Check for updates

GOPEN ACCESS

Citation: Ronaldson A, Elton L, Jayakumar S, Jieman A, Halvorsrud K, Bhui K (2020) Severe mental illness and health service utilisation for nonpsychiatric medical disorders: A systematic review and meta-analysis. PLoS Med 17(9): e1003284. https://doi.org/10.1371/journal.pmed.1003284

Academic Editor: Rahul Shidhaye, Pravara Institute of Medical Sciences, INDIA

Received: January 29, 2020

Accepted: August 10, 2020

Published: September 14, 2020

Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here: https://doi.org/10.1371/journal.pmed.1003284

Copyright: © 2020 Ronaldson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: As this is a systematic review of existing literature all relevant

RESEARCH ARTICLE

Severe mental illness and health service utilisation for nonpsychiatric medical disorders: A systematic review and metaanalysis

Amy Ronaldson^{1,2}*, Lotte Elton¹, Simone Jayakumar¹, Anna Jieman¹, Kristoffer Halvorsrud¹, Kamaldeep Bhui^{1,3}

 Centre for Psychiatry, Wolfson Institute of Preventive Medicine, Barts & The London School of Medicine, Queen Mary University of London, London, United Kingdom, 2 Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom,
 Department of Psychiatry, University of Oxford, Oxford, United Kingdom

* amy.ronaldson@kcl.ac.uk

Abstract

Background

Psychiatric comorbidity is known to impact upon use of nonpsychiatric health services. The aim of this systematic review and meta-analysis was to assess the specific impact of severe mental illness (SMI) on the use of inpatient, emergency, and primary care services for non-psychiatric medical disorders.

Methods and findings

PubMed, Web of Science, PsychINFO, EMBASE, and The Cochrane Library were searched for relevant studies up to October 2018. An updated search was carried out up to the end of February 2020. Studies were included if they assessed the impact of SMI on nonpsychiatric inpatient, emergency, and primary care service use in adults. Study designs eligible for review included observational cohort and case-control studies and randomised controlled trials. Random-effects meta-analyses of the effect of SMI on inpatient admissions, length of hospital stay, 30-day hospital readmission rates, and emergency department use were performed. This review protocol is registered in PROSPERO (CRD420191 19516). Seventy-four studies were eligible for review. All were observational cohort or casecontrol studies carried out in high-income countries. Sample sizes ranged from 27 to 10,777,210. Study quality was assessed using the Newcastle-Ottawa Scale for observational studies. The majority of studies (n = 45) were deemed to be of good quality. Narrative analysis showed that SMI led to increases in use of inpatient, emergency, and primary care services. Meta-analyses revealed that patients with SMI were more likely to be admitted as nonpsychiatric inpatients (pooled odds ratio [OR] = 1.84, 95% confidence interval [CI] 1.21-2.80, p = 0.005, $f^2 = 100\%$), had hospital stays that were increased by 0.59 days (pooled standardised mean difference = 0.59 days, 95% CI 0.36–0.83, p < 0.001, $l^2 = 100\%$), were

data are within the manuscript and its Supporting Information files.

Funding: There was no funding source for the study.

Competing interests: The authors have declared that no competing interests exist.

Abbreviations: ACG, Adjusted Clinical Groups; ACS, acute coronary syndrome; ACSC, ambulatory care sensitive condition; ADL, Activities of Daily Living; AHRQ, Agency for Healthcare Research and Quality; AIDS, acquired immune deficiency syndrome; APR-DRG, All-Patient Refined Diagnostic Related Groups; ASA, American Society of Anesthesiologists; BMI, body mass index; CI, confidence interval; CMHCB-DP, Case Management for High-Cost Beneficiaries Demonstration Project; COPD, chronic obstructive pulmonary disorder; DSM-IV, Diagnostic and Statistical Manual of Mental Disorders-IV; DVT, deep vein thrombosis; EU, European Union; GP, general practitioner; HCC, hierarchical condition category; HCUP-NIS, Healthcare Cost and Utilization Project-National Inpatient Sample; HCUP SID, Healthcare Cost and Utilization Project Stat Inpatient Database: HIV. human immunodeficiency virus; HPA, hypothalamic pituitary adrenal; IBD, inflammatory bowel disease; ICD, International Statistical Classification of Diseases and Related Health Problems; IMS, Intercontinental Marketing Services; IRR, incidence rate ratio; LOS, length of stay; MDD, major depressive disorder; NIHSS, National Institute for Health Stroke Scale; NOS, Newcastle-Ottawa Scale; NR, not reported; OR, odds ratio; PAD, peripheral artery disease; PPH, potentially preventable hospitalisation; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analysis; PTSD, posttraumatic stress disorder; PVD, peripheral vascular disease; QOF, Quality Outcomes Framework; RR, risk ratio; RTT, return to theatre; SMD, standardised mean difference; SMI, severe mental illness; TBSA, total burn surface area; UHC, University Health System Consortium; VA, Veteran's Association; VASQIP, VA Quality Improvement Program.

more likely to be readmitted to hospital within 30 days (pooled OR = 1.37, 95% CI 1.28– 1.47, p < 0.001, $l^2 = 83\%$), and were more likely to attend the emergency department (pooled OR = 1.97, 95% CI 1.41–2.76, p < 0.001, $l^2 = 99\%$) compared to patients without SMI. Study limitations include considerable heterogeneity across studies, meaning that results of meta-analyses should be interpreted with caution, and the fact that it was not always possible to determine whether service use outcomes definitively excluded mental health treatment.

Conclusions

In this study, we found that SMI impacts significantly upon the use of nonpsychiatric health services. Illustrating and quantifying this helps to build a case for and guide the delivery of system-wide integration of mental and physical health services.

Author summary

Why was this study done?

- The evidence to date suggests that psychiatric comorbidity leads to increased utilisation of general medical services.
- The literature assessing the impact of psychiatric comorbidity overall and of common mental health disorders on the use of nonpsychiatric health service use has been systematically reviewed. However, to date, the literature surrounding severe mental illness (SMI) and nonpsychiatric health service utilisation is yet to be reviewed.

What did the researchers do and find?

- This systematic review incorporates the findings of 74 studies (all observational cohort or case-control studies) that reported on the impact of SMI on inpatient hospital admissions, length of hospital stay, 30-day readmission rates, emergency department visits, and use of primary care services.
- Narrative synthesis and random-effects meta-analyses showed that having SMI is associated with increased utilisation of all health services included as outcomes in the review.
- Large amounts of variation between studies in terms of patient population and health systems means that the results of the meta-analyses should be interpreted with caution.

What do these findings mean?

- The results of this review highlight the extent to which SMI impacts upon nonpsychiatric health service utilisation.
- Illustrating and quantifying this helps to build a case for system-wide integration of mental and physical healthcare.

Introduction

Mental health conditions are associated with high disease burden, poor overall health outcomes, and high health service utilisation [1–4]. Arguably, increased health service utilisation could be attributed to appropriate use of psychological and psychiatric services. However, an early review (1994) of the literature found that psychiatric comorbidity (particularly cognitive and organic mental disorders) was associated with increased length of stay (LOS) in the general hospital [5]. Building on this, a later review (2005) assessed nonorganic common mental disorders and found that depression was associated with higher use of general medical services [6]. The most recent review (2018) found that medical inpatients with any psychiatric comorbidity had longer hospital stays, higher medical costs, and more readmissions than inpatients without [7].

Although severe mental illness (SMI) was not precluded from Jansen and colleagues' review [7], the specific impact of SMI on nonpsychiatric health service use was not reviewed or quantified. People with SMI, such as schizophrenia or psychotic disorder, are more likely to develop chronic physical illness than the general population [8], and the impact of physical illness on people with SMI is significantly greater [9]. It is probable that this affects the use of nonpsychiatric general medical services in this patient group. Moreover, there are serious inequalities in the provision of physical healthcare for patients with SMI [8–10], which likely have repercussions for how they use general medical services.

Therefore, we sought to specifically review the literature surrounding the impact of SMI on the use of nonpsychiatric inpatient, emergency, and primary care services for patients with medical disorders. When possible, meta-analysis was used to determine the effect that SMI had on specific outcomes.

Methods

This review protocol is registered in the PROSPERO International Prospective Register of Systematic Reviews (https://www.crd.york.ac.uk/PROSPERO/) (CRD42019119516). The protocol conforms to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines; the relevant checklist is provided in S1 Appendix. This research is part of a larger systematic review assessing the impact of SMI and personality disorder on nonpsychiatric health service utilisation. The present study focused on the impact of SMI on inpatient, emergency, and primary care service use. Ethical approval was not required.

Search strategy and selection criteria

We searched PUBMED, Web of Science, PsycINFO, EMBASE, and The Cochrane Library for relevant studies with no publication date restrictions (see <u>S2 Appendix</u> for the full search strategy for each database searched). The search was supplemented with hand searches of journals related to the field and reference sections of relevant papers. Searches were carried out between 26 October 2018 and 2 November 2018. The search strategy was developed and conducted by AR. An updated search was carried out up to the end of February 2020.

Different definitions of SMI exist, but it generally refers to illnesses associated with psychosis as adopted by the Quality and Outcomes Framework of the United Kingdom (UK) National Health Service [11]. Therefore, in this review, SMI included bipolar disorder, psychosis, schizophrenia, and/or schizoaffective disorder. SMI did not include major depressive disorder (MDD). Studies that included MDD in their definition of SMI were excluded unless results were presented separately for each SMI subtype. Patients with physical health conditions and/or receiving medical treatment who did not have SMI served as controls. Health service utilisation for medical nonpsychiatric disorders was the primary outcome. The current paper focused on inpatient (number of hospital admissions, likelihood of hospital admission, LOS in days, risk of longer LOS, number of readmissions, likelihood of readmissions), emergency (number of emergency department visits, likelihood of an emergency department visit), and primary care service use (number of primary care visits, likelihood of a primary care visit). We excluded studies for service use related to psychiatric, psychological, mental, or behavioural disorders. We included observational cohort and case-control studies and randomised controlled trials. We excluded reviews, case reports, and studies that used qualitative methods only.

For a study to be included, patients had to be 16 years or older. The majority of studies were explicit about excluding paediatric/adolescent patients. Where it was unstated whether all patients were over 16 years (four studies), the decision to include the study was based on the likelihood of the index medical condition occurring in a paediatric sample. For example, a sample of stroke patients will unlikely have a sizeable paediatric sample and would therefore be included, whereas a sample of patients undergoing trauma surgery could have a sizeable paediatric sample and would be excluded. All studies had to be published in peer-reviewed journals. Non-English-language articles were excluded. Conference proceedings were also excluded. When conference proceedings emerged in the search, authors were contacted to ascertain whether the data had been published in a peer-reviewed journal.

Articles were independently screened in two stages: a title and abstract screen (AR, AJ), followed by the retrieval and screening of potentially relevant full-text articles by two reviewers using the criteria listed above (AR, LE). Interrater reliability for the full-text screen was assessed using Cohen's kappa, which indicated moderate and substantial levels of agreement between the reviewers for the original and updated search, respectively (original: κ 0.55, 77.6% agreement; updated: κ 0.64, 81.8% agreement). Conflicts were resolved through discussion.

Data extraction and quality assessment

Data were extracted by two reviewers (AR, SJ): AR extracted the data from the publications and SJ cross-checked 10% of the extracted studies for accuracy. There was acceptable agreement on extraction (intraclass correlation coefficient = 0.63). Sample characteristics, methodological characteristics, and main health service utilisation outcomes were extracted. The data extraction tables were piloted and refined before extraction began. As all studies included in the review were observational studies, the Newcastle-Ottawa Scale (NOS) was used to assess the quality of each study [12]. The NOS assesses the quality of each study using a system in which 'stars' are awarded on three broad categories: selection of groups, comparability of groups, and discernment of the outcome of interest for the case-control or cohort. Each article is rated on nine variables and can earn a maximum of nine stars. More stars indicate less risk of bias in a given study, and the number of stars awarded allows a study to be deemed of good, fair, or poor quality. Because of the nature of the current review, if a study did not adjust for severity of physical illness and/or the presence of physical comorbidities (e.g., Charlson Comorbidity Index [13], Elixhauser Comorbidity Index [14], a list of relevant physical comorbidities, a measure of physical illness severity), it was deemed to be of poor quality, regardless of the number of NOS 'stars' acquired. Quality assessment was carried out with the outcome of interest in mind; i.e., if a study had several clinical outcomes alongside a health service use outcome, the quality of the study would be assessed based on the health service use outcome.

Data analysis

For all outcomes (inpatient service use, emergency service use, and primary care use), a narrative synthesis was carried out. Meta-analysis and subgroup analysis were performed using Review Manager 5.3 of the Cochrane Collaboration [15]. In all meta-analyses, we used a random-effects model, since this model estimates effects while considering the heterogeneity between studies. For studies that reported continuous data, only those that provided both means and standard deviations/standard errors were included in the meta-analysis. Where required, standard deviations were calculated from confidence intervals (CIs) using a verified formula [16]. For studies that reported the likelihood of an outcome occurring, only adjusted studies (physical comorbidities/illness severity + other relevant factors) that provided odds ratios (ORs) and 95% CIs were included in the meta-analysis. All ORs and CI limits were log-transformed (natural log). Standard error was then calculated using a verified formula [16].

Higgins' I^2 was used to assess heterogeneity between studies. Where considerable heterogeneity is present ($I^2 \ge 90\%$) [16], statistical pooling is usually deemed inappropriate. However, we have reported pooled effect sizes for ease of interpretation, even in cases where there was considerable heterogeneity due to the clinical relevance of results. These should be interpreted with caution.

Sources of heterogeneity were investigated using subgroup analysis. Sources investigated included type of health service use outcome (all-cause [i.e., psychiatric treatment is unlikely but cannot be definitively ruled out] versus medical), type of SMI, sample size (cutoff determined by median split), country where the study took place, and study quality, when applicable. We assessed the degree of publication bias by visual examination of funnel plots. Publication bias was deemed to be absent if the plot showed an inverted symmetrical funnel. In all analyses, statistical significance was set at $p \le 0.05$.

Results

Study selection

The systematic literature search resulted in a total of 4,620 articles. After removing duplicates, 3,507 articles remained. Preliminary hand searches of journals and reference sections of relevant papers identified eight more articles. After reviewing the titles and abstracts of these 3,515 articles, a total of 196 articles were included for the full-text review. The updated search carried out in March 2020 resulted in a total of 347 articles. After reviewing the titles and abstracts of these 347 articles, 33 were included in the full-text review (see PRISMA diagram in Fig 1). A list of excluded articles is provided in S3 Appendix.

Of 87 eligible studies, 74 (initial search, 61 studies; updated search, 13 studies) entered the review, as these assessed the impact of SMI on inpatient, emergency, and/or primary care services. All were observational cohort or case-control studies, and most were retrospective cohorts in which health service utilisation was compared between patients with and without SMI over time (n = 63); some studies adopted matched case-control designs (n = 11). Forty-five studies were deemed to be of good quality, three were fair, and 26 were poor.

The number of participants in the reviewed studies ranged from 27 to 10,777,210. The majority of the studies were from the United States (US: n = 51), with the remainder in the UK (n = 7), Canada (n = 4), Denmark (n = 4), Taiwan (n = 3), Australia (n = 2), Israel (n = 1), Japan (n = 1), and Sweden (n = 1). The majority of studies were carried out in patients with specific medical index disorders (n = 54). The most common medical index disorders were diabetes (n = 10), heart failure (n = 7), and total joint (knee and/or hip) arthroplasty (n = 7). The remaining studies (n = 20) were carried out in the general medical population, e.g., patients admitted to general medicine departments [17,18], all residents of nursing homes in Florida [19], all people on the Taiwanese National Health Research Institute Database [20]. Study periods ranged from 3 months to 18 years.

