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Metabolic syndrome (MS) is a group of complex metabolic disorders syndrome, which
refers to the pathological state of metabolism disorder of protein, fat, carbohydrate and
other substances in human body. The kidney is an important organ of metabolism, and
various metabolic disorders can lead to the abnormalities in the structure and function of
the kidney. The recognition of pathogenesis and treatment measures of renal damage in
MS is a very important part for the renal function preserve. Inflammatory response caused
by various metabolic factors is a protective mechanism of the body, but persistent
inflammation will become a harmful factor and aggravate kidney damage. Inflammasomes
are sensors of the innate immune system that play crucial roles in initiating inflammation in
response to acute infections and chronic diseases. They are multiprotein complex
composed of cytoplasmic sensors (mainly NLR family members), apoptosis-associated
speck-like protein (ASC or PYCARD) and pro-caspase-1. After receiving exogenous and
endogenous stimuli, the sensors begin to assemble inflammasome and then promote the
release of inflammatory cytokines IL-1b and IL-18, resulting in a special way of cell death
named pyroptosis. In the kidney, NLRP3 inflammasome can be activated by a variety of
pathways, which eventually leads to inflammatory infiltration, renal intrinsic cell damage
and renal function decline. This paper reviews the function and specific regulatory
mechanism of inflammasome in kidney damage caused by various metabolic disorders,
which will provide a new therapeutic perspective and targets for kidney diseases.
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INTRODUCTION

Metabolic syndrome (MS) is a group of complex metabolic disorders syndrome, which refers to the
pathological state of metabolism disorder of protein, fat, carbohydrate and other substances in
human body (1). In the 1990s, the overall prevalence of adult MS in the United States was 22%, and
the prevalence increased with age, among which the prevalence rates of 20-29, 60-69 and over 70
years old were 6.7%, 43.5% and 42%, respectively (2). By the 2000’s, the prevalence continued to
increase to 34.5% (3). The etiology of MS has not been clear, and it is considered to be the result of
multi gene and multi environment interaction, which is closely related to genetics and immunity (4).
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The disease is affected by many environmental factors, mainly
manifested in the high fat, high carbohydrate diet structure, low
labor intensity and less exercise (4). MS includes a variety of
metabolic disorders, including obesity, hyperglycemia,
hypertension, dyslipidemia, high blood viscosity, high uric
acid, high fatty liver incidence and hyperinsulinemia (5). At
present, it is believed that the common causes of these factors are
insulin resistance and hyperinsulinemia caused by obesity,
especially central obesity (6). MS is a risk factor for a variety of
diseases, such as hypertension, coronary heart disease, stroke,
chronic kidney disease (CKD), and even some cancers, including
breast cancer, endometrial cancer, prostate cancer related to sex
hormone, as well as pancreatic cancer, hepatobiliary cancer,
colon cancer in digestive system (6–8).

The kidney is an important organ of metabolism, and various
metabolic abnormalities can affect the structure and function of
kidney. Among people with MS, the prevalence of CKD exceeds
20%, which is much higher than that of the general population.
At the same time, among patients with CKD, the prevalence of
MS and subgroup metabolic disorders is much higher than that
of non-CKD patients (9). A retrospective analysis of more than
6,000 American adults aged over 20 years found that MS was an
independent risk factor for CKD (10). The probability of CKD
and microalbuminuria was 2.6 times and 1. 9 times of that of the
normal population, and the more abnormal components of MS
metabolism, the greater the risk (10). A study of 75,468 Chinese
people also supported the above view. The incidence of CKD
in MS patients and those without MS was 57% and
28%, respectively (11). The clinical manifestations of MS
related renal damage include glomerular hyperfiltration,
microalbuminuria, proteinuria, changes in renal tubular
function, eGFR < 60ml/(min·1.73m2), and increase of renal
vascular resistance by ultrasonic. Insulin resistance is the
central link of MS. Insulin receptors are widely expressed in
the kidney, such as podocytes, mesangial cells, endothelial cells
and renal tubular epithelial cells (12). Observation of kidney
tissue pathology of donor kidneys revealed that chronic
pathological changes were more common in kidney tissues of
MS patients, manifested as varying degrees of glomerular
sclerosis, renal tubular atrophy, renal interstitial fibrosis and
arteries hardening (13).

