlying

event that led to a given measured sample. Therefore, any
manual labeling of a data set may not accurately reflect the true
labels of the data set. Even if we had a fully labeled data set,
those labels would only represent one possible partitioning of
the data set. There exists a plethora of clustering algorithms
and similarity metrics, and any given combination of these will
give a result that might not correspond to the fully labeled data
set.
OC classification and clustering techniques address distinct

problems that may overlap in certain situations. Neither
technique can fully replace the other. By effectively filtering out
blank traces from a data set, subsequent analyses will benefit
from the reduced noise and confounding signals. We envision
that both techniques can be integrated into data analysis
pipelines to improve results and uncover new insights.
The fundamental assumption of using OC classification to

remove blank traces from a molecular experiment is that the
blank traces from a blank experiment are the same as the blank
traces from a molecular experiment. There are valid reasons to
believe that this assumption may not hold in practice. For
instance, the chemical environment undergoes substantial
changes with the addition of the molecule of interest.
However, as demonstrated with the Fc data set, there still
appears to be a large fraction of traces that are highly similar to
the traces from the blank experiment. This result suggests that
the assumption of different blank traces only partially breaks
down and that OC classification remains applicable. The
analysis of the Fc data set also demonstrates that even if the
assumption of similar blank traces completely breaks down, the
OC model would still classify the different blank traces as
abnormal.
The introduction of solvents into the experiment could

potentially enhance the differentiation of blank traces as
solvent molecules can alter the evolution of the junction.
Additionally, trace contaminants that may be present in the
solvent could also affect the process. These factors can both
lead to blank traces that have features distinct from those of
typical, exponentially decaying tunneling traces.
One advantage of OC classification is the ability to model

the blank class using a variety of blank traces. This allows for a
diverse classification of traces that a clustering algorithm may
potentially split into multiple classes. Another advantage is that
an algorithm trained on a specific training set ensures that if we
know the characteristics of that training set, we know what
traces will be classified as blank traces.
In the Supporting Information, we compare the length

distributions of traces from blank experiments with the traces
classified as blank and not-blank for the Fc, C6-thiol, and RT-
bpy data sets. For the well-performing models, samples that are
classified as blanks tend to be shorter, while the traces classified
as not-blanks tend to be longer. However, there is considerable
overlap between the two distributions. This result matches our
intuition: the conductance measured for traces with no
molecule should fall off relatively quickly. It also illustrates
that the models discriminate between traces based on more
than just their length.
In the Supporting Information, we additionally provide

histograms that display summary statistics such as the mean,
median, standard deviation, and slope for each data set. This
further illustrates the overarching traits of the traces that have
been filtered out. To complement these statistics, we also
include representative traces from each data set that have been
identified as ‘blanks’ by the, respective, models.

Figure 10. Correlation analysis of the 4K-bpy data set before and
after filtering for blank traces. (A) Correlation plot for the full data
set. (B) Correlation plot for the data set after blank traces have been
removed. (C) 1D-histogram of the data set after filtering for blank
traces. The dotted, black lines are a guide for the eye. We use a GMM
with 20 components to filter out blank traces. Note that the scales do
not go from −1 to 1.
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Practical Considerations for Using OC Classification
Models

It is advisible to initially experiment with a variety of OC
models. We demonstrated that the OC-SVM consistently
performs well, although the GMM also shows promising
results. Furthermore, while we have not explored them in this
paper, a wealth of other models exists.65−67 This initial
exploration allows for a more informed selection of the model
that best suits the specific needs of the study.
Calibration of the chosen model with a known molecule is a

crucial step and, if feasible, labeling some traces from the
molecular experiment can provide a quantifiable calibration.
Furthermore, maintaining consistency in experimental con-
ditions between blank and molecular experiments is important.
This ensures that any observed differences can be attributed to
the molecule under study, rather than variations in the
experimental setup.
Incorporating OC classification models into an analysis

pipeline that also includes clustering can yield more nuanced
insights. Once the data has been cleaned of tunneling traces
using the OC classification model, a clustering algorithm may
be able to discern subtle details more effectively. It is essential
to adhere to all general standards and principles related to ML
and model calibration, as outlined in the previous liter-
ature.51,68 This will ensures the robustness and reproducibility
of the findings.

■ CONCLUSION
In this work, we have demonstrated the use of OC
classification methods to filter blank traces on four diverse
data sets from three different laboratories. Using OC
classification provides a robust and reliable approach to
effectively remove blank traces from molecular experiments.
As highlighted in the introduction, various laboratories employ
different techniques for blank trace filtering. By utilizing OC
classification, we achieve a more principled quantification of
the traces that are filtered out while demonstrating excellent
performance.
Using the labeled 4K-bpy data set, we show that an OC-

SVM with an RBF kernel achieves an accuracy of 96.9 ± 0.3%
and an AUROC of 99.5 ± 0.3 by training solely on the blank
traces. This accuracy surpasses the previously reported
accuracy on the same data set using a supervised algorithm.
We validate the excellent performance by visualizing 2D-
histograms of the classified blank traces and comparing 1D-
histograms of the classified blank traces with the reference
blank traces.
On the more challenging Fc data set, which has also been

measured at cryogenic temperatures, we also see good
performance. An OC-SVM with an RBF kernel classifies
approximately 50% of the traces as blanks. Additionally, we
explore the traces classified as ‘not-blanks’ to gain a deeper
understanding of the behavior of our model. It becomes
apparent that the model can distinguish between subtly
different traces. Despite the traces exhibiting the characteristic
linear drop-off in conductance of prototypical blank traces,
they are labeled as ‘not-blanks’. This classification is likely due
to their noisier and more curved profile compared with the
traces from the blank experiment.
Furthermore, our approach opens up possibilities for

studying the differences between blank traces from a molecular
experiment and those from a blank experiment. By filtering out

traces that are identical to the ones from the blank experiment,
we are left with only the blank traces that are different. This
provides an opportunity for further in-depth exploration and
analysis of these distinct blank traces.
The last two data sets, both measured at room-temperature,

exhibited higher levels of noise compared with the data sets
measured at cryogenic temperatures. Despite the increased
noise, the tested models still demonstrate good performance.
Depending on the chosen model, between 15 and 40% of
traces are identified and removed as blank traces from the C6-
thiol data set without any indication of misclassification of
molecular traces.
For the RT-bpy data set, the percentage of removed blank

traces ranges from 28 to 35%. Moreover, we demonstrate that
the removal of blank traces has a substantial impact on the 2D-
correlation histograms calculated for the filtered data set, as
compared with the raw data set.
Overall, our work builds upon the impressive capabilities of

chemists to determine the chemical properties of single
molecules in single-molecule transport experiments, while
addressing inherent limitations in this approach. By providing a
more precise and detailed understanding of molecular
behavior, our aim is to contribute to the ongoing quest to
comprehend the fundamental properties of matter at the
single-molecule level.
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