Fig 1. PRISMA flowchart of study selection. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analysis; SMI, severe mental illness.

https://doi.org/10.1371/journal.pmed.1003284.g001

The impact of SMI on the use of nonpsychiatric medical inpatient services

Inpatient hospital admissions. Table 1 describes the 27 studies (comprising 44 separate analyses) of the impact of SMI on nonpsychiatric medical inpatient admissions [19–45]. In 35 of these analyses, having SMI was associated with increased inpatient hospital admissions over the study period (12 months to 15.5 years). Seven analyses from five studies produced nonsignificant results [22,28,33,35,43] and two analyses revealed that major psychotic disorder and schizophrenia was associated with reduced inpatient admissions in residents of assisted living facilities under 65 years and veterans under 60 years of age, respectively [22,33].

Results from 17 analyses from nine studies were deemed potentially appropriate for inclusion in a meta-analysis [21,23,25,27,31,33,35,36,43]; i.e., they adjusted for physical comorbidities/illness severity and other relevant factors and presented ORs relating to the likelihood of inpatient hospitalisation over the study period. However, Higgins' I^2 indicated that the set of studies were extremely heterogeneous (χ^2 [16] = 10,649.77, p < 0.001, $I^2 = 100\%$); therefore, the estimation of the overall pooled effect should be interpreted with caution. The pooled OR indicated that patients with SMI were significantly more likely to be admitted as a nonpsychiatric inpatient than patients without SMI (pooled OR = 1.84, 95% CI 1.21–2.80, p = 0.005; Fig 2).

In order to determine the source of heterogeneity, we examined estimates between analyses that examined all-cause hospital admissions versus medical admissions, SMI subtype, sample size (determined by median split; n > 155,312 versus $n \le 155,312$), and analyses in the US versus Canada. Results showed that likelihood of inpatient admission did differ across SMI subtype (test for subgroup differences: $\chi^2[2] = 11.35$, p = 0.003) with patients with bipolar disorder having the lowest risk of admission (OR = 1.35, 95% CI 1.07–1.71, p = 0.01) and those with schizophrenia having the highest (OR = 2.37, 95% CI 1.09–5.15, p = 0.03). No other factors explained heterogeneity (see S4 Appendix for tables detailing subgroup analyses statistics). Study quality was not considered to be a potential source of heterogeneity, as all but one study included in the meta-analysis was of good quality. Visual examination of the funnel plot (see S5 Appendix) did not indicate significant publication bias.

Length of hospital stay. Table 2 describes the 30 studies (containing 38 separate analyses) that assessed the impact of SMI on nonpsychiatric LOS [17,18,20,28-30,32,40-42,46-65]. In 29 of the 38 analyses, SMI was associated with increased LOS. Eight analyses reported no significant associations [46,48,50,51,63,65], and one study found SMI associated with shorter hospital stays [29].

Fifteen studies (17 analyses) were potentially suitable for meta-analysis, as they reported the mean LOS (and standard deviation or CIs) for patients with and without SMI [20,28,30,41,42, 46,48,51,54,56,58,59,61,62,65]. The Higgins' I^2 indicated that the set of studies were extremely heterogeneous (χ^2 [16] = 15,432.12, p < 0.001, $I^2 = 100\%$); therefore, the estimation of the overall pooled effect should be interpreted with caution. The pooled standardised mean difference (SMD) indicated that nonpsychiatric LOS was 0.59 days longer for patients with SMI compared to patients without (pooled SMD = 0.59 days, 95% CI 0.36–0.83, p < 0.001; Fig 3).

Sources of potential heterogeneity were investigated using subgroup analysis (see S4 Appendix). Results indicated that LOS differed across SMI subtypes (test for subgroup differences: $\chi^2[3] = 15.73$, p = 0.001), with patients with bipolar disorder having the shortest difference in LOS (SMD = 0.11 days, 95% CI -0.03 to 0.25) and those with schizophrenia having the highest (SMD = 0.86 days, 95% CI 0.50-1.21). There was also a difference in terms of study

PLOS MEDICINE

Table 1. The impact of comorbid SMI on inpatient admissions.

SON	8 Good quality	7 Good quality	7 Good quality	8 Good quality	6 Poor quality*	6 Fair quality	9 Good quality	7 Fair quality	6 Good quality	7 Poor quality*
Main findings	Psychosis was associated with an increased risk of complicated lymphedema inpatient admission within 2 years of surgery (OR = 2.15, 95% CI 1.51–306)	Bipolar disorder was associated with an increased attendood of broalisation for NCSG adming the study period (HR = 1.79, 95% CI 1.50–2.15, p < 0.001) (Mappe psychotic disorder was associated with an increased likelihood of flooptalisation for ACSC during the study period (HR = 1.44, 95% CI 1.36– 1.52, $p < 0.001$)	In people under 65 years, hipolar disorder was not associated with an increased Bikathood of hospitalisation for ACSC during the study period (HR -115 , 29% CI 0.75 -1.76 , $p = 0.534$), Migor (HR -1.55 , 29% CI 0.75 -1.76 , $p = 0.54$), Migor (Bikathood of hospitalisation (HR $= 0.69$, 95% CI 0.58 -0.34 , $p = 0.01$) (0.58 -0.34 , $p = 0.433$) nor major (HR $= 0.87$, 95% CI 0.58 -1.31 , $p = 0.433$) nor major psychotic disorder (HR $= 0.33$, 95% CI 0.58 -1.05 , p = 0.235) was associated with an increased ikelihood of hospitalisation for ACSC	Patients with schizophrenia were more likely to be hospitalised for any reason over the study period (OR = 5.67, 956, CI 55.0-584) and were more likely to have one or more hospitalisations per year (OR = 7.88, 95% CI 7.54+8.23)	P_{3} chosis was associated with an increased risk of medical hospitalisations over a 12-month period in patients with Packinson's disease (OR = 1.75, 95%, CI 1.61–1.90, $p < 0.001$)	Psychosis was associated with an increased risk of protein admission sover a 12-month period among diabetes patients with multiple hospitalisations (OR = 2.15, 95% CI 1.18-3.92)	Patients with SMT (bipolar disorder and/or schizophrenia) were at increased rate of a hospitalisation for all chronic and acute ACSG (RR = 141, 95% CT 137-145, $p < 0.001$) When looked at grantary, both patients with schizophrenia (IRR = 147, 95% CI 141-154, p < 0.001) and bipolar disorder (IRR = 13, 95% CI 127-139, $p < 0.001$) had increased risk for ACSGs hospitalisations also	Compared to those who were independent in terms (interiorial starts, those with phose falsories (OR = 1.95, 95% CI 1.79–2.12, $p < 0.001$) and psychosis (OR = 2.05, 95% CI 1.89–2.23) had consistently higher healthcare utilisation (inpatient admissions pre- and postsugery)	In fully adjusted analysis, there was no difference between patients with schrophrenia and patients without in terms of admissions to hospital ($p = 0.811$)	$ \begin{array}{l} (11,1=CR,7e,0=M) \mbox{ solution} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Control for other variables	Age, insurance type, tobacco use	Age, gender, race	Age, gender, race	Age, sex, SES, urban versus rural dwelling	Age, race, marital status	Gender	Age, sex, calendar period, marital status, celucation level, substance abuse, primary care use	Age, sex, martial status, BMI, Age, sex, martial status, Bucharge location after a urgery, surgical specialty, smoking status, pestoperative diagnosis, functional status	Age, sex, race, smoking	Age, gender, urbanisation level of the residential area, monthly income
Control for comorbidities/medical illness severity	Elixhauser Comorbidity Index, cancer in situ versus invasive cancer, type of surgery	Charlson Comorbidity Index, diagnosis of dementia, alcohol-use disorder, drug-use disorder	Ch arlson Comorbidity Index, diagnosis of dementia, alcohol-use disorder, drug-use disorder	Diagnosis of coronary artery disease and/or diabetes	Ŷ	Diabetic acute complications, lower extremity disease, ischaernic heart disease, congestive heart failure, stroke, cardiac arrhythmia, COPD, drug/ alcohol/substance abuse	Charlson Comorbidity Index	Charlson Comorbidity Index	A diagnosis of arthritis, coronary artery disease, suncer, heart failure, COPD, dementia, diabetes, alcohol abuse, hypethesion, hyperthyroid, hypothyroid, liver disease, tenal disease, stroke, substance abuse disease, stroke, substance abuse	Ŷ
Type of admission	Complicated lympholema inpatient admission within 2 years of initial surgical procedure	Number of hospitalisations for ACSC3 over 3-year study period	Number of hospitalisations for ACSCs over 5-year study period	Hospitalisation (for any reason) over the 2-year study period: 21 yearly hospitalisation	Risk of medical hospitalisation over a 12-month period	Number of inpatient admissions during the 12-month study period	Hospitalisations for ACSCs during the 15-year study	Inpatient admissions for any reason 24 months before and 24 months after the surgical procedure	Hospital admissions during the 10-year study period	Frequency of nonpsychiatric hospitalisations for those with bipolar disorder and matched controls over 2-year study period
SMI assessment	Elixhauser Comorbidity Index	ICD 9 diagnostic codes from Medicaid inpatient claims	ICD -9 diagnostic codes from Medicald inpatient claims	ICD-9 and ICD-10 diagnostic codes from physician claims data and hospital discharge data	Not specified	ICD-9 diagnostic codes from Medicaid claims data	Diagnosis recorded in the Darish Civil Registration System	ICD-9 diagnostic codes	ICD-9 diagnostic codes in dectronic hospital records or in any of the linked datasets	Acute admission ICD-9 diagnostic codes
Comorbid SMI (n)	$P_{sychesis}$ ($\mu = NR$)	Bipolar disorder (n = 657) Major psychotic disorder (n = 10, 141)	Bipolar disorder ($<$ 565 years old: $n = 215$, \geq 65 years: $n = 139$) Major psychotic disorder ($<$ 65 years old: $n = 6,953$, \geq 65 years: $n = 2,132$)	Schizophrenia $(n = 28.755)$	$P_{\rm sychosis}$ $(n = 4, 429)$	Psychosis ($n = NR$)	Bipolar disorder (n = 25,648) Schizophrenia (n = 42,558)	Psychosis ($n = 5,867$); bipolar disorder ($n = 6,337$)	Schrizoph renia $(n = 757)$	Bipolar disorder $(\mu = 4,067)$
Population (n)	All women who underwent lumpectomy or mastectomy with a concurrent axillary lymph node procedure for a diagnosis of breast cancer $(n = 56.0^{-5})$	Al residents of nursing homes in Florida (n = 72.251)	All residents of assisted living facilities in Florida ($n = 16.208$) Separate analyses carried out for those under ($n = 3.2.17$) and those 65 years or older ($n = 7.991$)	All patients on the Administrative Database of Alberta Health and Wellness (1995–2006) $(\mu = 2,310,391)$	Patients with Parkinson's disease $(n = 43.772)$	Patients with diabetes with at least two hospitalisations in the study period (12 months) ($n = 695$)	Pattents hospitalised for ACSCs $(n = 5.945, 540)$	Patients undergoing noncardiac in patient surgery assessed by the VASQIP $(n = 280, 681)$	Any patient receiving care at Wishard Health Services who were over or reached the age of 55 years during the study period (0 overs) (n = 31,588)	Patients on the Taiwanese National Health Research Institute $(n = 16.268)$
Authors	Basta et al. 2016 [21]	Becker et al. 2010 [19]	Becker et al. 2012 [22]	Bresee et al. 2012 [23]	Chen et al. 2007 [24]	Cramer et al. 2010 [25]	Davydow et al. 2016 [26]	Graham et al. 2019 [27]	Hendrie et al. 2014 [28]	Hsieh et al. 2012 [20]

SON	8 Good quality	6 Poor quality*	8 Good quality	8 Good quality	8 Good quality	7 Good quality	6 Poor quality*	8 Good quality	tinued)
Main findings	Having SMI was associated with a higher number of inpatient hospital admissions over the study period $(p < 0.001)$. Patients with SMI had on average 2.2 admissions, whereas patients with no mental health conditions had on average 1.7 admissions	In unadjusted analyses, the likelihood of having an inpatient admission was increased for patients with SMI (OR = 2.80, 95% CI 2.67–2.94)	Patients with schizophrenia had an increased risk of patients into free aidabetic complication (OR = 1.35, 95%, CI 1.28-1.43) and an increased risk of hospitalisation for any pomental health reason excluding trauma (OR = 1.85, 95%, CI 1.79-1.92)	Compared to matched nonschizophrenic controls, patients with schizophrenia had significantly higher rates of hospitalisations over the study period (IRR = 2.23 , 95%, CI $2.14-2.33$, $p < 0.005$)	Patients with bipolar disorder of all ages who had patients with bipolar disorder of all ages who had had an increased risk of inputient hospitalisation compared to those without (OR = 1.15, 5% CI 1.05– 20). This was the same for patients with bipolar disorder aged \geq 180 c <65 years who had no prior hospitalisation in the base year (OR = 1.68, 95% CI hospitalisation in the base year (OR = 1.68, 95% CI risk for patients with bipolar disorder. \geq 65 years old, who had no prior hospitalisation in the base year who had no prior hospitalisation in the base year (OR = 1.17, 92% CI 0.91–1.52)	Patients with bipolar disorder (OR = 1.87, 95% CI 1.53-2.30), schizophrenia (OR = 1.83, 95% CI 1.50- 2.10, and other proboses (OR = 2.64, 95% CI 1.78- 3.90) all hal increased likelihoods of being admitted to hospital for an ACSC or 'marker' condition within the study period	Patients with schizophrenia had a 3.26 fold higher risk of ACSC hospitalisation than age and sec- risk of ACSC hospitalisation than age and sec- p < 0.001). When conditions known to be highly correlated with schizophrenia were removed from the analyse (saftma, diabetes, hypertension), patients with schizophrenia had a 2.46 fold higher risk of ACSC hospitalisations compared to the comparison group, after adjusting for potential confounders (RR = 2.46, 95% CI 2.12-2.36, $p < 0.001$)	Compared to people with no mental health solutions, patients with satisfycaphrenia (RR $= 2.5$, 95% CI 2.12–2.30) and patients with other psychoses (RR $= 2.86$, 95% CI 2.26–2.47) ever more likely to respective the solution of the satisfier of the satisfier (RR $= 2.86$, 95% CI 2.66–2.47) ever more likely to the satisfier one of excess PPHs in patients with schizophrenia were nutritional deficiencies, adverse theat rialize, and inheriza and pretenmonia heart rialize, and inheriza and pretenmonia the leading cause of excess PPHs in patients with other psychoses were comulsions and epilepsy, pyelorephritis, adverse drug events, other vaccin- preventable conditions, and gaugene	(Con
Control for other variables	Age, sex, racc/ethnicity, marital status, documented homelessness during year of investigation, correlation within facilities	Patients matched on age	Age, sex, nrral residence, neighbourhood income, neighbourhood material deprivation, past year service use	Patients were matched 1:1 based on propensity scores on age, gender, state, and year of index admission	Age, sex, number of prior Age, sex, number of prior tresulting in inpatient tresulting in inpatient hospitalisations, ourpatient visits, makers for dialysis service, nursing services, and other major procedures	Age, gender, race, insurance, HMO, income, tobacco use, admission type	Age, sex, level of urbanisation, geographic location, monthly income	Age, sex, indigenous status, level of social disardwantge, level of residential remoteness, year at start of follow-up	
Control for comorbidities/medical illness severity	AHRQ comorbidity measures	2	Johns Hopkins ACG System, duration of diabetes	Patients were matched 1:1 based on propensity scores using the Charlson Comorbidity Index	Charlson Comorbidity Index, ploth Hopkins ACG System in which a person is subgrader assigned to one of tog groups: this model included 24 groups and 98 expanded diagnostic dusters	Eixhauser Comorbidity Index	ź	Charlson Comorbidity Index	
Type of admission	Number of hospitalisations (includes psychiatric care) over the 12-month study period	Number of inpatient hospital stays over the 12-month study period	Number of hospitalisations for diabetic complications, number of hospitalisations for any nonmental health reason excluding trauma in the 2-year study period	Number of hospitalisations over the 10-year study period	Inpatient hospitalisations over the 2-year study period	Hospitalisations for ACSCs or 'marker' conditions over the 12-month study period	Number of hospitalisations for ACSGs (ruptured appendix, ashma, cellulitis, congestive heart failure, dispects, gangene, hypokatemia, immuisable condition s, malignant hypertension, pneumonia, pyelonephritis, and perforated or bleeding ulcer) over the 5-year study period	Number of PPHs (ACSGs: vaccine- preventable, e.g., fut, chronic, e.g., diabetes complications: acute, e.g., appendicitis, and adverse drug events) over the 15.5-year study period	
SMI assessment	ICD-9 diagnostic codes and chronic condition indicators established by AHRQ	ICD-9 diagnostic codes from National Psychosis Registry	Ontario Health Insurance Plan records detailing three schizophrenia-related physician visits in 36 months, or a hospitalisation for schizophrenia	ICD-9 diagnostic codes—at least two primary or secondary schizophrenia diagnoses recorded during study period	John Hopkins ACG system	ICD-9 diagnostic codes from secondary diagnoses	ICD-9 diagnostic codes recorded as a principal diagnosis in the year prior to the study period	ICD-9 diagnostic codes from the Mental Health Registry in Western Australia	
Comorbid SMI (n)	Bipolar disorder, schizophrenia, other psychosis (n = 33,119)	Bipolar disorder, schizophrenia (excluding larent excluding larent schizophren), schizodifective disorder, other nonorganic psychoses, paranoid states affective psychoses (n = 18.273)	Schizophrenia $(n = 26,259)$	Schizophrenia (n = 24,652)	Bipolar disorder (approximately <i>n</i> = 23,1.60)	Bipolar disorder ($n = 2,032$) Schröophrenia ($n = 2,714$) Other psychoses ($n = 795$)	Schizophrenia (<i>n</i> = 2,503)	Schizophrenia (approximate) n = 5,84.7) Other psychoses (approximate) n = 9,32.7)	
Population (n)	Costliest 5% of V eterans Association patients $(n = 261, 515)$	Patients with diabetes $(n = 36,546)$	Patients with diabetes $(n = 1, 131, 375)$	Patients with substance dependence/abuse, obesity, diabetes, metabolic syndrome, hypertipidaemi, hypertension, coronary attery disease, congestive heart failure, HIV, hepatitis C, or COPD (n = 49,304)	All persons enrolled on the INS Health Plan Claims Database for at least 6 months in (n = 4,632.226)	Patients with ACSCs (e.g., asthma, heart failure, hypertension) and patients with marker conditons (e.g., appendicits, acute mycardial infarction, hip/femur frature) Conditions listed extensively in original paper (n = 155,312)	All patients included in the Longitudinal Health Insurance Database released by the Taiwan National Health Research Institute (n = 22,527)	People on the electoral roll (n = 433,388) The marth health cohort comprised people on both the electoral roll and the Mental Health Registry in Western Australia	
Authors	Hunter et al. 2015 [29]	Krein et al. 2006 [<u>30</u>]	Kurdyak et al. 2017 [31]	Lafeuille et al. 2014 [32]	2012 [35]	Li et al. 2008 [36]	2011 [37]	Mai et al. 2011 [38]	