Therefore, exploring the pathogenesis and prevention
measures of renal damage in MS is a very important part of
the prevention and treatment of CKD. This article summarizes
the important role of inflammasome in renal damage caused by
different metabolic factors, and provides a new perspective for
the treatment of CKD in the future.
GENERAL INTRODUCTION OF NLRP3
INFLAMMASOME

Nod like receptor protein 3 (NLRP3) inflammasome is a
macromolecular polyprotein complex with a molecular weight
of about 700 kDa, which has the function of regulating chronic
Frontiers in Immunology | www.frontiersin.org 2
inflammatory response. NLRP3 inflammasome consists of
nucleotide-binding domain–like receptors (NLRs), apoptosis-
associated speck-like protein containing caspase recruitment
domain (ASC) and caspase protease. The structure of NLRs
mainly includes the middle nucleotide-binding and
oligomerization domain (NACHT), the downstream adapter
protein pyrindomain (PYD) or caspase recruitment domain
(CARD), and leucine-richrepeats (LRRs). Caspase-1 is the
activated form of pro-caspase-1, which can cleave cytokine
precursors such as interleukin (IL)-1b, IL-18 and other
cytokine precursors, transform them into mature form, and
participate in the inflammatory reaction (14).

The inflammasome is a complex composed of a variety of
proteins in the cytoplasm, which integrates different damage
stimulating signals and activates the innate immune defense
function (14, 15). The innate immune system recognizes
invading microorganisms and danger signals in the body
through specific pattern recognition receptors (PRRs).
Currently known PRRs are divided into two types, namely toll-
like receptors (TLRs) located on the cell membrane and NLRs
located in the cytoplasm (16). NLRP3 is the most well-studied
and most comprehensive inflammasome in the family of NLRs.
After LRRs of NLRP3 recognizes specific signal, it exposes and
polymerizes the NACHT domain, and recruits ASC and pro-
caspase-1 through PYD-PYD and CARD-CARD. Through the
cleavage of pro-caspase-1 to mature caspase-1, cytokine
precursors of IL-1b and IL-18 are cleaved into an active form
and secreted out of the cell. In addition to promoting the
maturation and secretion of IL-1b and IL-18, it can also
mediate a special programmed cell death pyroptosis by
activating caspase-1, which is characterized by the formation of
caspase-1-dependent plasma membrane pore size, a large
number of release of inflammatory mediators and DNA
damage, and finally leads to osmotic disintegration of cells (17).

Many endogenous and exogenous factors can stimulate the
production of NLRP3 inflammasome through different
mechanisms. There are clear reports about crystals or particles
(cholesterol crystals, asbestos, silica, etc.), bacterial toxins,
microorganisms (viruses, bacteria and fungi), and some
vaccine adjuvants (18, 19). Given that NLRP3 inflammasome is
an intracellular recognition receptor and the diversity of
recognition substances, these activators may have a common
endogenous signal transduction molecule, however this common
endogenous signal transduction molecule is not clear yet (20). At
present, there are mainly three different modes to illustrate the
activation mechanism of NLRP3 inflammasome. These three
modes include potassium channel open and outflow, cathepsin-B
secretion caused by lysosomal damage and rupture, and the
production of reactive oxygen species (ROS) (21). Various
microbial toxins, enzymes and extracellular ATP can activate
ATP-P2X7 receptors, make potassium ions outflow, and activate
NLRP3 inflammasome (22). Crystalline substances such as
silicon dioxide, antibiotics and antifungal drugs activate
inflammasome through ROS and cathepsin-B (23, 24).

