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Abstract: Brain metastases (BM) cause morbidity and mortality in patients with non-small cell
lung cancer (NSCLC). The use of upfront epidermal growth factor receptor (EGFR) tyrosine kinase
inhibitors (TKIs) and withholding of whole-brain radiation therapy (WBRT) is controversial. We aim
to investigate the impact of WBRT on overall survival (OS). After screening 1384 patients, a total of
141 EGFR-mutated patients with NSCLC and BM were enrolled. All patients received EGFR-TKIs
between 2011 and 2015. Ninety-four patients (66.7%) were treated with WBRT (TKI + WBRT group).
With a median follow-up of 20.3 months (95% confidence interval (CI), 16.9–23.7), the median OS after
the diagnosis of BM was 14.3 months (95% CI, 9.5 to 18.3) in the TKI + WBRT group and 2.3 months
(95% CI, 2 to 2.6) in the TKI alone group. On multivariate analysis, WBRT (p < 0.001), female, surgery
to primary lung tumor, and surgery to BM were associated with improved OS. The 1-year OS rate
was longer in the TKI+WBRT group than that in the TKI alone group (81.9% vs. 59.6%, p = 0.002).
In conclusion, this is the first study to demonstrate the negative survival impact from the omission of
WBRT in patients with EGFR-mutant NSCLC.
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1. Introduction

Globally, lung cancer is a leading cause of cancer incidence and mortality [1], and is also the most
common primary site of brain metastases (BM) [2]. The mainstay of treatment for BM has been surgery,
whole-brain radiotherapy (WBRT) or stereotactic radiosurgery performed alone or in combination.
WBRT targets any micro-metastases not detected on imaging, prevents intracranial recurrence, and
reduces the risk of deaths due to neurological cause [3]. Because BM causes neurological decline,
WBRT improves neurological function with minimal complications [4,5]. In 1954, it was reported to
lessen headache, aphasia, hemiplegia, paralysis, blurred vision and incontinence [4]. On the other
hand, radiotherapy (RT)-induced dementia in patients cured of BM was 1.9 to 5.1% [6].

Post-operative WBRT is usually recommended to prevent local recurrence and death from
neurologic cause [7]. With the advance of modern treatment and improved cancer survival, the cognitive
effect of WBRT is now a concern [8]. Even though the European Organization for Research and Treatment
of Cancer (EORTC) 22952-26001 study revealed that post-operative adjuvant WBRT reduces intracranial
relapses and neurologic deaths [9], another EORTC Phase-III trial reported an induced inferior quality
of life [10]. A secondary analysis of EORTC 22952-26001 found no significant survival benefit to WBRT
among patients with non-small cell lung cancer (NSCLC) and favorable Graded Prognostic Assessment
(GPA) scores [11].

NSCLC accounts for approximately 85% of lung cancers [12]. It is characterized by a high
incidence of BM. Advances in the understanding of genetic aberrations associated with NSCLC
have led to the development of epidermal growth factor receptor (EGFR)-targeted therapies [12].
Patients with EGFR-mutated lung cancer tend to have longer survival rates, but a higher incidence
of brain metastases [13]. WBRT alone is now the treatment of choice for patients who are poor
candidates for surgery, yet a recent randomized controlled trial suggested no benefit of WBRT to
optimal supportive care with dexamethasone in patients with poor performance status and multiple
BM from NSCLC [14]. The fast-paced development of novel agents is allowing improved outcomes for
patients with advanced NSCLC. Whether deferring WBRT compromises neurological and survival
outcome is still under debate [15].

The optimal management of EGFR-mutated NSCLC with BM continues to develop, with new
approaches to diagnosis and a continual expansion of available treatment options for patients with
EGFR mutation. Current studies have reported that EGFR-mutated NSCLC exhibits better efficacy
of RT than does EGFR wild-type [16–18]. Cell studies have proven that clonogenic survival of
EGFR-mutated NSCLCs in response to RT was reduced 500- to 1000-fold compared with wild-type [19].
WBRT affects the blood-tumor barrier [20–23], and blood-brain barrier (BBB) disruption after WBRT
treatment is documented to lead to an increase in drug permeability. Furthermore, TKI can increase
the radiosensitivity of EGFR-mutated cells [23]. TKIs have different capacity to cross the BBB. In one
study, the cerebrospinal fluid (CSF)-to-plasma ratio of gefitinib in patients with BM was higher than
that in patients without BM (1.34% vs. 0.36%, p < 0.001) [24], while another study found that the BBB
permeation rate of erlotinib was 4.4 ± 3.2% [25]. Hoffknecht et al. reported data from one patient
with an impressive response showed an afatinib concentration in the CSF of nearly 1 nMol [26]. In the
BLOOM study, the BBB permeation rate of osimertinib was found to be 16% [27].