PLOS MEDICINE

Table 1. (Continued)

led
inu
nt
ŭ
<u> </u>
Ξ.
e 1. ((
able 1. ((

PLOS Medicine	https://doi.org/10.1371/journal.pmed.1003284	September 14, 2020
---------------	--	--------------------

Authone	Donulation (a)	Comodeid CMT (u)	CMI according to	t'ma of od mission	Control for comodititization	Control for other workighles	Mein Gudinee	SON
stonny	r opulation (#)				illness severity			500
Minen et al. 2014 [<u>39</u>]	Patients who visited the ED with a primary diagnosis of migraine $(n = 2.872)$	Bipolar disorder (n = NR)	ICD -9 diagnostic codes recorded in the Partners Research Patient Data Registry, Masachusetts	Inpatient stays over the 10-year study period	ž	8	Patients with bipolar disorder had 1.6 times more patient stays than patients with other psychiatric disorders. No inferential analyses were carried out on individual psychiatric conditions, and no comparison was made between patients with bipolar disorder and those without any psychiatric diagnosis	7 Poor quality*
Moore et al. 2019 [<u>33</u>]	Veterans under 60 years of age from the Veterans Health Administration $(n = 2.016.392)$	Schizophrenia ($u = 51, 752$); bipolar disorder ($n = 77, 839$)	ICD-9 diagnostic codes	Medical-surgical hospital admissions over the study period (fiscal year 2012)	Charlson Comorbidity Index; seizures, cerebrovascular accident, chronic obstructive airway disease, poptic ulcer disease, hepatic disease, moderate/ severe liver, pneumonia, nausear vooriting, insomnia, any pain diagnosis	Homdessness, VA pension, service- connected 50% or more, tobacco use, opiate prescription	Veterans with schizophrenia had a lower risk of mainsoin to medical-surgial bottabul units han veterans with no mental halth diagnoses (OR = 0.87, 95% CI 0.83 - 1090). Veterans with hipolar disorder did not differ from veterans with no mental health diagnoses (OR = 1 02, 95% CI 0.99-1.100)	8 Good quality
Norbeck et al. 2019 [34]	Homeless male veterans in urban and rural settings in the US $(n = 156)$	Bipolar disorder $(n = 39)$	Self-reported bipolar disorder	Self-reported use of inpatient services over the past 3 months	No	No	Having bipolar disorder was associated with an increase in overnight inpatient treatment (p = .0.34)	4 Poor quality
Sayers et al. 2007 [40]	Patients ≥65 years old with congestive heart fáilure (n = 21,429)	Bipolar disorder (n = 58) Psychosis (n = 534)	ldentified using AHRQ's Clinical Classifications software (ICD-9 diagnostic codes)	Estimated additional number of hospitalisations within the 12-month study period	Elishauser Comorbidity Index	Age, sex, race, SES	Patients with bipolar disorder had an estimated 0.38 (39%) additional number of hospitalisations compared to patients with no psychiatric illness ($p = 0.001$) Patients with psychosis had an estimated 0.3 (24%) additional number of hospitalisations compared to patients with no psychiatric illness ($p < 0.001$)	8 Good quality
Schoepf et al. 2014 [41]	Patients admitted for medical treatment across three hospitals (n = 15,598)	Schraophrenia $(n = 1,418)$	ICD-10 diagnostic codes	Number of hospital admissions over the 11.5-year study period study period	No	ž	Patients with schizophrenia had almost 2-fold higher number of admissions to hospital within the study period (M = 11,5, SD = 0.4) compared to nonschizophrenic controls (M = 6,3, SD = 0.1) ($p \leq 0.001$)	7 Poor quality*
Sporinova et al. 2019 [42]	All adults (18+ years) in Alberta, Canada, with at least one of the following chronic diseases in 2012. asthma, congestive heart failure, myocardial inforction, diabetes, cpilepsy, hypertension, chronic pulmonary disorder, and chronic kidney disease (n = 991,445)	Schizophrenia (n= 13,320)	ICD-10 diagnostic codes	Rate per 1,000 patient-days of chronic disease-specific loospitalisations over the 3-year study period	2	ž	Patients with schizophrenia had a higher rate of bronic disease-specific hospitalisations (0.11, 0.10- 0.12) compared to those without a mental health conditions (0.06, 0.06-0.06)	7 Poor quality*
Sullivan et al. 2006 [43]	Patients visiting the ED with a primary diagnosis of diabetes $(n=4,275)$	'Psychotic' group which included patients with bipolar disorder and schizophrenia (n = 136)	ICD-9 diagnostic codes	Whether or not hospitalisation occurred at the end of the ED visit	Prosties for illness severity were time of arrival at the ED (11 PM-7 AM compared with all other times) and mode of arrival (ambulance versus other)	Age, gender, ethnicity	Patients with 'psychosis' were no more likely than patients with no mental illness to be hospitalised at the end of the ED visit (OR = 0.77 , 95% CI 0.45–1.33)	7 Good quality
Wallace et al. 2019 [44]	Medical claims data from the HealthCore Integrated Research Database (US) (n = 33,660)	Schizophrenia (n = 6,732)	ICD-9 and ICD-10 diagnostic codes	Rates of all-cause inpatient admissions in the year preceding schizophrenia diagnosis	No	Patients matched 1:4 on age, sex, and region of residence	Patients with schizophrenia had a higher rate of all- cause inpatient admissions (32.7%) compared to their matched comparators without schizophrenia (3.9%)	7 Poor quality*
Wetmore et al. 2019 [45]	Patients on Medicare Claims Database who have Parkinson's disease $(n = 52, 103)$	Psychosis $(n = 2,778)$	ICD-9 diagnostic codes	Number of inpatient admissions over the 6-year study period	Patients matched 1:4 based on number of comorbid conditions	Patients matched 1:4 on age, sex, race, index year of psychosis diagnosis	Patients with psychosis had more inpatient admissions (0.9) than patients without psychosis (0.5) in the sixth year of follow-up	8 Good quality
*If studie Abbrevia	es failed to adjust for physical c tions: ACG, Adjusted Clinical	:omorbidities/illness se Groups; ACSC, ambu	verity in their analyse latory care sensitive c	s, they were deemed to be of p ondition; AHRQ, Agency for I	ooor quality regardless of 'st: Healthcare Research and Qu	ars' recorded using the N ality; CI, confidence inte	OS. rval; COPD, chronic obstructive	

pulmonary disorder; ED, emergency department; HIV, human immunodeficiency virus; HMO, health maintenance organisation; HR, hazard ratio; ICD, International Statistical Classification of Diseases and

hospitalisation; RR, risk ratio; SD, standard deviation; SES, socioeconomic status; SMI, severe mental illness; US, United States; VA, Veteran's Association; VASQIP, VA Quality Improvement Program. Related Health Problems, IMS, Intercontinental Marketing Services; IRR, incidence rate ratio; M, mean; NOS, Newcastle-Ottawa Scale; NR, not reported; OR, odds ratio; PPH, potentially preventable

https://doi.org/10.1371/journal.pmed.1003284.t001

	Odds Ratio	Odds Ratio
Study or Subgroup	IV, Random, 95% CI	IV, Random, 95% CI
Sullivan et al. 2006	0.77 [0.45, 1.33]	
Moore et al. 2019 (schizophrenia)	0.87 [0.84, 0.90]	•
Moore et al. 2019 (bipolar disorder)	1.02 [0.98, 1.06]	+
Lemke et al. 2012 (no prior hospitalisation 18-65)	1.15 [1.06, 1.24]	-
Lemke et al. 2012 (prior hospitalisation)	1.17 [0.91, 1.51]	+
Kurdyak et al. 2017 (diabetic complications)	1.35 [1.27, 1.43]	-
Lemke et al. 2012 (no prior hospitalisation 65+)	1.68 [1.59, 1.78]	-
Li et al. 2008 (schizophrenia)	1.82 [1.50, 2.22]	-
Kurdyak et al. 2017 (any non-mental health reason)	1.86 [1.79, 1.93]	
Li et al. 2008 (bipolar disorder)	1.88 [1.54, 2.28]	
Graham et al. 2018 (bipolar disorder)	1.95 [1.67, 2.29]	-
Graham et al. 2018 (psychosis)	2.05 [1.73, 2.43]	-
Cramer et al. 2010	2.16 [1.18, 3.97]	
Basta et al. 2016	2.16 [1.52, 3.07]	
Li et al. 2008 (psychosis)	2.64 [1.78, 3.90]	
Bresee et al. 2012 (all hospitalisations)	5.70 [5.48, 5.93]	
Bresee et al. 2012 (one or more hospitalisations)	7.85 [7.54, 8.16]	•
Total (95% CI)	1.84 [1.21, 2.80]	•
Heterogeneity: $Tau^2 = 0.77$; $Chi^2 = 10649.77$, $df = 10649.77$	$16 (P < 0.00001); I^2 = 100\%$	
Test for overall effect: Z = 2.83 (P = 0.005)		0.05 0.2 1 5 20

https://doi.org/10.1371/journal.pmed.1003284.g002

quality with significant differences between those with and without SMI emerging only in studies of poor quality. No other sources of heterogeneity emerged (see S4 Appendix). Visual examination of the funnel plot (see S5 Appendix) suggested publication bias.

Hospital readmission rates. Table 3 describes the 20 studies (36 separate analyses) included in the review that examined the impact of SMI on nonpsychiatric hospital readmission rates [26,64,66-83]. In 32 of these analyses, SMI was associated with increased hospital readmissions. Four studies showed no significant association [70,72,74,75].

Ten studies (16 analyses) were suitable for meta-analysis [67–69,73,75,77–80,83]. These studies examined the impact of SMI on 30-day readmission rates specifically, except for one study that looked at 28-day readmission rates [75]. Higgins' I^2 (χ^2 [15] = 86.25, p < 0.001, I^2 = 83%) suggested that meta-analysis was appropriate [16]. The pooled OR indicated that patients with SMI were significantly more likely than patients without SMI to be readmitted to hospital within 30 days of the index medical hospitalisation (pooled OR = 1.37, 95% CI 1.28–1.47, p < 0.001; Fig 4).

Although meta-analysis was appropriate, there was still considerable heterogeneity between studies examining 30-day readmission rates. Geographical area (test for subgroup differences: $\chi^2[1] = 13.89$, $p \le 0.001$) was a significant sources of variance between studies (see S4 Appendix). Studies carried out in Europe (UK and Denmark) indicated that SMI patients were more likely to be readmitted to hospital within 30 days (OR = 1.65, 95% CI 1.48–1.85, p < 0.001) than their counterparts in the US (OR = 1.28, 95% CI 1.19–1.39, p < 0.001). No other sources of heterogeneity emerged. As all studies included in the meta-analysis were of good quality, study quality was not deemed to be a source of heterogeneity. Visual examination of the funnel plot (see S5 Appendix) indicated that publication bias was likely.

The impact of SMI on emergency department use for medical disorders

Table 4 describes the 15 studies (20 analyses) included in the review that assessed the impact of SMI on the use of emergency care [20,23,29,31,32,34,39,42,44,45,70,76,84–86]. In 18 out of 20 of the analyses, SMI was associated with increased use of emergency departments. This was true irrespective of adjustments for severity of medical disorders. Only two studies reported nonsignificant differences in the use of the emergency department between patients with and without SMI [34,70].

Meta-analysis was suitable for four studies (six analyses) [23,31,84,86]. The Higgins I^2 value indicated that there was extreme variation between studies ($\chi^2[5] = 404.15$, p < 0.001, $I^2 =$

Table 2. The impact of comorbid SMI on length of hospital stay.