Renal inflammatory response is the immune response of the
kidney to infectious or non-infective activators. The specific
July 2021 | Volume 12 | Article 714340

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xiong et al. NLRP3 in Kidney Diseases
expression of NLRP3 inflammasome components in kidney
tissues has not yet been fully clarified. Renal mononuclear
phagocytes, such as dendrites and macrophages, can express
the components of NLRP3 inflammasome and may induce cell
death by activating caspase-1 (25). At the same time, some
studies have confirmed that renal tubular epithelial cells and
podocytes also activate the NLRP3-ASC-caspase-1 axis, express
and release mature IL-1b and IL-18 (26–28). As an intracellular
pattern recognition receptor, NLRP3 inflammasome plays an
important role in stimulating and regulating immune
inflammation. The activation of NLRP3 inflammasome is
involved in the acute and chronic inflammation of the kidneys
by inducing the secretion of IL-1b and IL-18, leading to the
automatic defense and inflammatory response (26, 29). NLRP3
inflammasome also participates in the occurrence and
development of a variety of metabolic diseases as an important
member (30). Therefore, the in-depth study on the mechanism
of NLRP3 inflammasome associated with metabolic disorders
and kidney injury will provide new ideas and directions for the
treatment of metabolic related kidney diseases. The specific
formation and activation of NLRP3 Inflammasome was shown
in Figure 1.
Frontiers in Immunology | www.frontiersin.org 3
NLRP3 INFLAMMASOME IN METABOLIC-
ASSOCIATED KIDNEY DISEASES

Diabetic Nephropathy
Diabetes mellitus (DM) is a group of metabolic diseases
characterized by hyperglycemia. When DM continues to progress,
it often causes chronic damage to the eyes, kidneys, blood vessels,
and feet. Among them, diabetic nephropathy (DN) is the most
harmful inflammatory complication. It is also the main
microvascular of DM and the main cause of end-stage renal
disease (ESRD). Inflammatory response is the key factor for the
sustainable development of DN. The activation of various
inflammatory factors, such as C-reactive protein (CRP), monocyte
chemoattractant protein-1 (MCP-1) and inflammasomes, promote
macrophage infiltration, renal tubular fibrosis, and eventually
accelerate glomerulosclerosis (31).

The activation of NLRP3 inflammasome was detected in DN
patients and diabetic mice (32). MCC950 was a selective and
potent inhibitor of NLRP3 inflammasome, the use of which
improved renal function, podocyte injury and renal fibrosis in
db/db mice (33). Homozygous and hemizygous caspase-1
deficiency had protective effect on db/db mice, while caspase-3
FIGURE 1 | Formation and activation of NLRP3 inflammasome. The effect of extracellular stimulating factors activates the intracellular NF-kB pathway. The activation
of NF-kB pathway promotes the expression of inflammasome NLRP3, IL-1b, and IL-18. The activation of the inflammasome NLRP3 promotes the activation of
caspase-1, and the activated caspase-1 promotes the maturation of IL-1b and IL-18, which are then secreted into the extracellular to exert biological effects. NLRP3,
nod like receptor protein 3; IL, interleukin.
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deficiency had not, suggesting that caspase-3-dependent cell
death had no significant effect on the formation of DN, while
caspase-1-dependent inflammatory activation played an
important role (34). Moreover, the use of a novel monoclonal
antibody of IL-1b in diabetic mice reduced renal damage
markers, ameliorated fibrosis, and preserved the number of
podocytes (35). Thioredoxin-interacting protein (TXNIP) was
a mediator of oxidative stress and has been reported to interact
with NLRP3 inflammasome, leading to its activation (36). The
expression of TXNIP and NLRP3 was both significantly
increased in diabetic rats (36). Polyphenols, natural
antioxidants, have been proved to reduce pyroptosis in DN,
probably due to the inhibition of TXNIP/NLRP3 pathway (37).
Other drugs with antioxidant function have also been confirmed
to improve DN by targeting NLRP3 inflammasome, suggesting
that NLRP3 inflammasome plays a crucial role in the
pathogenesis of DN (38–40).