The efficacy of TKIs with and without WBRT has not been determined in patients with BM
resulting from EGFR-mutated NSCLC; thus, we aimed at identifying optimal therapeutic strategies for
patients with BM in the setting of dominant oncogenic-driven disease. We hypothesized that WBRT in
addition to TKI alone may offer survival benefits under the radiobiological rationale of the impact of
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WBRT on BBB permeability. To address this issue, we assessed the effectiveness of TKI given alone or
in combination with WBRT to patients with EGFR-mutated NSCLC and newly diagnosed BM.

2. Patients and Methods

2.1. Ethics Approval Statement

The present study (KMUHIRB-E(II)-20180185) was approved by the ethical and research committee
of the Kaohsiung Medical University Hospital. This study was conducted in compliance with
institutional review board regulations in accordance with the Helsinki Declaration of 1975 as revised
in 1983. All patients provided written informed consent for treatment; patient information was
anonymized and de-identified before analysis; consequently, all data were analyzed anonymously.

2.2. Patients

Of 1384 NSCLC patients in the database of the tertiary hospital, we identified and analyzed
141 consecutive patients with pathologically proven lung adenocarcinoma who had received TKIs
between 3 January 2011 and 29 December 2015. Their BM were diagnosed by either cytology or
brain neuroimaging studies. The inclusion criteria for this study were pathologically proven positive
EGFR mutations, the diagnosis of BM, and the use of TKI. The exclusion criteria were a history of
prior brain RT, or a history of malignancies other than lung cancer, or EGFR-TKI resistance mutation,
or incapability to receive EGFR-TKI. Patient follow.ups were conducted by clinic visits or telephone
calls until June 2018.

The following variables were collected: age, gender, initial clinical tumor and nodal classification,
time from initial diagnosis to BM, extracranial metastasis, histological grading, EGFR mutation,
operation to primary lung tumor, number of lines of chemotherapy, name of EGFR-TKI, number of
lines of TKI, mean duration of TKI use, Eastern Cooperative Oncology Group (ECOG) performance
status at the time of BM, number of BM, smoking history, whether the patient was symptomatic from
BM, size of the largest BM, number of BM and disease-specific Graded Prognostic Assessment (dsGPA).
The dsGPA was calculated for each patient to determine whether the cohorts shared similar prognostic
features [28].

2.3. Target Therapy

All patients underwent pretreatment workups comprising a physical examination, a history
review, chest radiography, bronchoscopy with a tumor biopsy, chest computed tomography (CT),
brain magnetic resonance imaging (MRI) or CT, and routine laboratory studies. The tumor stage
was classified according to the seventh edition of the Cancer Staging Manual and Handbook of the
American Joint Committee on Cancer (AJCC) [29]. All patients started taking EGFR-TKI once the
diagnosis of stages IIIB –IV lung cancer with EGFR mutation was established. TKIs included gefitinib,
erlotinib, afatinib and osimertinib. The first generation was used and then shifting to the second or
third generation might be chosen at the discretion of the thoracic oncologist.