Authors	Population (n)	Comorbid SMI (n)	SMI assessment	Type of LOS	Control for comorbidities/ medical illness severity	Control for other variables	Main findings	NOS
Attar et al. 2019 [46]	Patients in the Danish Register Study diagnosed with an ACS between 1995 and 2013 ($n = 2,178$)	Schizophrenia (n = 726)	ICD-10 diagnostic codes	LOS for ACS event (days)	Patients matched 1:2 with ACS patients without schizophrenia based on comorbidity risk score (hyperlipidaemia, obesity, atrial fibrillation, hypertension, heart failure, cardiomyopathy, sick sinus syndrome, valve disorder, diabetes, anaemia, COPD, PAD, stroke)	Patients matched 1:2 with ACS patients without schizophrenia based on sex, date of birth, year of ACS diagnosis	There was no statistically significant difference in LOS (days) between patients with schizophrenia (7.971 ± 9.41) and patients without schizophrenia (9.236 ± 19.33) ($p = 0.096$)	9 Good quality
Bailey et al. 2018 [47]	Patients who underwent one of the four most common surgeries (cholecystectomy and common duct exploration, colorectal resection, excision and lysis of peritoneal adhesions, appendectomy) (n = 579,851)	Schizophrenia (n = 5,234)	DSM-IV diagnosis in patient records	Surgical LOS Likelihood of prolonged LOS, i.e., LOS greater than the 75th percentile (OR)	Elixhauser Comorbidity Index; surgery type; laparoscopic surgery; emergent or urgent surgery	Age, sex, race, payer type (US), median income quartile, hospital bed size, hospital ownership, hospital teaching status	Compared with patients who did not have a psychiatric diagnosis, patients with schizophrenia had an increased risk of prolonged length of hospital stay (OR = 1.64, 95% CI 1.52– 1.78, $p < 0.001$)	8 Good quality
Banta et al. 2010 [<u>48</u>]	Patients with congestive heart failure (<i>n</i> = 15,497)	Schizophrenia, PTSD, bipolar disorder (<i>n</i> = 564)	ICD-9 diagnostic codes recorded in patient notes in the 12 months prior to hospitalisation for heart failure	LOS for index hospitalisation for heart failure LOS in days (M, SD)	No	No	Compared with patients with no psychiatric comorbidity (M = 6.9 days, SD = 9.4 days), those with comorbid SMI only (i.e., no comorbid depression or anxiety) (M = 6.7 days, SD = 7.3 days) did not differ significantly in terms of LOS for their index hospitalisation for heart failure $(p = 0.62)^{**}$	6 Poor quality*
Beydoun et al. 2015 [49]	Population sample of patients with Alzheimer's disease (<i>n</i> = 99,260)	Psychoses (<i>n</i> = 6,652)	AHRQ comorbidity measure	Association between psychosis and increased LOS (beta)	AHRQ comorbidity measures	Age, sex, race, median household income, insurance status, admissions day (weekday versus weekend), bed size of hospital, ownership of hospital, location/ teaching status of hospital, region of the hospital	Having comorbid psychosis was associated with increased average LOS over the study period (12 months) ($\beta = 2.05$, SE = 0.15, p < 0.001)	8 Good quality
Bressi et al. 2006 [<u>17</u>]	Patients hospitalised for medical conditions (<i>n</i> = 1,617,710)	Schizophrenia (n = NR)	ICD-9 diagnostic codes recorded as secondary diagnosis	LOS in days (M, no SD provided)	APR-DRG illness severity algorithm	Age, sex, race, payer type, region, discharge to long- term care, bed size of hospital, hospital location/teaching status	Patients with schizophrenia incurred hospital stays on average 0.86 days longer than patients without schizophrenia in the adjusted model, <i>p</i> < .0001	7 Good quality
Briskman et al. 2012 [18]	Patients hospitalised in general medicine departments (<i>n</i> = 192)	Bipolar disorder, schizophrenia, (n = 93)	Identified from medical records	Duration of hospitalisation (no M provided)	No	Age (matched controls)	The duration of hospitalisation was significantly longer for patients with comorbid bipolar disorder and/or schizophrenia compared to patients with no psychiatric diagnosis ($p < 0.035$). No descriptive statistics provided	6 Poor quality*

Authors	Population (n)	Comorbid SMI (n)	SMI assessment	Type of LOS	Control for comorbidities/ medical illness severity	Control for other variables	Main findings	NOS
Carter et al. 2016 [50]	Patients with heart failure (<i>n</i> = 31,760)	Bipolar disorder, schizophrenia (<i>n</i> = 237)	ICD-10 diagnostic codes recorded as secondary diagnosis	LOS in days (M, no SD, mean difference, CI)	No	No	LOS was significantly longer in patients with bipolar disorder ($M = 20.4$ days) compared to patients with no psychiatric disorder ($M = 11.2$ days) (mean difference = 8.8 days, 95% CI 3.5–14.2 days, $p < 0.001$) There was no difference in terms of LOS between patients with schizophrenia ($M = 13$ days) and patients with no psychiatric disorder ($M = 11.2$ days) (mean difference = 1.4 days, 95% CI -2.1 to 4.9)	7 Poor quality*
Chen et al. 2019 [51]	Patients on the Taiwan National Health Insurance Database who had had a stroke during the 5-year study period (n = 2,320)	Bipolar disorder (<i>n</i> = 580)	ICD-9 diagnostic codes	LOS in days relating to admission for stroke	Patients were matched 1:3 with stroke patients without bipolar disorder on diagnoses of hypertension, hyperlipidaemia, diabetes, and CHD	Patients were matched 1:3 with stroke patients without bipolar disorder on age, sex, income, geographic location, urbanisation level of residence	LOS (days) did not differ between those with bipolar disorder (11.87 \pm 16.11) and those without bipolar disorder (12.67 \pm 16.51) ($p = 0.27$)	9 Good quality
Cholankeril et al. 2016 [52]	Elderly patients hospitalised for colon cancer-directed surgery (<i>n</i> = 98,797)	Psychosis (<i>n</i> = 1,340)	ICD-9 diagnostic codes and HCUP-NIS comorbidity software	LOS mean difference in days	Elixhauser Comorbidity Index, surgical covariates (postoperative delirium, postoperative fistula or ileus, indication for reoperation, postoperative DVT, postoperative respiratory complications, intra- abdominal abscess)	Age, gender, ethnicity	Patients with psychosis had a longer hospital stay (mean difference = 6.4 days, p < 0.001)	8 Good quality
Dolp et al. 2018 [<u>53</u>]	Burn patients with burns over 10% of total body surface area (<i>n</i> = 583)	Schizophrenia (n = NR)	NR	Likelihood of exceeding average LOS (OR)	Inhalation injury, %TBSA burn	Age, sex	Having comorbid schizophrenia increased the likelihood that a patient would exceed the average LOS (OR = 2.93, 95% CI 1.06-8.08)	5 Fair quality
Falsgraf et al. 2017 [54]	Trauma patients (<i>n</i> = 26,502)	Bipolar disorder (approximately <i>n</i> = 212) Schizophrenia (approximately <i>n</i> = 344)	Inpatient hospital records	LOS in days (M, SD)	No	No	Patients with bipolar disorder (M = 10.1 days, SD = 14.7 days, $p = 0.02$) and patients with schizophrenia (M = 14.2 days, SD = 21.7 days, $p < 0.001$) experienced significantly longer LOS than patients with trauma and no psychiatric comorbidity (M = 6.2 days, SD = 14.4 days)	7 Poor quality*
Gholson et al. 2018 [56]	Patients undergoing total joint arthroplasty (<i>n</i> = 505,840)	Schizophrenia (<i>n</i> = 953)	ICD-8 diagnostic codes	LOS in days (M, SD)	Charlson Comorbidity Index	Age; sex; smoking; race; use of corticosteroids; osteonecrosis of the hip; spasm of muscle; gait abnormality, contracture of joint, pelvic region, and thigh; vitamin D deficiency; surgery type	Patients with schizophrenia (M = 3.85 days, SD = 2.14 days) had a longer LOS than patients without schizophrenia (M = 3.22 days, SD = 1.32 days), p < 0.001	8 Good quality
Hendrie et al. 2014 [28]	Patients over 65 years old receiving care at Wishard Health Services, US (<i>n</i> = 31,588)	Schizophrenia (n = 757)	ICD-9 diagnostic codes in electronic hospital notes	LOS in days (M, SD) over the 10-year study period	No	No	Patients with schizophrenia had more total hospital days (M = 58.9 days, SD = 94.2 days) than patients without schizophrenia (M = 31.1 days, SD = 44.1 days), p < 0.001	6 Poor quality*

Authors	Population (n)	Comorbid SMI (n)	SMI assessment	Type of LOS	Control for comorbidities/ medical illness severity	Control for other variables	Main findings	NOS
Hsieh et al. 2012 [20]	Patients on the Taiwanese National Health Research Institute (case-control design) (n = 16,268)	Bipolar disorder (<i>n</i> = 4,067)	Acute admission ICD-9 diagnostic codes	Inpatient LOS in days (M, SD) over the 2-year study period	No	Age, gender, urbanisation level of the residential area, monthly income	Over 2 years, patients with bipolar disorder (regression- adjusted annual M = 1.70 days, SD = 1.31 days) had longer inpatient LOS than matched controls without bipolar disorder (regression- adjusted annual M = 1.51, SD = 1.75), $p < 0.001$	7 Poor quality*
Hunter et al. 2015 [29]	Costliest 5% of Veterans Association patients (<i>n</i> = 261,515)	Bipolar disorder, schizophrenia, other psychosis (<i>n</i> = 33,119)	ICD-9 diagnostic codes and chronic condition indicators established by AHRQ	Medical-surgical LOS in days; long-term care LOS (M only) over the 12-month study period	AHRQ comorbidity measures	Age, sex, race/ethnicity, marital status, documented homelessness during year of investigation, correlation within facilities	Patients with SMI had longer long-term care LOS (M = 22.9 days) compared to patients with no mental health conditions (M = 11.4 days), $p < 0.001$ However, patients with SMI had shorter medical-surgical LOS (M = 6.4 days) compared to patients with no mental health conditions (M = 8.7 days), $p < 0.001$	8 Good quality
Kaplan et al. 2011 [55]	Patients with IBD who had undergone IBD-related surgery (<i>n</i> = 35,588)	Psychosis (n = 348)	Elixhauser Comorbidity Index	Association between psychosis and increased LOS (antilogarithms of regression coefficient presented to provide a percentage change in resource use)	Elixhauser Comorbidity Index	Age, sex, race, primary health insurer, emergency admission	Psychosis was associated with a 22% higher LOS (antilogarithm of regression coefficient = 1.22, 95% CI 1.16–1.29)	8 Good quality
Krein et al. 2006 [<u>30</u>]	Patients with diabetes (<i>n</i> = 36,546)	Bipolar disorder, schizophrenia (excluding latent schizophrenia), schizoaffective disorder, other nonorganic psychoses, paranoid states, affective psychoses (<i>n</i> = 18,273)	ICD-9 diagnostic codes from National Psychosis Registry	LOS in days (M, SD) over the 12-month study period	No	Patients matched on age	Patients with SMI had longer mean LOS (M = 12.0 days, SD = 15.9 days) than patients without SMI (M = 8.2 days, SD = 11.4 days)	6 Poor quality*
Lafeuille et al. 2014 [32]	Patients with substance dependence/abuse, obesity, diabetes, metabolic syndrome, hyperlipidaemia, hypertension, coronary artery disease, congestive heart failure, HIV, hepatitis C, or COPD (<i>n</i> = 49,304)	Schizophrenia (<i>n</i> = 24,652)	ICD-9 diagnostic codes—at least two primary or secondary schizophrenia diagnoses recorded during study period	Likelihood of prolonged LOS (not defined) (IRR)	Patients were matched 1:1 based on propensity scores using the Charlson Comorbidity Index	Patients were matched 1:1 based on propensity scores on age, gender, state, and year of index admission	Patients with schizophrenia had a significantly higher risk of prolonged LOS compared to nonschizophrenic matched controls (IRR = 2.17, 95% CI 1.90–2.47, <i>p</i> < 0.005)	8 Good quality
Maeda et al. 2014 [57]	Patients undergoing major surgery (cardiovascular, intrathoracic, intraperitoneal, and suprainguinal-vascular procedures requiring general anaesthesia, excluding percutaneous procedures and obstetric surgery) (n = 5,569)	Schizophrenia (n = 104)	ICD-10 diagnostic codes from medical records	Association between psychosis and increased LOS (beta)	Charlson Comorbidity Index, delirium, intubation, haemodialysis related to surgery	Age, sex, surgery type, ambulance use, data year on clinical outcomes	Having schizophrenia was associated with an increased LOS (β = 0.48, 95% CI 0.32–0.64, p < 0.001)	7 Good quality
Menendez et al. 2013 [58]	Patients with a lower extremity fracture (<i>n</i> = 10,669,449)	Schizophrenia (approximately <i>n</i> = 64,000)	ICD-9 diagnostic codes recorded in National Hospital Discharge Survey database	LOS in days (M, SD)	No	No	Patients with schizophrenia had a longer LOS (M = 11.0 days, SD = 21.0 days) compared to patients with no psychiatric diagnosis (M = 7.2 days, SD = 8.3 days), $p < 0.001$	7 Poor quality*

Authors	Population (n)	Comorbid SMI (n)	SMI assessment	Type of LOS	Control for comorbidities/ medical illness severity	Control for other variables	Main findings	NOS
Protty et al. 2017 [59]	Patients who had experienced their first ACS (<i>n</i> = 57,668)	Schizophrenia (n = 236)	ICD-10 diagnostic codes from electronic patient records of previous hospital admissions	LOS in days (M, CI, mean difference)	No	No	Patients with schizophrenia (M = 15.67 days, 95% CI 11.93–19.42 days) had a longer LOS compared to patients with no psychiatric diagnosis (M = 9.78 days, 95% CI 9.66–9.91), $p < 0.001$	7 Poor quality*
Sams et al. 2012 [60]	Patients undergoing total hip arthroplasty (<i>n</i> = 23,444)	Psychosis (n = NR)	Charlson and Elixhauser Comorbidity Indices	LOS in days (M, medians, no SD)	No	No	Patients with psychosis had longer elective LOS ($M = 5.1$ days) compared to the entire sample ($M = 4.4$ days) Patients with psychosis had longer nonelective LOS ($M = 9.32$ days) compared to the entire sample ($M = 7.24$ days), $p < 0.001$	7 Poor quality*
Sayers et al. 2007 [<u>40</u>]	Patients \geq 65 years old with congestive heart failure (<i>n</i> = 21,429)	Bipolar disorder (n = 58) Psychosis (n = 534)	Identified using AHRQ's Clinical Classifications software (ICD-9 diagnostic codes)	Estimated additional mean LOS in days over 12-month study period	Elixhauser Comorbidity Index	Age, sex, race, SES	Patients with bipolar disorder had an estimated additional mean LOS of 1.43 days (32%, $p = 0.02$) and patients with psychosis had an estimated additional mean of 1.06 days (24%, p < 0.001) compared to patients with no psychiatric comorbidity	8 Good quality
Schoepf et al. 2014 [41]	Patients admitted for medical treatment across three hospitals (<i>n</i> = 15,598)	Schizophrenia (n = 1,418)	ICD-10 diagnostic codes	LOS in days (M, SD)	No	No	Patients with schizophrenia (M = 8.1 days, SD = 0.6 days) had a longer average LOS at index hospitalisation compared to nonschizophrenic controls (M = 3.4 days, SD = 1.0 days), $p < 0.001$	7 Poor quality*
Siddiqui et al. 2018 [61]	Patients admitted with one of five chronic medical conditions: cancer (lung, colorectal), COPD, type 2 diabetes, ischaemic heart disease, or stroke (<i>n</i> = 16,898)	Schizophrenia (n = 34)	ICD-10 diagnostic codes entered as secondary diagnosis during the course of the hospital admission	LOS in days (M, SD) over the 5-year study period (obtained directly from author)	Charlson Comorbidity Index	Age, sex, SES, financial year, primary physical diagnosis	The average LOS was longer for patients with schizophrenia (M = 9.9 days, SD = 8.7 days) compared to patients without (M = 5.5 days, SD = 8.7 days)† Using fully adjusted negative binomial regression, schizophrenia was associated with a 91.2% longer LOS (95% CI 39.3%–162.6%)†	8 Good quality
Sporinova et al. 2019 [42]	All adults (18+ years) in Alberta, Canada, with at least one of the following chronic diseases in 2012: asthma, congestive heart failure, myocardial infarction, diabetes, epilepsy, hypertension, chronic pulmonary disorder, and chronic kidney disease (<i>n</i> = 991,445)	Schizophrenia (<i>n</i> = 13,320)	ICD-10 diagnostic codes	Mean total LOS (days) for chronic disease admissions and mean total LOS for admissions relating to ACSCs, over the 3-year study period	No	No	Patients with schizophrenia had a longer LOS for chronic disease admissions ($1.5, 1.3$ – 1.7) compared to patients with no mental health conditions ($0.6, 0.6$ – 0.6). Patients with schizophrenia had a longer LOS for admissions relating to ACSCs ($1.00, 0.80$ – 1.10) compared to patients with no mental health conditions ($0.46, 0.45$ – 0.47)	7 Poor quality
Tarrier et al. 2005 [62]	Burn injury patients admitted to an inpatient burns unit (n = 27)	Psychosis (n = 9)	ICD-10 diagnostic codes recorded in hospital's patient administration system	LOS in days (M, SD)	No	No	Patients with psychosis had a longer LOS (M = 40.4 days, SD = 37.1 days) compared to nonpsychotic controls (M = 13.0 days, SD = 18.9 days) $p = 0.004$	6 Poor quality*