Podocytes, namely glomerular visceral epithelial cells,
participate in stabilizing glomerular capillaries, maintaining
the function of glomerular filtration barrier, regulating
ultrafiltration coefficient K/f and maintaining the normal
morphology of glomerular basement membrane (GBM) (41).
Studies have shown that podocyte injury plays a key role in the
pathogenesis of DN (41). High glucose (HG) activated the
NLRP3 inflammasome in mouse podocytes, which was
manifested by increased protein levels of NLRP3, ASC and
caspase-1, and the activity of caspase-1 was also significantly
elevated (42). After the podocytes were transfected with
NLRP3-small interfering RNA (siRNA), the expression of
caspase-1 and IL-1b was reduced, while the expression of the
podocyte functional protein nephrin was significantly
increased (43). The mechanism of NLRP3 inflammasome on
podocytes has not been fully elucidated. It has been found that
activation of NLRP3 inflammasome aggravated podocyte
autophagy and reduced nephrin expression, while NLRP3
silencing effectively restored podocyte autophagy and
alleviated podocyte injury induced by HG, suggesting that
autophagy might participate in the regulation of NLRP3
inflammasome on podocytes (44).

Glomerular mesangial cells play an important role in the
process of glomerular injury and repair. Early DN mainly
manifested in the proliferation of mesangial cells, which then
synthesize and secrete of a large number of mesangial matrixes,
gradually occlude the capillaries and lead to glomerulosclerosis.
It was found that the activation of NLRP3 also existed in
glomerular mesangial cells stimulated by HG (45). Some
extracts of traditional Chinese medicine have been found to
target NLRP3 to alleviate HG induced mesangial cell
proliferation (46, 47).

Renal tubular injury is one of the important determinants of
progressive renal failure in DN. In vitro, the expression of NLRP3
and the release of IL-1b, IL-18 and ATP were significantly increased
in HK-2 cells stimulated by HG (48). Knockdown of NLRP3
resisted HG induced tubular EMT by inhibiting ROS production
and the phosphorylation of Smad3, p38MAPK and ERK1/2 (49).
The overproduction of mitochondrial ROS (mtROS) plays a key
Frontiers in Immunology | www.frontiersin.org 4
role in inflammation. Treating HK-2 cells with the mtROS
antioxidant MitoQ inhibited the dissociation of thioredoxin
(TRX) from TXNIP, and then blocked the interaction between
TXNIP and NLRP3, resulting in the inactivation of NLRP3
inflammasome and the inhibition of IL-1b maturation (50).
Another study confirmed that ATP-P2X4 signaling mediated the
activation of HG-induced NLRP3 inflammasome, regulated the
secretion of IL-1b, and caused the development of tubulointerstitial
inflammation in DN (48). IRE1a was endoplasmic reticulum stress
(ERS)-related factor. Using IRE1a RNase specific inhibitor (STF-
083010) in HG-induced NRK-52E cells inhibited the TXINP/
NLRP3 pathway-mediated pyroptosis and renal damage,
suggesting that ERS might also leading to the activation of
NLRP3 inflammasome (51).

In general , HG stimulation can activate NLRP3
inflammasome through a variety of pathways, which will lead
to the abnormalities of intrinsic cells in kidney (Figure 2).
Current studies have proved that NLRP3 activation was
widespread in DN, and targeted therapy of NLRP3 played an
important role in the improvement of DN.

Hypertension-Related Nephropathy
Hypertension-related nephropathy is the damage of renal
structure and function caused by primary hypertension. The
kidney can excrete excess water and sodium salt through urine,
and prevent protein and blood cells from leaking out of blood
vessels. High blood pressure increases the blood pressure in the
blood vessels, leading to the leakage of protein into the urine,
causing damage to the renal filter system. Long term poor control
of hypertension will cause irreversible damage to the kidney.
Clinical hypertension is related to kidney inflammation and
increased circulating levels of IL-1b and IL-18, indicating that
inflammasome activity may be involve in the blood pressure
fluctuation and kidney injury (52).