2.4. WBRT

Ninety-four patients had WBRT once the diagnosis of BM was confirmed. For WBRT,
each patient was simulated in the supine position in a customized thermoplastic immobilization
mask. Three-dimensional conventional radiotherapy (3D-CRT) was delivered using a 2100 C/D linear
accelerator (Varian Medical Systems, Palo Alto, CA, USA) for 57 patients. The remaining 37 patients
were treated by intensity-modulated radiotherapy (IMRT) either with a Hi-Art helical tomotherapy
unit, version 2.2.4.1 (TomoTherapy, Inc., Madison, WI, USA), or Eclipse, version 8.6 (Varian Medical
Systems Inc., Palo Alto, CA, USA). For the 37 patients who had a boost dose to their BM, the tumor
and boost beams were combined in one integrated treatment plan. Fractionation schemes were as
follows: 30 Gy in 10 fractions with or without a simultaneous boost to the brain of 45 Gy, or 37.5 Gy in
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15 fractions with or without a simultaneous boost to the brain of 45 Gy. The decision whether to give a
RT dose boost to the BM sites was at the discretion of each radiation oncologist. The mean radiation
dose was 3781 ± 749 cGy to BM.

2.5. Statistical Analysis

The primary end points were overall survival (OS) and the OS after a diagnosis of BM (OSm). OS
was defined as the time from the date of lung cancer diagnosis to the date of death from any cause or
until the date of the last follow-up. OSm was defined as the time from the date of BM diagnosis to the
date of death from any cause or until the date of the last follow-up. OS and OSm rates were assessed
by Kaplan–Meier methods and the log-rank test was used to compare time-to-event distributions.
The data set was stratified and outcomes were compared by t-test or chi-squared test. Univariate
analyses and a multivariate Cox proportional hazards regression were used to inspect all collected
variables. Estimated risks of death were calculated using hazard ratios (HR) with 95% confidence
intervals (CIs). The level of statistical significance was set at p < 0.05; all reported p values were
two-tailed. The analyses were performed using the SPSS software package, version 19.0 for Windows
(SPSS, Chicago, IL, USA).

3. Results

3.1. Patient Characteristics

One hundred forty-one patients out of 1384 patients were retrospectively enrolled after the
aforementioned inclusion and exclusion criteria were applied. Gender difference existed in terms
of smoking status (never vs. ever); 98.9% of the female patients and 37.7% of the male patients had
never smoked (p < 0.001). The median duration of TKI use was 13.2 months (95% confidence interval
(CI), 10.1 to 16.2) in TKI + WBRT group and 10 months (95% CI, 7.3 to 12.8) in the TKI alone group.
The mean durations of TKI use were 18.1±15.1 months and 15.4 ± 16.4 months for patients with and
without WBRT, respectively (p = 0.327). In this cohort of 141 patients, 52 patients had more than one
line of TKIs due to intolerance or disease progression. Table 1 summarizes the clinical characteristics of
the 141 patients, divided by whether they had WBRT (TKI + WBRT group vs. TKI alone group).

All of them had EGFR-TKI. The mean and median age of this retrospective cohort was 64.5 years
and 62 years respectively. Ninety-four patients (66.7%) received WBRT, and 47 patients (33.3%) did
not. Patients who received WBRT were more likely to have surgery to their BM (38.3% in the TKI +

WBRT group and 14.9% in the TKI alone group; p = 0.004); neurological symptoms (76.6% in the TKI +

WBRT group and 53.2% in the TKI alone group; p = 0.005); larger BM (70.2% over 1 cm in the TKI +

WBRT group and 53.2% in the TKI alone group; p = 0.046); and more BM (p = 0.043). No significant
differences were observed in terms of age, gender, stage, initial clinical tumor and nodal classification,
extracranial metastases, histological grading, EGFR mutation, primary lung surgery, number of lines of
chemotherapy, name of EGFR-TKI, number of lines of TKI, mean duration of TKI use, smoking history,
ECOG performance status at the time of BM, and dsGPA (all p > 0.05; Table 1).

Table 1. Patient characteristics.

All WBRT No WBRT p-Value

No. of cases 141 94 47
Age 0.112
540 5 4 1

41–70 100 71 29
>70 36 19 17
Sex 0.389

Female 88 61 27
Male 53 33 20
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Table 1. Cont.