Authors	Population (n)	Comorbid SMI (n)	SMI assessment	Type of LOS	Control for comorbidities/ medical illness severity	Control for other variables	Main findings	NOS
Uldall et al. 1998 [63]	AIDS patients admitted to hospital for medical-surgical reasons (<i>n</i> = 1,295)	Bipolar disorder, schizophrenia, psychosis (<i>n</i> = NR)	ICD-9 diagnostic codes in hospital records	LOS in days (median) over the 3-year study period	No	No	The median LOS for patients with schizophrenia (22 days), psychosis (10 days), and bipolar disorder (9 days) was higher than the median stay for those with no psychiatric illness (7 days). However, this difference was not statistically significant	7 Poor quality*
Vakharia et al. 2020 [64]	Patients on the Medicare Claims Database who had undergone primary total knee arthroplasty (n = 49,176)	Schizophrenia (n = 8,196)	ICD-9 diagnostic codes	In-hospital LOS (days)	No	No	Patients with schizophrenia had a significantly longer in- hospital LOS (3.73 days) compared to patients without (3.29 days) ($p < .0001$)	7 Poor quality
Willers et al. 2018 [65]	Patients with ischaemic stroke (<i>n</i> = 46,350)	Schizophrenia, psychosis (n = 389)	The presence of at least one care event related to psychosis or schizophrenia according to ICD- 10 diagnostic codes	Association between psychosis and increased LOS (beta) LOS in days (M, CI) over the 4-year study period	Diagnosis of atrial fibrillation and/or hypertension, ADL dependency, prior stroke, inpatient care prior to stroke, unconscious at arrival, NIHSS score at arrival	Age, sex, marital status, born outside EU, living alone, living arrangements	There was no association between psychosis and increased LOS in patients with ischaemic stroke ($\beta =$ 0.06, 95% CI -0.06 to 0.19) (Comorbid psychosis LOS: M = 25.1 days, 95% CI 21.1- 29.2 days, no psychosis LOS: M = 20.5 days, 95% CI 20.2- 20.8 days)	9 Good quality

*If studies failed to adjust for physical comorbidities/illness severity in their analyses, they were deemed to be of poor quality, regardless of 'stars' recorded using the NOS.

**Independent t test carried out by author AR using data provided in paper.

†Raw data obtained through personal correspondence with authors.

Abbreviations: ACS, acute coronary syndrome; ACSC, ambulatory care sensitive condition; ADL, activities of daily living; AHRQ, Agency for Healthcare Research and Quality; AIDS, acquired immune deficiency syndrome; APR-DRG, All-Patient Refined Diagnostic Related Groups; CHD, coronary heart disease; CI, confidence interval; COPD, chronic obstructive pulmonary disorder; DSM-IV, Diagnostic and Statistical Manual of Mental Disorders-IV; DVT, deep vein thrombosis; EU, European Union; HCUP-NIS, Healthcare Cost and Utilization Project–National Inpatient Sample; HIV, human immunodeficiency virus; IBD, inflammatory bowel disease; ICD, International Statistical Classification of Diseases and Related Health Problems; IRR, incidence rate ratio; LOS, length of stay; M, mean; NIHSS, National Institute for Health Stroke Scale; NOS, Newcastle-Ottawa Scale; NR, not reported; OR, odds ratio; PAD, peripheral artery disease; PTSD, posttraumatic stress disorder; SD, standard deviation; SE, standard error; SES, socioeconomic status; SMI, severe mental illness; TBSA, total burn surface area; US, United States.

https://doi.org/10.1371/journal.pmed.1003284.t002

99%); therefore, the estimation of the overall pooled effect should be interpreted with caution. The pooled OR indicated that patients with SMI were significantly more likely to attend the emergency department than patients without (pooled OR = 1.97, 95% CI 1.41–2.76, p < 0.001; Fig 5). Because of the small number of analyses included in the meta-analysis, subgroup analysis to determine sources of heterogeneity was not appropriate [16]. All studies were of good quality, meaning this did not contribute to the variation between them. Examination of the funnel plot indicated that publication bias was possible (see S5 Appendix).

The impact of comorbid SMI on use of primary care

Seven studies (10 separate analyses) looked at the impact of SMI on the use of primary care services (Table 5) [23,29,84,87–90]. Out of the 10 analyses, eight found that SMI was associated with increased primary care use. Five studies were of good quality and adjusted for physical illness severity, with the exception of that by Copeland and colleagues, who performed a cluster analysis [87], and Norgaard and colleagues, who provided unadjusted descriptive statistics [90]. One study found that there was no significant effect of SMI on primary care use in

		SMI			No SM	I	9	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Attar et al. 2019	7.971	9.41	726	9.236	19.33	1452	6.1%	-0.08 [-0.16, 0.01]	
Chen et al. 2019	11.87	16.11	580	12.67	16.51	1740	6.1%	-0.05 [-0.14, 0.05]	
Banta et al. 2010	6.7	7.3	564	6.9	9.4	14933	6.1%	-0.02 [-0.11, 0.06]	+
Sporinova et al. 2019 (ACSCs)	1	8.83	13320	0.46	4.66	835149	6.1%	0.11 [0.10, 0.13]	•
Hsieh et al. 2012	1.7	1.3	4067	1.5	1.8	12201	6.1%	0.12 [0.08, 0.15]	•
Willers et al. 2018	25.1	40.7	389	20.5	32.8	45961	6.1%	0.14 [0.04, 0.24]	*
Falsgraf et al. 2017 (bipolar disorder)	10.1	14.7	212	6.2	14.4	26290	6.0%	0.27 [0.14, 0.41]	*
Krein et al. 2006	12	15.9	18273	8.2	11.4	18273	6.1%	0.27 [0.25, 0.30]	•
Protty et al. 2017	15.7	29.4	236	9.8	15.3	57432	6.0%	0.38 [0.26, 0.51]	*
Menendez et al. 2013	11	21	64000	7.2	8.3	10605449	6.1%	0.45 [0.44, 0.46]	
Siddiqui et al. 2018	9.9	8.7	34	5.5	8.7	16864	5.4%	0.51 [0.17, 0.84]	-
Gholson et al. 2018	3.9	2.14	953	3.2	1.3	504887	6.1%	0.54 [0.47, 0.60]	•
Falsgraf et al. 2017 (schizophrenia)	14.2	21.7	344	6.2	14.4	26158	6.0%	0.55 [0.44, 0.66]	*
Hendrie et al. 2014	58.9	94.2	757	31.1	44.1	30831	6.1%	0.61 [0.53, 0.68]	•
Sporinova et al. 2019 (chronic conditions)	1.5	11.78	13320	0.6	0.02	835149	6.1%	0.61 [0.59, 0.63]	
Tarrier et al. 2005	40.4	37.1	9	13	18.9	18	3.4%	1.02 [0.16, 1.87]	
Schoepf et al. 2014	8.1	0.6	1418	3.4	1	14180	6.1%	4.84 [4.77, 4.92]	
Total (95% CI)			119202			13046967	100.0%	0.59 [0.36, 0.83]	•
Heterogeneity: $Tau^2 = 0.24$; $Chi^2 = 15432.1$	L2, df =	16 (P <	0.00001)	$ l^2 = 10$	00%			-	
Test for overall effect: $Z = 4.93$ (P < 0.0000)1)								-4 -2 U 2 4

Fig 3. The impact of SMI on length of hospital stay (days). Standardised mean difference values are presented. Two means were entered into the meta-analysis from Falsgraf and colleagues (2017) [54], as data were presented for patients with bipolar disorder and schizophrenia separately. Two means were entered for Sporinova and colleagues (2019) [42] as length of stay was looked at separately in patients hospitalised for chronic physical conditions and patients hospitalised for ACSCs. ACSC, ambulatory care sensitive condition; CI, confidence interval; SD, standard deviation; SMI, severe mental illness; Std., standard.

https://doi.org/10.1371/journal.pmed.1003284.g003

epilepsy patients [84]. Lichstein and colleagues reported that patients with schizophrenia were less likely to use medical homes for medical disorders (a model of primary care in the US) compared with patients without schizophrenia or depression [89]. Because of heterogeneity across outcomes, meta-analysis was not possible.

Discussion

This systematic review and meta-analysis aimed to understand the impact of SMI on use of general inpatient, emergency, and primary care services. The evidence showed that SMI leads to increased use of general medical services. More specifically, having an SMI is associated with increased inpatient admissions, increased length of hospital stay, higher 30-day readmission rates, more emergency room attendances, and increased use of primary care services, for nonpsychiatric reasons. The results of this review highlight the extent to which patients with SMI need targeted and effective interventions and system-wide integrated mental and physical healthcare.

The majority of studies indicated that nonpsychiatric inpatient admissions, LOS, hospital readmission rates, and emergency department use were increased in medical patients with SMI compared to patients without SMI. This was confirmed with meta-analyses that showed that patients with SMI were more likely to have an inpatient admission, had hospital stays that were increased by 0.59 days, and were more likely to be readmitted within 30 days compared to patients without SMI. Meta-analysis also showed that patients with SMI were more likely to attend the emergency department. Most studies included in this review also found that SMI was associated with increased use of primary care services. These findings are in line with previous reviews that have shown that health service utilisation is increased in patients with psychiatric comorbidity [5–7]. However, this is, to our knowledge, the first time that the impact of SMI on the use of general medical services has been systematically reviewed and meta-analysed. We believe these findings highlight the need for system-wide integration of mental and physical health services, particularly in secondary care. Although it is possible that increases in the use of primary care services associated with SMI are reflecting the provision of integrated care already in place, we do not believe this is the case for specialist secondary care services.

Table 3. The impact of comorbid SMI on hospital readmissions.

Authors	Population (n)	Comorbid SMI (n)	SMI assessment	Type of readmission	Control for comorbidities/medical illness severity	Control for other variables	Main findings	NOS
Ahmedani et al. 2015 [66]	Patients hospitalised for heart failure, acute myocardial infarction, or pneumonia (n = 89,406)	Bipolar disorder (n = 696) Schizophrenia (n = 257) Other psychoses (n = 502)	ICD-9 diagnostic codes for SMI recorded at least twice in any secondary care setting in the 12 months prior to hospitalisation	30-day hospital readmission (all-cause)	No	No	30-day readmission rates for bipolar disorder (21.2%, $p < 0.001$), schizophrenia (21.1%, $p < 0.05$), and other psychoses (30.4%, $p < 0.001$) were significantly higher than rates for patients with no psychiatric diagnosis (16.5%)	7 Poor quality*
Ali et al. 2017 [67]	Patients admitted for total hip arthroplasty in the UK (Hospital Episode Statistics, NHS) (<i>n</i> = 514,455)	Psychosis (n = 960)	ICD-10 diagnostic codes	30-day hospital readmission (all-cause, surgical, RTT)	30+ comorbid conditions included in analysis, type of surgical procedure, RTT during index admission	Sex, age categories, SES, ethnicity, index LOS, number of prior emergency admissions	Psychosis was significantly associated with increased risk of all- cause 30-day readmission (OR = 1.51, 95% CI 1.23–1.86, $p \in 0.001$), surgical 30-day readmission (OR = 1.73, 95% CI 1.33–2.25, $p < 0.001$), and RTT 30-day readmissions (OR = 1.83, 95% CI 1.16–2.87, $p = 0.009$)	8 Good quality
Ali et al. 2019 [68]	Patients undergoing total knee arthroplasty in the UK (Hospital Episode Statistics, NHS) (<i>n</i> = 566,323)	Psychosis (n = 811)	ICD-10 diagnostic codes	30-day all-cause, surgical, and RTT readmission rates	Diabetes, hypertension, arrythmia, valvular disease, congestive heart failure, PVD, chronic lung disease, lung circulation disorders, cancer, renal disease, dementia, alcohol and drug abuse, depression, other mental health disorder, liver disease, peptic ulcer, paraplegia, anaemia, coagulopathy, fluid and electrolyte disorders, hypothyroidism, other neurological diseases, rheumatic disorders, previous pneumonia, previous AMI, previous stroke	Age, gender, ethnic group, SES, type of knee replacement, year of surgery, number of emergency admissions in the previous year, RTT during index admissions, index LOS, primary diagnosis	Patients with psychosis had an increased risk of all-cause $(OR = 1.69, 55\% CI 1.37-2.08, p < 0.001)$, surgical (OR = 1.51, 95% CI 1.14-2.00, p = 0.0039) and RTT $(OR = 2.52, 55\% CI 1.49-4.24, p < 0.001)$ 30-day readmission compared to patients without psychosis	9 Good quality
Chwastiak et al. 2014 [69]	Patients with diabetes who had a medical-surgical hospitalisation (n = 80,907)	Bipolar disorder, schizophrenia, psychotic disorders, delusional disorders, nonorganic psychoses (<i>n</i> = 1,820)	ICD-9 diagnostic codes	30-day hospital readmission, readmission throughout study period (24 months) (for medical- surgical illness)	Elixhauser Comorbidity Index	Age, gender, payer type (US), number of hospitalisations in the 12 months prior, whether the index hospitalisation was through the ED, LOS	Having SMI was associated with an increased risk of 30-day hospital readmission (OR = 1.24, 95% CI 1.07–1.44, $p = 0.006$) Having SMI was also associated with a 14% greater risk of readmission throughout the study period (24 months) (HR = 1.14, 95% CI 1.05–1.23, $p = 0.002$)	8 Good quality
Clark et al. 2013 [70]	Patients with alcohol withdrawal admitted to medical ICU ^{**} (n = 1,178)	Bipolar disorder (n = 121) Schizophrenia (n = 50)	ICD-9 diagnostic codes for SMI recorded twice in the preceding 3 years	Likelihood of having ≥3 hospital readmissions in the 12 months following discharge (all-cause)	Charlson Comorbidity Index; UHC severity of illness quartiles: diagnosis of depression and anxiety	Age, homelessness	Bipolar disorder was associated with a higher risk of having three or more readmissions to hospital in the year following initial discharge (OR = 1.93, 95% CI 1.08–3.46, p = 0.027). Schizophrenia was not (OR = 1.61, 95% CI 0.71–3.63, p = 0.252)	7 Good quality
Dailey et al. 2013 [<u>71</u>]	Patients admitted for orthopaedic surgical procedures (<i>n</i> = 3,261)	Psychosis (n = 53)	Elixhauser Comorbidity Index	30-day hospital readmission (all-cause)	No	No	Psychosis was associated (unadjusted analysis) with an increased risk of 30-day hospital readmission (OR = 3.58, 95% CI 1.59-8.08, p = 0.001)	6 Poor quality*
Daratha et al. 2012 [72]	Patients admitted to hospital for medical illness (<i>n</i> = 925,705)	Bipolar disorder (n = 9,019) Schizophrenia (n = 6,868)	ICD-9 diagnostic codes recorded as secondary diagnoses on index admission to hospital	Likelihood of subsequent medical hospitalisations following index hospitalisation over the follow-up period (ranged from 1 to 72 months postsurgery)	Elixhauser Comorbidity Index, substance disorders, and interactions between substance disorders and SMI	Age, gender, index hospitalisation primary diagnosis, LOS, index hospitalisation via ED, primary payer, 12-month count of previous hospitalisations	Patients with bipolar disorder were at an increased risk of further inpatient admissions compared to those without during the study period (HR = 1.13, 9% CI 1.08– 1.17, $p < 0.001$) However, patients with comorbid schizophrenia were no more likely than those without to return for inpatient medical (HR = 1.00, 99% CI 0.95–1.05, $p = 0.92$)	7 Good quality
Davydow et al. 2016 [26]	Patients hospitalised for ACSCs (n = 5,945,540)	Bipolar disorder ($n = 25,648$) Schizophrenia ($n = 42,558$)	Diagnosis recorded in the Danish Civil Registration System	30-day hospital readmission (for same ACSC or different ACSC)	Charlson Comorbidity Index	Age, sex, calendar period, marital status, education level, substance abuse, primary care use	Bipolar disorder and schizophrenia were examined together. SMI was associated with an increased risk of 30-day readmission for the same ACSC (IRR = 1.13, 95% CI 1.04– 1.23, $p < 0.001$) and 30-day readmission for a different ACSC (IRR = 1.30, 95% CI 1.20–1.41, p < 0.001)	9 Good quality
Feller et al. 2016 [<u>73</u>]	Patients admitted to general medical hospital with HIV (<i>n</i> = 16,558)	Psychosis (<i>n</i> = 1,872)	ICD-9 codes present on patient discharge	30-day hospital readmission (medical- surgical)	Elixhauser Comorbidity Index; diagnosis of depression; substance abuse	Sex, SES, race, location, ever left hospital against medical advice, inpatient admissions, ED admissions, access to stable housing	Psychosis was associated with an increased risk of 30-day hospital readmission (OR = 1.43, 95% CI 1.27–1.62, $p < 0.01$)	8 Good quality