In mice with deoxycorticosterone acetate and saline (1K/DOCA/
salt)-induced hypertension, the mRNA levels of NLRP3, ASC, pro-
caspase-1 and pro-IL-1b were evaluated, as well as the protein
expression of active caspase-1 and mature IL-1b (53). ASC−/−mice
exhibited a sluggish pressor response and the treatment of NLRP3
inflammasome inhibitor MCC950 reversed the hypertension in 1K/
DOCA/salt treated mice (53). Nitric oxide (NO) inhibition and salt
overload lead to hypertension, albuminuria, glomerulosclerosis,
glomerular ischemia and interstitial fibrosis. In this model,
allopurinol (ALLO), an NLRP3 inhibitor, significantly improved
hypertension, proteinuria and interstitial inflammation and fibrosis
(54). In a CKD model of 5/6 nephrectomy (5/6 Nx), the degree of
tubulointerstitial fibrosis and proteinuria was decreased in
NLRP3−/− mice, meanwhile, the mitochondrial morphology and
CKD-related hypertension were also ameliorated (55). So far, some
literatures have confirmed the important role of NLRP3 activation
in hypertension-related nephropathy, but the specific regulatory
mechanism still needs to be further explored.

Obesity-Related Nephropathy
In 1974, Weisinger et al. firstly reported that severe obesity can
lead to a large amount of proteinuria, and named this disease as
July 2021 | Volume 12 | Article 714340
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obesity-related nephropathy (ORG) (56). Since then, clinical
studies and animal experimental models have confirmed that
obesity has a significant effect on the structure and function of
the kidney (57). In recent years, although there are many studies
on ORG, its specific pathogenesis is not fully understood. It is
generally believed to be related to glucagon and insulin
resistance, the role of adipocytokines, inappropriate activation
of renin-angiotensin-aldosterone system (RAAS), release of
inflammatory factors, lipid metabolism disorder and structural
changes of kidney caused by obesity itself (58).

It was found that the mRNA levels and protein expressions of
NLRP3, ASC and caspase-1 in renal cortex of ORG mice were
significantly up-regulated (59). Also accompanied a significant
increase by P2X7R, an activation molecule of NLRP3. The
treatment of P2X7R antagonist (KN−62 or A438079) reversed
the changes of NLRP3 inflammasome components as well as
attenuated podocytes injury treated by leptin (59). The
expression of IL-1b and IL-18 levels also gradually increased in
the kidney of high-fat diet (HFD) fed mice detected by
immunohistochemistry (60). Knockdown of caspase-1
expression with siRNA inhibited palmitate-induced death and
apoptosis of HK-2 cells (60). Some natural substances and
traditional Chinese medicine components have been shown
to affect ORG by regulating the activation of NLRP3
inflammasome. Fisetin (FIS) is a natural flavonoid, which
significantly attenuated HFD-induced histological changes in
renal tissue samples, reduced the expression of kidney injury
molecule-1 (KIM-1) and altered the expression of nephrin and
podocin, thus improving renal insufficiency (61). In this process,
the expression of NLRP3 inflammasome components was also
decreased, suggesting that its mechanism might be related to
inflammasome (61). Coptidis Rhizoma, a classical traditional
Chinese herb, reduced dyslipidemia and improved urinary
Frontiers in Immunology | www.frontiersin.org 5
albumin to creatinine ratio and creatinine clearance rate in
obesity-prone (OP) rats with high protein and high fat diet
(62). The expression of NLRP3 inflammasome was also
downregulated under Coptidis Rhizoma treatment (62).

At present, the research on the pathogenesis and treatment of
ORG is relatively lacking, and the activation of NLRP3 may be an
important link. Therefore, more extensive and in-depth research
will give us a deeper understanding of ORG.

Hyperuricemia
Uric acid is a kind of anionic organic acid which is slightly soluble in
water. It is the end product of purine metabolism by xanthine
oxidase. About 70% of uric acid in normal human body is excreted
through kidney, and the remaining 30% is excreted through bile
duct and intestine (63). The generation and excretion of uric acid in
healthy human body is in dynamic balance. Once this balance is
broken, the generation or excretion of uric acid increase or decrease,
resulting in the accumulation of uric acid in the body, which will
lead to hyperuricemia. Fasting serum uric acid level > 420 mmol ·
L - 1 (male) and > 360 mmol · L - 1 (female) is usually used as the
diagnostic criteria of hyperuricemia.