All WBRT No WBRT p-Value

Initial Clinical stage 0.052 (Fisher)
I–II 8 8 0

III–IV 133 86 47
Initial clinical T

classification 0.788

1 or 2 38 26 12
3 or 4 103 68 35

Initial clinical N
classification 0.319

0 or 1 50 36 14
2 or 3 91 58 33

Histological grade 0.639
1–2 59 37 22

3 31 23 8
NA 51 34 17

EGFR mutation
Exon 18 2 1 1 0.557 (Fisher)
Exon 19 63 45 18 0.281
Exon 20 15 8 7 0.247
Exon 21 60 38 22 0.47

NA 5 3 2 0.541 (Fisher)
Lung surgery 0.393

No 121 79 42
Yes 20 15 5

Number of lines of
systemic chemotherapy 0.078

0–2 104 65 39
>2 37 29 8

TKI
afatinib 17 12 5 0.715
erlotinib 75 52 23 0.474
gefitinib 97 62 35 0.304

osimertinib 5 4 1 0.665 (Fisher)
Number of lines of TKI 0.902

1 89 59 30
>1 52 35 17

Mean TKI duration
(months ± SD) 17.2 ± 15.6 18.1 ± 15.1 15.4 ± 16.4 0.327

ECOG 0.172
0 71 50 21
1 62 41 21
2 8 3 5

Smoking 0.29
Never 107 75 32

Former 17 9 8
Current 17 10 7

Brain surgery 0.004
No 98 58 40
Yes 43 36 7

Symptomatic brain
metastases 0.005

No 44 22 22
Yes 97 72 25

Size of largest brain tumor 0.046
51 cm 50 28 22
>1 cm 91 66 25
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Table 1. Cont.

All WBRT No WBRT p-Value

No. of brain metastases 0.043
1 33 17 16

2–3 15 13 2
>3 93 64 29

Extracranial metastases
Lung 60 34 26 0.03
Bone 106 69 37 0.491
Liver 24 15 9 0.635

dsGPA 0.898
0.5–1.5 97 65 32

2–4 44 29 15

Abbreviations: WBRT: whole-brain radiation therapy; EGFR: Epidermal Growth Factor Receptor; TKI: tyrosine kinase
inhibitor; ECOG: Eastern Cooperative Oncology Group; dsGPA: disease-specific Graded Prognostic Assessment.
* By t-test ** By Chi-square test.

3.2. OS and OSm

The median OS was 20.3 months (95% CI, 16.9 to 23.7) for the entire cohort. Seventeen and two
patients were still alive in the TKI+WBRT group (18.1%) and TKI alone group (4.3%), respectively.
The mean OS was longer for patients with WBRT (27.2 ± 16.7 vs. 21.6 ± 20.4 months, p = 0.033)

The median OSm was 10.5 months (95% CI, 7.2 to 13.9) for the entire cohort. The combination
group survived much longer after the diagnosis of BM. The median OSm was 14.3 months (95% CI,
9.5 to 18.3) in the TKI + WBRT group and 2.3 months (95% CI, 2 to 2.6) in the TKI alone group. The
mean survival after BM was 18 ± 15.2 months and 7.1 ± 10.8 months for patients with and without
WBRT, respectively (p < 0.001).

The 1-year OS rates were 81.9% and 59.6% with and without WBRT (p = 0.002). WBRT (p = 0.002),
younger age (p = 0.003), female gender (p = 0.029) and surgery to primary lung cancer (p = 0.03) were
favorable prognostic factors for longer 1-year OS rate (Table 2). WBRT was a favorable prognostic factor
for longer OS (p = 0.034; Figure 1A). To investigate the prognostic factors, we included five factors with
p < 0.025 (WBRT, female gender, surgery to primary lung tumor, surgery to BM and smoking status) in
a multivariable model (Table 3). WBRT was a strong favorable prognostic factor for longer survival
(p < 0.001; Figure 1B).

Table 2. 1-year overall survival rate.

No. of Cases 1-Year Survival
Rate (Number) p-Value

WBRT 0.002
No 47 59.6% (28)
Yes 94 81.9% (77)
Age 0.003
540 5 100% (5)

41–70 100 80% (80)
>70 36 55.6% (20)

Gender 0.029
Female 88 80.7% (71)
Male 53 64.2% (34)

Initial Clinical stage 0.39
I–II 8 87.5% (7)

III–IV 138 73.7% (98)
Clinical Tumor classification 0.386

1 or 2 38 78.9% (30)
3 or 4 103 72.8% (75)

Clinical Nodal classification 0.127
0 or 1 50 82% (41)
2 or 3 91 70.3% (64)
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Table 2. Cont.