Authors	Population (n)	Comorbid SMI (n)	SMI assessment	Type of readmission	Control for comorbidities/medical illness severity	Control for other variables	Main findings	NOS
Fleming et al. 2019 [<u>74</u>]	Patients admitted for percutaneous cholecystostomy (<i>n</i> = 3,368)	Psychosis (n = 118)	ICD-9 diagnostic codes	30-day hospital readmission (all-cause)	No	No	2.72% ($n = 19$) of patients who were readmitted within 30 days were psychotic compared with 3.71% ($n = 99$) of patients who were not readmitted. There was no significant difference between these groups ($p = 0.21$)	7 Poor quality*
Jorgensen et al. 2017 [<u>75]</u>	Patients admitted with heart failure (n = 36,718)	Schizophrenia (<i>n</i> = 108)	Identified from the Danish Schizophrenia Registry	28-day hospital readmission (all nonpsychiatric)	Previous myocardial infarction, stroke, COPD, hypertension, diabetes; left ventricular ejection fraction (measure of heart failure severity)	Age, sex, alcohol intake, smoking habits	Patients with schizophrenia did not have a higher risk of 28-day hospital readmission (OR = 1.77, 95% CI 0.79–3.92)	8 Good quality
Kheir et al. 2018 [<u>76</u>]	Patients admitted for total joint arthroplasty (<i>n</i> = 579)	Bipolar disorder, schizophrenia (<i>n</i> = 156)	ICD-9 diagnostic codes	90-day, 12-month, and 24-month aseptic hospital readmission (related to index surgery)	Charlson Comorbidity Index	Age, gender, BMI, joint type, LOS, operative time, primary versus revision surgery	Patients with SMI were more likely to experience aseptic hospital readmission at 90 days (OR = 2.92, 95% CI 1.45–5.88, $p = 0.003$), 1 year (OR = 2.24, 95% CI 1.39–3.60, p = 0.001), and 2 years (OR = 1.83, 95% CI 1.18–2.86, $p = 0.008$)	7 Good quality
Lau et al. 2017 [77]	Patients admitted to hospital with COPD (derivation cohort: n = 339,389; validation cohort: n = 258,113)	Psychosis (derivation cohort: <i>n</i> = 22,228; validation cohort: <i>n</i> = 13,745)	Extracted from the HCUP SID	30-day hospital readmission (related to COPD)	Alcohol abuse, anaemia, congestive heart failure, depression, diabetes, drug abuse, liver disease, solid tumour without metastases	Age, gender, race, income, payer (US)	Derivation cohort: Psychosis was associated with an increased risk of 30-day hospital readmission (OR = 1.19, 95% CI 1.13-1.25, p < 0.01) Validation cohort: Psychosis was associated with an increased risk of 30-day hospital readmission (OR = 1.16, 95% CI 1.08–1.24, p < 0.01)	6 Good quality
Lu et al. 2017 [78]	Patients admitted to hospital with decompensated heart failure (<i>n</i> = 611)	Bipolar disorder (n = 11) Schizophrenia (n = 40)	Electronic medical records—diagnostic codes not specified	30-day hospital readmission related to heart failure; any hospital readmission over 3-year study period (all-cause)	Hypertension, diabetes, chronic kidney disease, coronary artery disease; heart failure severity was measured using peak troponin I, left ventricular ejection fraction, B-type natriuretic peptide	Age, sex, living situation, marital status	Patients with schizophrenia (OR = 4.92, 95% CI 2.49–9.71, p < 0.001) and patients with bipolar disorder (OR = 3.44, 95% CI 1.19– 10.00, $p = 0.02$) had increased risk of 30-day hospital readmission Patients with schizophrenia (2.33, 95% CI 1.51–3.61, $p < 0.001$) and patients with bipolar disorder (OR = 2.08, 95% CI 1.05–4.11, p = 0.03) also had increased risk for any hospital readmission over the study period	8 Good quality
Moore et al. 2017 [<u>79</u>]	All nonmaternal inpatients over a 1-year period in 18 US states (<i>n</i> = 10,777,210)	Psychosis (<i>n</i> = 505,575)	ICD-9 codes listed on discharge record	30-day hospital readmission (all-cause)	Elixhauser Comorbidity Index	No	Psychosis was associated with increased risk of 30-day hospital readmission (OR = 1.34, 95% CI 1.33–1.35, no <i>p</i> -value reported)	8 Good quality
Paxton et al. 2015 [<u>80</u>]	Patients admitted for total hip arthroplasty (<i>n</i> = 12,030)	Psychosis (n = 755)	Elixhauser Comorbidity Index	30-day hospital readmission (related to index surgery)	Elixhauser Comorbidity Index, ASA physical status score; in-hospital medical complications; in-hospital surgical complications	Age, sex, race, BMI, discharge disposition, LOS, whether surgeon had total joint arthroplasty fellowship, surgeon's average yearly volume of procedures performed, hospital volume	Psychosis was associated with increased risk of 30-day hospital readmission (OR = 1.32, 95% CI 1.03–1.69, <i>p</i> = 0.028)	8 Good quality
Prabhakaran et al. 2020 [81]	Patients >65 years with admissions for fall-related injuries on the Nationwide Readmissions Database developed for the HCUP (n = 358,581)	Psychosis (<i>n</i> = 15,295)	Elixhauser Comorbidity Index	Likelihood of a fall-related readmission within the 1-year study period	Elixhauser Comorbidity Index, illness severity, discharge disposition	Age, sex, insurance status, initial LOS, initial total hospital costs	Patients with psychosis had a significantly higher chance of a fall-related admission compared to those without (OR = $1.16,95\%$ CI $1.09-1.23, p < .001$)	9 Good quality
Shah et al. 2018 [82]	Patients hospitalised with chronic pancreatitis (<i>n</i> = 25,259)	Psychosis (n = 1921)	Elixhauser Comorbidity Index	30-day hospital readmission (all-cause)	Elixhauser Comorbidity Index; acute pancreatitis, pseudocyst, benign pancreatic neoplasms, cholangitis, pancreatic surgery, endoscopic retrograde cholangiopancreatography	Age, gender, household income, alcohol abuse, smoking, primary payer information, weekend versus weekday admission, LOS, discharge disposition, hospital ownership status, bed size, metropolitan status	Psychosis was associated with increased risk of 30-day hospital readmission (HR = 1.12, 95% CI 1.03–1.23, $p = 0.007$)	8 Good quality
Singh et al. 2016 [<u>83</u>]	Older adults (66+) hospitalised for COPD (<i>n</i> = 135,498)	Psychosis $(n = 4,511)$	Elixhauser Comorbidity Index	30-day hospital readmission (all-cause)	Use of mechanical ventilator, ICU admission during hospitalisation; comorbid psychological disorders	Age, sex, region, year of discharge, discharge destination, race, SES, LOS	Psychosis was associated with increased risk of 30-day hospital readmission (OR = 1.18, 95% CI 1.10–1.27)	8 Good quality

Authors	Population (n)	Comorbid SMI (n)	SMI assessment	Type of readmission	Control for comorbidities/medical illness severity	Control for other variables	Main findings	NOS
Vakharia et al. 2020 [<u>64</u>]	Patients on the Medicare Claims Database who had undergone primary total knee arthroplasty (n = 49,176)	Schizophrenia (n = 8,196)	ICD-9 diagnostic codes	Likelihood of 90-day readmission after total knee arthroplasty	No	No	Patients with schizophrenia had a significantly higher incidence (18.26% versus 12.07%) and higher odds of 90-day readmission after surgery (OR = 1.58, 95% CI 1.48– 1.69, $p < .0001$) compared to control patients without schizophrenia	7 Poor quality*

*If studies failed to adjust for physical comorbidities/illness severity in their analyses, they were deemed to be of poor quality regardless of 'stars' recorded using the NOS.

**Seventy-seven percent of index admissions were for medical illnesses other than alcohol withdrawal; therefore, this study was included in the review. Abbreviations: ACSC, ambulatory care sensitive condition; AMI, xxxx; ASA, American Society of Anesthesiologists; BMI, body mass index; CI, confidence interval; COPD, chronic pulmonary obstructive disorder; ED, emergency department; HCUP SID, Healthcare Cost and Utilization Project Stat Inpatient Database; HIV, human immunodeficiency virus; HR, hazard ratio; ICD, International Statistical Classification of Diseases and Related Health Problems; ICU, intensive care unit; IRR, incidence rate ratio; LOS, length of stay; NHS, National Health Service; NOS, Newcastle-Ottawa Scale; OR, odds ratio; PVD, peripheral vascular disease; RTT, return to theatre; SES, socioeconomic status; SMI, severe mental illness; UHC, University Health System Consortium; UK, United Kingdom; US, United States.

https://doi.org/10.1371/journal.pmed.1003284.t003

Subgroup analyses revealed some interesting findings surrounding factors that might impact upon how SMI affects health service utilisation. The likelihood of inpatient admission differed across SMI subtypes, with schizophrenia patients having the highest risk of admission and patients with bipolar disorder having the lowest. This mirrored results relating to LOS, which was longest in those with schizophrenia and shortest in those with bipolar disorder. Results relating to LOS should be interpreted with caution, however. Subgroup analysis revealed that only studies of poor quality showed that LOS differed significantly between those with and without SMI, which suggests that factors adjusted for in good-quality studies such as physical comorbidities and illness severity might better explain hospital LOS. Interestingly, the likelihood of 30-day readmission amongst patients with SMI was substantially reduced in

				Odds Ratio		Odds Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI		IV, Random, 95	% CI	
Lau et al. 2017 (validation cohort)	0.14842	0.03524	11.9%	1.16 [1.08, 1.24]		+		
Singh et al. 2016	0.16551	0.03666	11.8%	1.18 [1.10, 1.27]		-		
Lau et al. 2017 (derivation cohort)	0.17395	0.02575	12.6%	1.19 [1.13, 1.25]		-		
Chwastiak et al. 2014	0.21511	0.07576	8.4%	1.24 [1.07, 1.44]		-		
Paxton et al. 2015	0.27763	0.12632	5.0%	1.32 [1.03, 1.69]				
Moore et al. 2017	0.29267	0.00381	13.5%	1.34 [1.33, 1.35]				
Feller et al. 2016	0.35767	0.06209	9.6%	1.43 [1.27, 1.62]		-		
Ali et al. 2019 (surgical readmissions)	0.4121	0.144	4.2%	1.51 [1.14, 2.00]				
Ali et al. 2017 (all-cause readmissions)	0.41211	0.1055	6.2%	1.51 [1.23, 1.86]		-		
Ali et al. 2019 (all-cause readmissions)	0.5247	0.1055	6.2%	1.69 [1.37, 2.08]		-		
Ali et al. 2017 (surgical readmissions)	0.54812	0.13412	4.7%	1.73 [1.33, 2.25]		-	-	
Jorgensen et al. 2017	0.57098	0.40863	0.7%	1.77 [0.79, 3.94]				
Ali et al. 2017 (RTT readmissions)	0.60432	0.23109	2.0%	1.83 [1.16, 2.88]				
Ali et al. 2019 (RTT readmissions)	0.9242	0.2666	1.6%	2.52 [1.49, 4.25]		-	· ·	
Lu et al. 2017 (bipolar disorder)	1.23547	0.54734	0.4%	3.44 [1.18, 10.06]		——	•	-
Lu et al. 2017 (schizophrenia)	1.59331	0.34716	1.0%	4.92 [2.49, 9.72]			-	-
Total (95% CI)			100.0%	1.37 [1.28, 1.47]		•		
Heterogeneity: $Tau^2 = 0.01$; $Chi^2 = 86.22$	5, df = 15 (P < 0.00	0001); I ² =	83%					20
Test for overall effect: $Z = 8.90 (P < 0.00)$	0001)				0.05 0.2		5	20

Fig 4. The impact of SMI on 30-day hospital readmission rate. Several studies included analyses for different samples and included different outcomes. Therefore, several effect estimates have been entered from the same studies. CI, confidence interval; RTT, return to theatre; SE, standard error; SMI, severe mental illness.

https://doi.org/10.1371/journal.pmed.1003284.g004

Table 4. The impact of comorbid SMI on ED use.