Hyperuricemia can easily lead to renal hemodynamics,
histology and function changes, causing serious consequences
such as renal tubulointerstitial inflammation, kidney stones,
renal fibrosis and polycystic kidney disease (64). The study of
266 patients with hyperuricemia found that the incidence of
nephropathy was 15.11%, while the incidence of nephropathy
was only 2.19% in the population with normal serum uric acid
level (65). Another study among 190 patients with chronic gout
found that the incidence rate of renal damage was 86.13%,
significantly higher than 7.14% in the control group, suggesting
that hyperuricemia was closely related to the incidence of renal
damage and was another risk factor for kidney diseases (66).
FIGURE 2 | Mechanism of NLRP3 inflammasome in diabetic nephropathy. High glucose stimulation activates NLRP3 inflammasome mainly through K+ outflow, ROS
and lysosomal rupture. TNXIP binding to NLRP3 is a pivotal mechanism of NLRP3 inflammasome activation. The activation of NLRP3 inflammasome will lead to podocyte
lose, glomerulosclerosis and tubulointerstitial fibrosis. NLRP3, nod like receptor protein 3; ROS, reactive oxygen species; EMT, epithelial mesenchymal transition.
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At present, it is believed that hyperuricemia induced kidney
injury is mainly related to hyperuricemia induced RAAS
hyperfunction, inflammatory reaction, renal microvascular injury
and so on, but the exact mechanism remains unclear. Affiliated
Bao’an Hospital of Shenzhen conducted a cohort study among
control, hyperuricemia and gouty nephropathy patients. The results
showed that the expression of the NLRP3 inflammasome in
peripheral blood mononuclear cells, and the levels of IL-1b and
IL-18 in the plasma were upregulated in the gouty nephropathy
group compared with the control and hyperuricemia groups (67). In
rats with hyperuricemia and dyslipidemia induced by fructose,
NLRP3 inflammasome in kidney tissues was activated, which
manifested by overexpression of NLRP3, ASC and caspase-1,
resulting in excessive production of IL-1b, IL-18, IL-6 (68). Using
the CRISPR/Cas9 system to functionally disrupt expression of urate
oxidase (UOX) in Wistar rats spontaneously and persistently
increased serum uric acid level compared with wild-type rats.
UOX-KO rats established increased interstitial fibrosis,
macrophage infiltration, increased expression of NLRP3 and
IL-1b, and activation signaling pathways associated with
autophagy, indicating that autophagy and NLRP3-dependent
inflammation played crucial role in the development of
hyperuricemia induced kidney injury (69). The activation
of NLRP3 inflammasome has been proved to be a target of
hyperuricemia induced renal injury. A large number of natural
extracts have been found to improve renal function by inhibiting the
activity of NLRP3 inflammasome in hyperuricemia (70–73).

Although there are a lot of epidemiological and experimental
research reports on the relationship between uric acid and kidney
injury, the underlying pathological mechanism still needs further
research. The mechanism of hyperuricemia-induced renal injury
has a wide range of cross-talks. The activation of NLRP3
inflammasome plays a complex and important role in
promoting the occurrence and development of renal disease.
The mechanism of its interaction with other factors still needs to
be further explored.

Hyperhomocysteinemia
Hyperhomocysteinemia (hHcys) is a disease characterized by
elevated homocysteine in the blood, which has been recognized
as one of the important risk factors of kidney disease. HHcys can
cause anabolism of cholesterol and triglycerides, impaired
endothelial function, thrombosis, and monocyte activation
(74). Hyperhomocysteinemia is present in 85% of patients with
chronic renal failure, and persists after the initiation of dialysis or
kidney transplantation (75).