No. of Cases 1-Year Survival
Rate (Number) p-Value

Extracranial metastases
Lung 60 78.3% (47) 0.4
Bone 106 71.7% (76) 0.203
Liver 24 70.8% (17) 0.675

Lung surgery 0.03
No 121 71.1% (86)
Yes 20 95% (19)

Brain surgery 0.593
No 111 75.7% (84)
Yes 30 70% (21)

ECOG 0.299
0 71 76.1% (54)
1 62 75.8% (47)
2 8 50% (4)

Smoking 0.243
Never 107 75.7% (81)

Former 17 82.4% (14)
Current 17 58.8% (10)

Symptomatic brain metastases 0.219
No 44 68.2% (30)
Yes 97 77.3% (75)

Size of largest brain tumor 0.357
51 cm 50 70% (35)
>1 cm 91 76.9% (70)

No. of brain metastases 0.907
1 33 72.7% (24)

2–3 15 80% (12)
>3 93 72.7% (69)

dsGPA 0.821
0.5–1.5 97 75% (72)

2–4 44 74.2% (33)
By log-rank test. Abbreviations: WBRT: whole-brain radiation therapy; OS: overall survival; TKI: tyrosine kinase
inhibitor; ECOG: Eastern Cooperative Oncology Group; dsGPA: disease-specific Graded Prognostic Assessment.

Table 3. Univariate and multivariate Cox regression analyses of covariables associated with OSm.

Univariate Analyses Multivariate Analyses

HR (95%CI) p-Value HR (95%CI) p-Value

WBRT
Yes vs. no 0.36 (0.25 to 0.53) <0.001 0.34 (0.23 to 0.51) <0.001

Age
41–70 vs. 540 1.45 (0.46 to 4.58) 0.532
>70 vs. 540 2.69 (0.82 to 8.81) 0.101

Female vs. male 0.52 (0.36 to 0.75) 0.001 0.44 (0.25 to 0.75) 0.003
Initial Clinical stage

III–IV vs. I–II 1.77 (0.72 to 4.35) 0.21
Clinical T classification

3–4 vs. 1–2 1.26 (0.84 to 1.91) 0.268
Clinical N classification

2–3 vs. 0–1 1.31 (0.9 to 1.92) 0.165
Extracranial metastases

Lung
Yes vs. no 1.26 (0.88 to 1.8) 0.216

Bone
Yes vs. no 1.38 (0.89 to 2.13) 0.148

Liver
Yes vs. no 1.59 (1 to 2.51) 0.046

Lung surgery
Yes vs. no 0.5 (0.29 to 0.88) 0.016 0.47 (0.26 to 0.84) 0.01
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Table 3. Cont.

Univariate Analyses Multivariate Analyses

HR (95%CI) p-Value HR (95%CI) p-Value

Brain surgery
Yes vs. no 0.5 (0.34 to 0.76) 0.001 0.64 (0.41 to 0.97) 0.037

Number of lines of systemic
chemotherapy

>2 vs. 0–2 1.13 (0.76 to 1.69) 0.534
Number of lines of TKI

>1 vs. 1 0.71 (0.49 to 1.03) 0.069
ECOG
1 vs. 0 0.93 (0.64 to 1.34) 0.693
2 vs. 0 1.3 (0.59 to 2.84) 0.515

Smoking
Former or current vs. never 1.66 (1.11 to 2.48) 0.013 0.85 (0.48 to 1.53) 0.59

Symptomatic brain
metastases
Yes vs. no 0.91 (0.62 to 1.34) 0.639

Size of largest brain tumor
>1 cm vs. 51 cm 0.99 (0.68 to 1.45) 0.977

No. of brain metastases
2–3 vs. 1 1.25 (0.66 to 2.37) 0.5
>3 vs. 1 1.44 (0.92 to 2.26) 0.109
dsGPA

0.5–1.5 vs. 2–4 1.41 (0.95 to 2.1) 0.089

By Cox regression analyses. Abbreviations: OSm: overall survival time after the diagnosis of brain metastases;
WBRT: whole-brain radiation therapy; TKI: tyrosine kinase inhibitor; ECOG: Eastern Cooperative Oncology Group;
dsGPA: disease-specific Graded Prognostic Assessment.