	=							
Authors	Population (n)	Comorbid SMI (n)	SMI assessment	Type of ED use	Control for comorbidities/medical illness severity	Control for other variables	Main findings	NOS
Bresee et al. 2012 [<u>23</u>]	All patients on the Administrative Database of Alberta Health and Wellness (1995-2006) (n = 2,310,391)	Schizophrenia (n = 28,755)	ICD-9 and ICD-10 diagnostic codes from physician claims data and hospital discharge data	ED visit over the 2-year study period; ≥1 yearly ED visit	Diagnosis of coronary artery disease and/or diabetes	Age, sex, SES, urban versus rural dwelling	Patients with schizophrenia were more likely to visit the ED over the 2-year study period (OR = $3.57, 95\%$ CI $3.44-3.71$) and were also more likely to have ≥ 1 ED visit per year (OR = $3.47, 95\%$ CI $3.38-3.56$)	8 Good quality
Clark et al. 2013 [<u>70</u>]	Patients with alcohol withdrawal admitted to medical ICU ⁺⁺ who did not die and were not rehospitalised in the 6-year study period (n = 656)	Bipolar disorder (n = 121) Schizophrenia (n = 50)	ICD-9 diagnostic codes for SMI recorded twice in the preceding 3 years	Likelihood of ED or urgent care visit within a year of hospital discharge	Charlson/Deyo score, illness severity score based on admission diagnosis and comorbidities, depression, anxiety	Age, gender, race, payer source, smoker, homelessness	Having bipolar disorder was associated with a higher risk of an ED or urgent care visit within 1 year of hospital discharge (HR = 2.03, 95% CI 1.24–3.62, $p = 0.008$), but schizophrenia was not (HR = 1.97, 95% CI 0.72–5.31, $p = 0.124$)	7 Good quality
Hsieh et al. 2012 [<u>20]</u>	Patients on the Taiwanese National Health Research Institute (case-control design) (n = 16,268)	Bipolar disorder (n = 4,067)	Acute admission ICD-9 diagnostic codes	Frequency of nonpsychiatric ED visits for those with bipolar disorder and matched controls over 2-year study period	No	Age, gender, urbanisation level of the residential area, monthly income	Patients with bipolar disorder had a significantly higher number of emergency care visits (M = 2.50, SD = 3.35) compared to matched controls (M = 1.51, SD = 1.52) over the study period ($p < 0.001$)	6 Poor quality*
Hunter et al. 2015 [29]	Costliest 5% of Veterans Association patients (<i>n</i> = 261,515)	Bipolar disorder, schizophrenia, other psychosis (n = 33,119)	ICD-9 diagnostic codes and chronic condition indicators established by AHRQ	Number of ED visits over the 12-month study period	AHRQ comorbidity measures	Age, sex, race/ethnicity, marital status, documented homelessness during year of investigation, correlation within facilities	Patients with SMI had more ED visits over the study period (M = 2.6) compared to patients with no mental health conditions (M = 1.8) ($p < 0.001$)	8 Good quality
Kheir et al. 2018 [<u>76</u>]	Patients admitted for total joint arthroplasty (<i>n</i> = 579)	Bipolar disorder, schizophrenia (n = 156)	ICD-9 diagnostic codes	Preoperative ED visit	Cohort and controls matched using Charlson Comorbidity Index	Also matched on age, gender, BMI, joint, LOS, operative time, revision	A significantly higher proportion of patients with SMI had a preoperative ED visit (19/156, 12%) compared to matched controls (15/423, 3.5%) ($p < 0.001$)	7 Good quality
Kurdyak et al. 2017 [<u>31</u>]	Patients with diabetes (<i>n</i> = 1,131,375)	Schizophrenia (n = 26,259)	Ontario Health Insurance Plan records detailing three schizophrenia-related physician visits in 36 months, or a hospitalisation for schizophrenia	Number of ED visits for diabetic complications; number of ED visits for any nonmental health reason excluding trauma over the 2-year study period	Johns Hopkins ACG System, duration of diabetes	Age, sex, rural residence, neighbourhood income, neighbourhood material deprivation, past year service use	Patients with schizophrenia had an increased risk of an ED visit for a diabetic complication (OR = 1.34, 95% CI 1.28- 1.41) and an increased risk of an ED visit for any nonmental health reason excluding trauma (OR = 1.72, 95% CI 1.68-1.77)	8 Good quality
Lafeuille et al. 2014 [32]	Patients with substance dependence/abuse, obesity, diabetes, metabolic syndrome, hyperlipidaemia, hypertension, coronary artery disease, congestive heart failure, HIV, hepatitis C, or COPD (<i>n</i> = 49,304)	Schizophrenia (n = 24,652)	ICD-9 diagnostic codes—at least two primary or secondary schizophrenia diagnoses recorded during study period	Number of ED visits over the 10-year study period	Patients were matched 1:1 based on propensity scores using the Charlson Comorbidity Index	Patients were matched 1:1 based on propensity scores on age, gender, state, and year of index admission	Compared to matched nonschizophrenic controls, patients with schizophrenia had significantly higher rates of ED visits over the study period (IRR = 2.08, 95% CI 1.95–2.23, $p < 0.005$)	8 Good quality
Minen et al. 2014 [<u>39</u>]	Patients who visited the ED with a primary diagnosis of migraine $(n = 2,872)$	Bipolar disorder (n = NR)	ICD-9 diagnostic codes recorded in the Partners Research Patient Data Registry, Massachusetts	Number of ED visits over the 10-year study period	No	No	Patients with bipolar disorder had 1.85 times more ED visits than patients with other psychiatric disorders. No inferential analyses were carried out on individual psychiatric conditions, and no comparison was made between patients with bipolar disorder and those without any psychiatric diagnosis	7 Poor quality*
Norbeck et al. 2019 [<u>34]</u>	Homeless male veterans in urban and rural settings in the US $(n = 156)$	Bipolar disorder (n = 39)	Self-reported bipolar disorder	Self-reported use of the emergency room over the past 3 months	No	No	Having bipolar disorder was not associated with an increase in the use of the emergency room for medical reasons (no <i>p</i> -value reported)	4 Poor quality*
Pugh et al. 2008 [<u>84</u>]	Patients (veterans) with epilepsy (<i>n</i> = 23,752)	Bipolar disorder, schizophrenia, other psychoses (n = 1,412)	ICD-9 diagnostic codes	Number of ED attendances over the 12-month study period	Epilepsy chronicity, epilepsy severity, physical comorbidities	Age, sex, race, marital status, patients with service- connected disability (therefore, no co-payment required) versus patients with a required co-payment	Epilepsy patients with SMI were more likely to attend an ED over the study period compared to epilepsy patients without psychiatric disease (OR = 1.4, 95% CI 1.2–1.7, $p < 0.01$)	8 Good quality
Shim et al. 2014 [<u>85]</u>	Patients with diabetes (<i>n</i> = 340,786)	Schizophrenia (n = 23,913)	ICD-9 diagnostic codes from claims data	Total ED visits, ED visits related to diabetes, ED visits related to other medical causes over the 2-year study period	No	No	Diabetes patients with schizophrenia had more total ED visits per year (M = 7.5, SD = 8.1) compared to diabetic patients without schizophrenia (M = 4.7, SD = 4.4), $p < 0.01$ Diabetes patients with schizophrenia had more ED visits related to diabetes per year (M = 0.3, SD = 0.7) compared to diabetes patients without schizophrenia (M = 0.2, SD = 0.5), $p < 0.01$ Diabetes patients with schizophrenia (M = 0.2, SD = 0.5), $p < 0.01$ Diabetes patients with schizophrenia had more ED visits related to other medical causes per year (M = 6.9, SD = 7.6) compared to diabetes patients without schizophrenia (M = 4.4, SD = 4.1), p < 0.01	7 Poor quality*

Authors	Population (n)	Comorbid SMI (n)	SMI assessment	Type of ED use	Control for comorbidities/medical illness severity	Control for other variables	Main findings	NOS
Sporinova et al. 2019 [42]	All adults (18+ years) in Alberta, Canada, with at least one of the following chronic diseases in 2012: asthma, congestive heart failure, myocardial infarction, diabetes, epilepsy, hypertension, chronic pulmonary disorder, and chronic kidney disease (<i>n</i> = 991,445)	Schizophrenia (n = 13, 320)	ICD-10 diagnostic codes	ED visits for chronic disease per 1,000 patient-days over the 3-year study period	No	No	Patients with schizophrenia had more ED visits for chronic diseases ($0.28, 0.24-0.31$) than patients with no mental health conditions ($n = 0.13, 0.13-0.14$)	7 Poor quality*
Wallace et al. 2019 [<u>44]</u>	Medical claims data from the HealthCore Integrated Research Database (US) (n = 33,660)	Schizophrenia (n = 6,732)	ICD-9 and ICD-10 diagnostic codes	Rates of all-cause ED visits in the year preceding schizophrenia diagnosis	No	Patients matched 1:4 on age, sex, and region of residence	Patients with schizophrenia had 3-fold more all-cause ED visits (32.5%) compared to their matched comparators without schizophrenia (11.9%)	7 Poor quality*
Weilburg et al. 2018 [<u>86]</u>	Patients in the Medicare CMHCB-DP at Massachusetts General Hospital ($n = 3,620$)	Psychosis (n = 427)	ICD-9 diagnostic codes	Likelihood of ED use in the study period (5 years and 5 months)	HCC score	Age, sex, age at enrolment, poststudy survival, year of enrolment	Patients with psychosis were more likely to use the ED than those with no behavioural health conditions (OR = 1.42, 95% CI 1.14–1.77)	8 Good quality
Wetmore et al. 2019 [<u>45]</u>	Patients on Medicare Claims Database who have Parkinson's disease ($n = 52,103$)	Psychosis (<i>n</i> = 2,778)	ICD-9 diagnostic codes	ED visits over the 6-year study period	Patients matched 1:4 based on number of comorbid conditions	Patients matched 1:4 on age, sex, race, index year of psychosis diagnosis	Patients with psychosis had more ED visits (1.5) than patients without psychosis (0.7) in the sixth year of follow-up	8 Good quality

*If studies failed to adjust for physical comorbidities/illness severity in their analyses, they were deemed to be of poor quality regardless of 'stars' recorded using the NOS.

ACG, Adjusted Clinical Groups; AHRQ, Agency for Healthcare Research and Quality; BMI, body mass index; CI, confidence interval; CMHCB-DP, Case Management for High-Cost Beneficiaries Demonstration Project; COPD, chronic obstructive pulmonary disorder; ED, emergency department; HCC, hierarchical condition category; HIV, human immunodeficiency virus; HR, hazard ratio; ICD, International Statistical Classification of Diseases and Related Health Problems; ICU, intensive care unit; IRR, incidence rate ratio; LOS, length of hospital stay; M, mean; NOS, Newcastle-Ottawa Scale; NR, not reported; OR, odds ratio; SES, socioeconomic status; SD, standard deviation; SMI, severe mental illness; US, United States.

https://doi.org/10.1371/journal.pmed.1003284.t004

studies carried out in the US. This perhaps reflects higher healthcare costs in the US [91], making patients less likely to seek readmission.

There are several factors that might explain why patients with SMI are using nonpsychiatric healthcare services more than those without. The primary reason for increased service use is likely the considerable rates of physical illness seen in patients with SMI. Significant increases in levels of obesity, metabolic syndrome, diabetes, cardiovascular disease, viral disease, respiratory tract disease, and musculoskeletal disease are seen alongside SMI, and illness severity is usually more pronounced in these patients [9]. Increased morbidity in SMI patients is largely down to a higher prevalence of modifiable risk factors [92], such as smoking [93], obesity [94], and alcohol and substance misuse [95]. Additionally, SMI is associated with physiological changes known to impact upon physical health. For example, changes in cortisol secretion associated with dysregulation of the hypothalamic pituitary adrenal (HPA) axis have been seen in patients with SMI [96,97]. Moreover, patients with SMI have increased levels of blood cytokines and circulating immune cell abnormalities [98,99], even at the early stages of mental illness [100]. Use of psychotropic medications has also been associated with increased obesity, dyslipidaemia, type 2 diabetes, and subsequent increased cardiovascular risk [101,102].

There is also evidence that disparities exist in the provision of healthcare for people with SMI, affecting the incidence and severity of physical disease. It is well documented that physical conditions in patients with SMI are underdiagnosed and suboptimally treated. SMI patients tend to have lower rates of medical and surgical intervention (e.g., cardiovascular stenting), and the quality of medical care, once received, can be substandard (e.g., levels of diabetes care) [10]. Moreover, the uptake of preventive strategies, such as cancer screening, is lower amongst those with SMI [103]. There are several reasons for these inequalities in health provision. Firstly, psychiatric symptoms may prevent the patient from seeking adequate physical healthcare. For example, cognitive impairment is often associated with SMI [104] and might impact

				Odds Ratio		Odds Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI		IV, Random, 95% CI		
Kurdyak et al. 2017 (diabetic complications)	0.2926	0.0305	17.2%	1.34 [1.26, 1.42]		•		
Pugh et al. 2008	0.3364	0.13	15.7%	1.40 [1.09, 1.81]		-		
Weilburg et al. 2018	0.3576	0.11	16.1%	1.43 [1.15, 1.77]		-		
Kurdyak et al. 2017 (non-mental health reasons)	0.5423	0.025	17.2%	1.72 [1.64, 1.81]				
Bresee et al. 2012 (ED visits over 2 years)	1.2441	0.046	17.0%	3.47 [3.17, 3.80]				
Bresee et al. 2012 (1 or more ED visits per year)	1.2725	0.07	16.8%	3.57 [3.11, 4.09]				
Total (95% CI)			100.0%	1.97 [1.41, 2.76]		•		
Heterogeneity: Tau ² = 0.17; Chi ² = 404.15, df = 5 Test for overall effect: $Z = 3.97$ (P < 0.0001)	(P < 0.00001); I ² =	= 99%			0.01 0.1		10 10	Т0
						INC SIVIL SIVIL		

Fig 5. The impact of SMI on use of EDs. Two studies performed analyses on different outcomes. Therefore, two effect estimates have been entered for these studies. CI, confidence interval; ED, emergency department; SE, standard error; SMI, severe mental illness.

https://doi.org/10.1371/journal.pmed.1003284.g005

upon a patients ability to access and understand health information and health services. Factors such as lack of motivation and self-neglect also often accompany SMI and will likely affect the extent to which a patient accesses medical services and adheres to medical advice [10]. Secondly, the stigma of SMI pervades all aspects of society, including healthcare. Stigmatisation of patients by physicians and other healthcare professionals can lead to diagnostic overshadowing and a lack of adequate care [105]. Diagnostic overshadowing might also be a result of a lack of training in physical or mental health or a lack of knowledge surrounding symptom recognition [106]. Moreover, it is possible that primary care physicians and psychiatrists feel unable to provide both physical and mental healthcare to SMI patients because of time constraints or lack of clinical training [10]. Thirdly, there is a known inverse association between socioeconomic status and mental illness [107]. Socioeconomic disadvantage is associated with poor access to healthcare. This association is likely to be stronger in some countries more than others, which is reflected in the results of the current study which showed that 30-day readmission is less likely for SMI patients in the US, where healthcare is costly.

All of these factors taken together increase the risk of treatment delay and the development of complications in patients with SMI. A lack of adequate physical healthcare for patients with SMI means that their physical symptoms are likely to be much worse when they finally present in general medical services, potentially leading to an increase in hospital admissions, rates of

Table 5.	The impact	of comorbid SMI	on primary care use.
----------	------------	-----------------	----------------------

Authors	Population (n)	Comorbid SMI (n)	SMI assessment	Type of primary care service use	Control for comorbidities/ medical illness severity	Control for other variables	Main findings	NOS
Bresee et al. 2012 [<u>23</u>]	All patients on the Administrative Database of Alberta Health and Wellness (1995– 2006) (<i>n</i> = 2,310,391)	Schizophrenia (<i>n</i> = 28,755)	ICD-9 and ICD-10 diagnostic codes from physician claims data and hospital discharge data	Number of GP encounters in the 2-year study period, ≥4 yearly GP encounters	Diagnosis of coronary artery disease and/or diabetes	Age, sex, SES, urban versus rural dwelling	Patients with schizophrenia were more likely to have an encounter with their GP over the study period (OR = 7.57, 95% CI 5.92–9.69) and were more likely to have four or more GP encounters per year (OR = 3.60, 95% CI 3.49–3.71)	8 Good quality

Authors	Population (<i>n</i>)	Comorbid SMI (<i>n</i>)	SMI assessment	Type of primary care service use	Control for comorbidities/ medical illness severity	Control for other variables	Main findings	NOS
Copeland et al. 2009 [87]	Patients with diabetes (<i>n</i> = 201,357)	Schizophrenia (<i>n</i> = 13,025)	ICD-9 diagnostic codes from at least one Veteran's Association inpatient stay or two outpatient visits on different dates	Number of primary care visits over the 5-year study period	No	No	Cluster analysis identified four clusters of primary care use over the study period: (1) increasing use; (2) consistent use; (3) low to decreasing use; (4) high to decreasing use. The proportion of patients with diabetes only and diabetes + schizophrenia is presented below Increasing: diabetes only 7%, schizophrenia + diabetes 8% Consistent: diabetes only 33%, schizophrenia + diabetes 28% Low decreasing: diabetes only 52%, schizophrenia + diabetes 54% High decreasing: diabetes only 52%, schizophrenia + diabetes 10% The diabetes 10% The diabetes 10% The diabetes only group dominates in the 'consistent use' cluster. However, patients with comorbid schizophrenia dominate in the other three clusters	5 Poor quality
runter et al. 2015 [29]	Costnest 5% of Veterans Association patients (<i>n</i> = 261,515)	schizophrenia, other psychosis (<i>n</i> = 33,119)	diagnostic codes and chronic condition indicators established by AHRQ	number of primary care appointments over the 12-month study period	AHRQ comorbidity measures	Age, sex, race/ ethnicity, marital status, documented homelessness during year of investigation, correlation within facilities	Patients with SMI had more primary care visits over the study period (M = 6.1) compared to patients with no mental health conditions (M = 5.1) (p < 0.001)	8 Good quality