In 2012, Zhang et al. firstly discovered that all the components
of NLRP3 inflammasome were existed in podocytes and were
significantly evaluated by the treatment with L-homocysteine (L-
Hcys) (76). Silencing the ASC gene or inhibiting caspase-1
activity could alleviate podocyte injury and improve
glomerulosclerosis in mice with hHcys (76). Podocin, nephrin
and desmin are critical markers of podocyte injury. Another
study demonstrated that in folate free (FF) diet induced hHcys
mice, NLRP3−/−mice showed increased protein level of podocin
and nephrin but decreased expression of desmin compared to
wild-type mice, indicating the potential pathogenic effects of
Frontiers in Immunology | www.frontiersin.org 6
NLRP3 inflammasome activation (77). The production of ROS
plays an important role in the activation of NLRP3
inflammasome in hHcys-induced kidney injury. Nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase is considered
to be the main source of superoxide in the kidney. NADPH
oxidase inhibition (NOX) reversed the upregulated protein levels
of NLRP3, ASC and caspase-1 stimulated by Hcys in mouse
podocytes (78). In vivo, NOX inhibition also protected glomeruli
and podocytes from hHcys-induced damage, which was
manifested by reduced proteinuria and glomerular sclerosis
(78). TEMPOL is a recognized antioxidant. In hHcys mice, the
treatment of TEMPOL reduced colocalization of NLRP3 with
ASC, caspase-1 activation and as well as IL-1b production,
suggesting the treatment inhibited the activation of NLRP3
inflammasome (79). Meanwhile, the glomerular injury induced
by hHcys has also been improved (79). As in other metabolic-
associated kidney diseases mentioned above, the binding of
TXNIP to NLRP3 is a key signaling mechanism in hHcys-
induced kidney injury as well. Inhibition of TXNIP by
verapamil or TXNIP shRNA transfection broke the binding
and disrupted the formation of glomerular inflammasome (80).

As a crucial role in the pathogenic process of hHcys-induced
kidney injury, NLRP3 inflammasome has been regarded as a
novel target for the treatment of glomerular injury in hHcys.
Many compounds with anti-inflammatory properties, such as
anandamide, DHA metabolites-resolvins, resolvin D1 (RvD1)
and 17S-hydroxy DHA (17SHDHA), blocked podocyte injury
and glomerular sclerosis during hHcys via the suppression of
NLRP3 inflammasome activity (81–83).
CONCLUSION

MS is a group of clinical syndromes of chronic inflammation and
metabolic disorders caused by insulin resistance. With the
improvement of the economic level and the spread of
unhealthy lifestyles, the prevalence of MS is on the rise
globally, especially in developing countries and regions. Recent
studies have found that MS is an independent risk factor for
CKD. The pathogenesis of kidney damage caused by MS is
related to poor primary disease control, insulin resistance,
chronic inflammation, and endothelial function damage.
NLRP3 inflammasome is the sensor of the innate immune
system that initiates inflammatory response to stimulations,
and participates in the occurrence and development of various
metabolic diseases and kidney injury (Table 1). As we mentioned
above, a variety of metabolic disorders leads to the activation of
NLRP3 inflammasome in the kidney. The activation of NLRP3
inflammasome aggravates renal inflammatory infiltration and
tissue damage through many pathways including autophagy,
inflammatory factor release and EMT. At the same time,
factors related to tissue damage, such as ROS, autophagy
related molecules continue to stimulate the activation of
NLRP3 inflammasome and impair renal function. Therefore,
the activation of inflammasome and kidney injury are
mutually reinforcing.
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Because inflammasomes are intracellular recognition
receptors, scientists believe that there may be common factors
for their activation. In the kidney damage caused by different
metabolic factors, there are currently three recognized activation
pathways, namely the outflow of potassium ions, the release of
ROS, and the rupture of lysosomes. But for each metabolic factor,
specific activators are also found. For example, in DN, NLRP3
inflammasome can also be activated by endoplasmic reticulum
stress and autophagy.
Frontiers in Immunology | www.frontiersin.org 7
Accordingly, to explore the specific mechanism and
important role of NLRP3 in kidney injury induced by
metabolic disorders will provide new ideas and directions for
the prevention and treatment of metabolic-associated
kidney diseases.
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