Figure 1. Cont.
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Figure 1. (A) Cox regression comparing overall survival in epidermal growth factor receptor-mutant
non-small-cell lung cancer patients under tyrosine kinase inhibitors treated with and without WBRT.
(B) Cox regression comparing overall survival time after the diagnosis of brain metastases in epidermal
growth factor receptor-mutant non-small-cell lung cancer patients under tyrosine kinase inhibitors
treated with and without WBRT. (C) Overall survival of patients stratified by WBRT and dsGPA
score. (D) Overall survival after the diagnoses of brain metastases in patients stratified by WBRT and
dsGPA score. Abbreviations: WBRT=whole-brain radiation therapy; dsGPA=disease-specific Graded
Prognostic Assessment.

3.3. Subgroup Analyses

In identifying potential differences in the benefits of WBRT for patients by the dsGPA score, there
was a trend toward improved OS in the group of TKI + WBRT (p = 0.091, Figure 1C); furthermore,
WBRT significantly improved OSm regardless of dsGPA score (p < 0.001, Figure 1D), while the mean
BM-free survival rates were similar in both groups (9.2 ± 13.6 months vs. 14.5 ± 17.8 months, p = 0.312).
As a result, OSm caused survival difference, and longer OSm contribute to longer OS. WBRT was a
strong favorable prognostic factor for longer survival.

4. Discussion

We now routinely use molecular selection to identify patients with NSCLC who would benefit
from target therapy. The Bureau of National Health Insurance of Taiwan reimburses TKIs prescribed
after a diagnosis of stage IIIB or IV lung cancer. Target therapies have resulted in major shifts in the
treatment paradigm for lung cancer [30]. Fifteen years ago, Omuro et al. reported that the incidence
of the central nervous system as an initial failure site reached 33% in EGFR-TKI responders with
advanced NSCLC regardless of disease control in the lungs [31]. Intrinsic resistance of metastatic
clones, incomplete TKI penetration of the BBB and longer survival are possible explanations for this
high incidence [31]. One retrospective study in Taiwan reported that more patients with advanced
EGFR-mutated NSCLC died of BMs than did those with wild-type (44.8% vs. 8.3%, p < 0.001) [32].
This change in the causes of death was noted after the era of EGFR-TKI treatment. The present study
found that WBRT prolonged OS in patients with EGFR-mutated NSCLC who developed BM.

Xu et al. stated that aggressive local ablative therapy including surgery or RT to all metastatic
sites improved OS compared with local ablative therapy to partial sites or observation alone [33].
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Magnuson et al. performed a retrospective study on the topic of the optimal sequence of stereotactic
radiosurgery, WBRT, and EGFR-TKIs in patients with EGFR-mutated NSCLC who developed BM.
They reported that upfront brain RT resulted in longer OS compared with upfront EGFR-TKIs
(stereotactic radiosurgery with 46 months versus WBRT with 30 months versus EGFR-TKI with
25 months, p < 0.001) [34]. Li et al. also confirmed the use of upfront WBRT for patients with
EGFR-mutated NSCLC and multiple BM improved OS [35]. Although the timing of WBRT was
not involved in the present study, we demonstrated worsened OS without WBRT and that WBRT
contributed to the addition of approximately one year of survival after the diagnosis of BM.

However, Ke et al. reported no statistically significant difference in the OS between the First-line
EGFR-TKI-alone group and First-line EGFR-TKI plus WBRT [36]. It is worth noting that first-generation
EGFR-TKIs hardly penetrate across the BBB at the recommended doses [24]. In their study [36],
the performance status, dsGPA, surgery to primary or metastatic sites were not documented, and these
factors might affect OS. He et al. reported that concurrent EGFR-TKI and WBRT significantly improved
the median intracranial progression-free survival compared with EGFR-TKI alone (17.7 vs. 11.0 months,
p = 0.015); however, there was no significant OS difference (28.1 vs. 24.0 months, p = 0.756) [37]. In their
study, they prescribed three types of different TKIs (erlotinib, gefitinib and icotinib) and 20 patients in
the group of 48 patients who were given EGFR-TKI alone initially received salvage WBRT upon BM
progression. This group was not purely without WBRT.

Lee et al. reported that EGFR-mutant NSCLC patients with BM who had received EGFR T790M
inhibitors survived longer (41.1 vs. 19.8 months) [38]. Ng et al. found that one of the favorable
prognostic factors was female gender (p <.001) in patients with NSCLC receiving WBRT [39]. In the
present study, the median OSm was 14.3 months (95% CI, 9.5 to 18.3) in the TKI + WBRT group and
2.3 months (95% CI, 2 to 2.6) in the TKI alone group. On multivariate analysis, WBRT (p < 0.001) and
female (p = 0.003) were associated with improved OS.

WBRT is associated with the risks of acute and late toxicities. Cognitive deficits attributed to RT
were first reported in children treated for leukemia or brain tumors [40], and this bias was partly caused
by greater susceptibility of the developing brain in youngsters [41]. BM by itself negatively affects
cognitive function; additionally, baseline cognitive decline from aging in the cancer patients may also
impact cognition [42]. Cognitive dysfunction can be caused by brain tumors, psychological distress,
comorbidities such as vascular risk factors and diabetes, or by tumor-related epilepsy and its treatment
(surgery, RT, anticonvulsants, chemotherapy, or corticosteroids) [40]. It can be difficult to differentiate
from the effects of the tumor itself or RT complication [43]. Even though several recent publications
have brought into question the role of WBRT and the possible risk of long-term neurotoxicity, WBRT
curbed neurological decline [44]. A prospective study showed that the BBB permeability of gefitinib
increased in accordance with escalated dose of WBRT [24]. An analysis from Radiation Therapy
Oncology Group (RTOG) Study 91-04 showed that WBRT improved the scores on Mini-Mental State
Examination in the patients with BM [45]. The optimization of WBRT with pharmacological and
technical innovations to selectively spare organs involved in the memory process may decrease the
potential long-term neurotoxicity [33].

At present, the treatment selection based on driver mutation status improves survival. Given the
advancement of systemic therapy for extracranial lesions of metastatic NSCLC, patients now live long
enough to develop BM [32]. WBRT, however, may be deferred and even omitted after the emergence
of TKI by some clinicians. Based on prospective cohort studies, recently the European Society for
Medical Oncology (ESMO) Clinical Practice Guidelines for metastatic NSCLC recommended the use
of next-generation TKI for patients with a druggable oncogene driver (EGFR, ALK) and clinically
asymptomatic BM [46]. Contradictory results were offered. Another retrospective study in North
America reported that First-line WBRT for BM from EGFR/ALK-driven NSCLC was associated with
longer time to intracranial progression than was radiosurgery or TKI alone [47]. For patients with
ECOG 0-2 in the present study, the absence of WBRT was detrimental to their survival. In terms of
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different subgroups, even those with favorable dsGPA scores had survival benefit from the addition of
WBRT compared with TKI alone.

The results of this study should be interpreted with caution, owing to the heterogeneity of patient
characteristics and possible intrinsic bias related to the retrospective design. We intended to minimize
bias by using multivariate analyses. There were some pitfalls of the present study. Firstly, radiosurgery
was in general not used due to the regulations of National Health Insurance reimbursement. Secondly,
we used OS rate to measure the clinical benefits, which might not represent the tumor response. Thirdly,
cognitive evaluation was not fully documented. The precise roles of WBRT need to be validated
in a randomized control trial. Moreover, Osimertinib is a third-generation EGFR-TKI developed
specifically to treat patients with T790M mutation, and only 3.5% of the patients in the study cohort
used Osimertinib.

5. Conclusions

The present study suggested that WBRT significantly prolonged OS in patients with EGFR-mutated
NSCLC who developed BM. The combination of WBRT and TKI improved OS compared with TKI
alone. To the best of our knowledge, this study is the first to demonstrate the negative survival impact
from the omission of WBRT in patients with targetable driver mutation. A longer follow-up studying
the role of multi-modality treatment in EGFR-mutated NSCLC with BM is urgently warranted.
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