Authors	Population (<i>n</i>)	Comorbid SMI (n)	SMI assessment	Type of primary care service use	Control for comorbidities/ medical illness severity	Control for other variables	Main findings	NOS
Kontopantelis et al. 2015 [88]	Patients in UK registered with primary care practice (Different data are reported for each of the 12 fiscal years separately. We report sample sizes from the most recent year—2011/ 2012) (n = 5,069,748)	Schizophrenia, affective psychoses (bipolar disorder or other unspecified affective psychosis), other types of psychosis (<i>n</i> = 31,807)	Primary care Read Codes	Number of primary care visits over the 12-year study period. This includes face-to- face, telephone, and other (mail/ email, referrals, secondary care episode, other administrative tasks)	Hypertension, asthma, hypothyroidism, osteoarthritis, chronic kidney disease, coronary heart disease, epilepsy, COPD, cancer, stroke, heart failure, rheumatoid arthritis, dementia, and psoriasis	Patients matched on age, sex, and primary care practice	Patients with SMI consulted more in primary care than patients without SMI across the 12-year study period. The difference between these groups increased after the introduction of QOF in 2004 Consultation rates for people with SMI increased across all types over time. For people with SMI, the mean number of consultations was 92% higher in 2011/2012 compared with 2000/2001 (IRR = 1.92, 95% CI 1.91–1.93). For matched control cases, the increase was smaller at 75% (IRR = 1.75, 95% CI 1.74–1.75)	8 Good quality
Lichstein et al. 2014 [89]	Patients with two or more chronic conditions: major depressive disorder, schizophrenia, hypertension, diabetes, hyperlipidaemia, seizure disorder, asthma, COPD (n = 105,542)	Schizophrenia (<i>n</i> = 10,166)	ICD-9 diagnostic codes	Use of medical homes over the 3-year study period. Medical homes provide a model of primary care that is patient- centred, comprehensive, team-based, coordinated, accessible, and focused on quality and safety	Total number of chronic conditions (between 2 and 8), included all diagnosis indicators for major depressive disorder, diabetes, asthma, hypertension, hyperlipidaemia, seizure disorder, and COPD	Age, gender, race, ethnicity	Patients with schizophrenia had an 8.2% lower probability of having a medical home visit over the study period compared to patients without schizophrenia or depression (p < 0.01) Patients with schizophrenia had one fewer (-1.02, SE = 0.10) medical home visits over the study period compared to patients without schizophrenia or depression (p < 0.01)	8 Good quality

Authors	Population (<i>n</i>)	Comorbid SMI (n)	SMI assessment	Type of primary care service use	Control for comorbidities/ medical illness severity	Control for other variables	Main findings	NOS
Norgaard et al. 2019 [90]	A matched study cohort selected from the Danish National Registers (<i>n</i> = 456,897)	Schizophrenia (<i>n</i> = 21,757)	ICD-8 and ICD-10 diagnostic codes	Number of general practice consultations 1 and 5 years after the index date	No	Age, sex, calendar time, cohabitation	Patients with schizophrenia had 82% (95% CI 78%– 87%) more consultations than patients without schizophrenia after 1 year and 76% (95% CI 71%–80%) more after 5 years (6.05 versus 3.55 annual consultations)	7 Poor quality*
Pugh et al. 2008 [84]	Patients (veterans) with epilepsy (<i>n</i> = 23,752)	Bipolar disorder, schizophrenia, other psychoses (<i>n</i> = 1,412)	ICD-9 diagnostic codes	High primary care use (top 20% of patients with high utilisation) over the 12-month study period	Epilepsy chronicity, epilepsy severity, physical comorbidities	Age, sex, race, marital status, patients with service- connected disability (therefore, no co-payment required) versus patients with a required co- payment	Epilepsy patients with SMI were no more likely to be frequent users of primary care over the study period than were epilepsy patients without psychiatric disease (OR = 0.9, 95% CI 0.7–1.1)	8 Good quality

*If studies failed to adjust for physical comorbidities/illness severity in their analyses, they were deemed to be of poor quality regardless of 'stars' recorded using the NOS.

Abbreviations: AHRQ, Agency for Healthcare Research and Quality; CI, confidence interval; COPD, chronic obstructive pulmonary disorder; GP, general practitioner; ICD, International Statistical Classification of Diseases and Related Health Problems; IRR, incidence rate ratio; M, mean; NOS, Newcastle-Ottawa Scale; OR, odds ratio; QOF, Quality Outcomes Framework; SE, standard error; SES, socioeconomic status; SMI, severe mental illness; UK, United Kingdom.

https://doi.org/10.1371/journal.pmed.1003284.t005

readmission, emergency department attendance, and use of primary care services, which we have described in this review.

Limitations

The majority of studies included in this review were of good quality with large sample sizes. In most cases, SMI was defined using established diagnostic codes, and health service utilisation outcomes were obtained using medical record linkage. However, some studies (35%) were rated as poor quality, largely owing to failure to control for physical illness severity or the presence of comorbidities, meaning the strength of evidence differed across studies. Nevertheless, most studies showed that SMI led to an increase in the use of general medical services, and study quality was not a significant source of heterogeneity in all but one meta-analysis. However, most studies included in the meta-analysis looking at LOS were of poor quality, which should be taken into account when interpreting the result. Only peer-reviewed publications were included in the review, meaning that publication bias was likely. Despite carrying out literature searches on several databases using comprehensive search strategies, it is possible that retrieval of all relevant research was not complete.

 I^2 values indicated considerable heterogeneity across studies. This was to be expected in a review of this kind, in which there is large variation between studies in terms of patient

population, hospital setting, and health system. Examining sources of variation revealed that certain outcomes differed according to SMI subtype and geographical location. Other patient and clinical characteristics likely explain the bulk of heterogeneity. This means that there is uncertainty around the magnitude of the impact of SMI on nonpsychiatric health service utilisation, and results of this review should be interpreted with this in mind.

In terms of the quality assessment of studies included in the review, the NOS has been criticised in terms of its subjectivity, and interrater reliability between authors and reviewers of studies has been found to differ significantly in that reviewers tend to view studies more favourably than the authors [108]. However, there is no gold standard when it comes to quality-assessment tools for observational studies [109]. Moreover, in the current review, we adopted quite stringent criteria for deciding when a study was poor quality (i.e., when a study did not adjust for severity of physical illness and/or the presence of physical comorbidities), meaning that the purported favourable view taken by reviewers might have been offset by that.

Although the focus of this review was on nonpsychiatric health service utilisation, it was not always possible to determine whether the health service outcome definitively excluded mental health treatment (e.g., use of the emergency department). Because of the nature of primary care, it was not possible to rule out the use of primary care services for psychiatric reasons in any of the studies included in the review. However, a recent study reported that nine out of 10 of the most common patient-reported reasons for primary care visits were nonpsychiatric [110], indicating that this outcome was likely to be mainly nonpsychiatric. It is very common for patients to have other psychiatric illnesses alongside SMI [111]. Unfortunately, because of the nature of the studies included, it was not within the scope of the current review to consider the impact of the overlap between SMI and other psychiatric conditions on nonpsychiatric health service utilisation. The studies included in this systematic review all described the impact of SMI on the use of general medical services in high-income countries, which affects the generalisability of the results. Future research should try to understand the impact of SMI, and more generally psychiatric comorbidity, on nonpsychiatric health service utilisation in low- and middle-income countries where health systems are not as well developed.

Conclusions

The results of this systematic review and meta-analysis highlight the extent to which SMI impacts upon general medical services. Patients with SMI were more likely to have an inpatient admission, had hospital stays that were increased by 0.59 days, were more likely to be readmitted within 30 days, and were more likely to attend the emergency department compared to patients without SMI. Most studies included in this review also showed that SMI was associated with increased use of primary care services. Illustrating and quantifying this helps to build a case for system-wide integration of mental and physical healthcare. Additionally, the results of the meta-analyses might be used to guide clinicians, policy makers, and commissioners in the improvement of the delivery of physical healthcare for SMI patients. The Five Year Forward View for Mental Health for National Health Service England aims to improve early detection of physical illness in SMI patients through the implementation of physical healthcare screening, assessment, and intervention [112]. This is to be delivery of treatment for physical illness will hopefully improve the physical health of patients with SMI and reduce use of nonpsychiatric healthcare services.

Supporting information

S1 Appendix. PRISMA checklist for the systematic review and meta-analyses. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analysis. (DOC)

S2 Appendix. Literature search strategy. (DOCX)

S3 Appendix. List of excluded studies. (DOCX)

S4 Appendix. Subgroup analyses tables for meta-analyses. (DOCX)

S5 Appendix. Funnel plots for meta-analyses. (DOCX)

Author Contributions

Conceptualization: Amy Ronaldson.

Data curation: Amy Ronaldson.

Formal analysis: Amy Ronaldson, Lotte Elton, Simone Jayakumar, Anna Jieman.

Methodology: Amy Ronaldson, Lotte Elton, Kristoffer Halvorsrud.

Project administration: Kamaldeep Bhui.

Resources: Kamaldeep Bhui.

Supervision: Kamaldeep Bhui.

Writing – original draft: Amy Ronaldson.

Writing – review & editing: Lotte Elton, Simone Jayakumar, Anna Jieman, Kristoffer Halvorsrud, Kamaldeep Bhui.

References

- de Oliveira C, Cheng J, Vigod S, Rehm J, Kurdyak P. Patients With High Mental Health Costs Incur Over 30 Percent More Costs Than Other High-Cost Patients. Health Affairs. 2016; 35: 36–43. <u>https://doi.org/10.1377/hlthaff.2015.0278 PMID: 26733699</u>
- Hajek A, Bock J-O, König H-H. Association of general psychological factors with frequent attendance in primary care: a population-based cross-sectional observational study. BMC Fam Pract. 2017; 18: 48. https://doi.org/10.1186/s12875-017-0621-5 PMID: 28340559
- Murray CJ, Richards MA, Newton JN, Fenton KA, Anderson HR, Atkinson C, et al. UK health performance: findings of the Global Burden of Disease Study 2010. Lancet. 2013; 381: 997–1020. https://doi.org/10.1016/S0140-6736(13)60355-4 PMID: 23668584
- Wolff J, Heister T, Normann C, Kaier K. Hospital costs associated with psychiatric comorbidities: a retrospective study. BMC Health Serv Res. 2018; 18: 67. https://doi.org/10.1186/s12913-018-2892-5
 PMID: 29382387
- Saravay SM, Lavin M. Psychiatric comorbidity and length of stay in the general hospital. A critical review of outcome studies. Psychosomatics. 1994; 35: 233–252. https://doi.org/10.1016/S0033-3182 (94)71772-2 PMID: 8036253
- Koopmans GT, Donker MCH, Rutten FHH. Length of hospital stay and health services use of medical inpatients with comorbid noncognitive mental disorders: a review of the literature. Gen Hosp Psychiatry. 2005; 27: 44–56. https://doi.org/10.1016/j.genhosppsych.2004.09.008 PMID: 15694218
- Jansen L, van Schijndel M, van Waarde J, van Busschbach J. Health-economic outcomes in hospital patients with medical-psychiatric comorbidity: A systematic review and meta-analysis. PLoS ONE. 2018; 13: e0194029. https://doi.org/10.1371/journal.pone.0194029 PMID: 29534097
- 8. Viron MJ, Stern TA. The impact of serious mental illness on health and healthcare. Psychosomatics. 2010; 51: 458–465. https://doi.org/10.1176/appi.psy.51.6.458 PMID: 21051676

- De Hert M, Correll CU, Bobes J, Cetkovich-Bakmas M, Cohen D, Asai I, et al. Physical illness in patients with severe mental disorders. I. Prevalence, impact of medications and disparities in health care. World Psychiatry. 2011; 10: 52–77. https://doi.org/10.1002/j.2051-5545.2011.tb00014.x PMID: 21379357
- Lawrence D, Kisely S. Inequalities in healthcare provision for people with severe mental illness. J Psychopharmacol. 2010; 24: 61–68. https://doi.org/10.1177/1359786810382058 PMID: 20923921
- Olier I, Springate DA, Ashcroft DM, Doran T, Reeves D, Planner C, et al. Modelling Conditions and Health Care Processes in Electronic Health Records: An Application to Severe Mental Illness with the Clinical Practice Research Datalink. PLoS ONE. 2016; 11: e0146715. https://doi.org/10.1371/journal. pone.0146715 PMID: 26918439
- 12. Wells G, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomised studies in meta-analyses. 2012 [cited 2019 Sep 6]. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
- Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987; 40: 373–383. https://doi.org/ 10.1016/0021-9681(87)90171-8 PMID: 3558716
- Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data. Med Care. 1998; 36: 8–27. <u>https://doi.org/10.1097/00005650-199801000-00004</u> PMID: 9431328
- **15.** Review Manager (RevMan) [computer program]. Copenhagen: The Nordic Cochrane Centre: The Cochrane Collaboration; 2014.
- The Cochrane Collaboration. Cochrane Handbook for Systematic Reviews of Interventions. Report No.: Version 5.1.0. 2011 [cited 2019 Sep 9]. Available from: https://handbook-5-1.cochrane.org/
- Bressi SK, Marcus SC, Solomon PL. The impact of psychiatric comorbidity on general hospital length of stay. Psychiat Quart. 2006; 77: 203–209. https://doi.org/10.1007/s11126-006-9007-x PMID: 16958003
- Briskman I, Bar G, Boaz M, Shargorodsky M. Impact of co-morbid mental illness on the diagnosis and management of patients hospitalized for medical conditions in a general hospital. Int J Psychiatry Med. 2012; 43: 339–348. https://doi.org/10.2190/PM.43.4.d PMID: 23094466
- Becker MA, Boaz TL, Andel R, Gum AM, Papadopoulos AS. Predictors of Preventable Nursing Home Hospitalizations: The Role of Mental Disorders and Dementia. Am J Geriatr Psychiatr. 2010; 18: 475– 482. https://doi.org/10.1097/JGP.0b013e3181b2145a PMID: 21217558
- Hsieh MH, Tang CH, Hsieh MH, Lee IH, Lai TJ, Lin YJ, et al. Medical costs and vasculometabolic comorbidities among patients with bipolar disorder in Taiwan—A population-based and matched-control study. J Affect Disorders. 2012; 141: 449–456. <u>https://doi.org/10.1016/j.jad.2012.02.038</u> PMID: 22460055
- Basta MN, Fox JP, Kanchwala SK, Wu LC, Serletti JM, Kovach SJ, et al. Complicated breast cancerrelated lymphedema: Evaluating health care resource utilization and associated costs of management. Am J Surgery. 2016; 211: 133–141. https://doi.org/10.1016/j.amjsurg.2015.06.015 PMID: 26421413
- Becker M, Boaz T, Andel R, DeMuth A. Predictors of Avoidable Hospitalizations Among Assisted Living Residents. J Am Med Dir Assoc. 2012; 13: 355–359. <u>https://doi.org/10.1016/j.jamda.2011.02.001</u> PMID: 21450253
- 23. Bresee LC, Majumdar SR, Patten SB, Johnson JA. Utilization of general and specialized cardiac care by people with schizophrenia. Psychiatr Serv. 2012; 63: 237–242. <u>https://doi.org/10.1176/appi.ps.</u> 201000363 PMID: 22307876
- Chen P, Kales HC, Weintraub D, Blow FC, Jiang L, Ignacio RV, et al. Depression in veterans with Parkinson's disease: Frequency, co-morbidity, and healthcare utilization. International Journal of Geriatric Psychiatry. 2007; 22: 543–548. https://doi.org/10.1002/gps.1712 PMID: 17133656
- Cramer S, Chapa G, Kotsos T, Jenich H. Assessing multiple hospitalizations for health-plan-managed Medicaid diabetic members. Journal for healthcare quality: official publication of the National Association for Healthcare Quality. 2010; 32: 7–14.
- Davydow DS, Ribe AR, Pedersen HS, Fenger-Gron M, Cerimele JM, Vedsted P, et al. Serious Mental Illness and Risk for Hospitalizations and Rehospitalizations for Ambulatory Care-sensitive Conditions in Denmark A Nationwide Population-based Cohort Study. Med Care. 2016; 54: 90–97. https://doi.org/ 10.1097/MLR.00000000000448 PMID: 26492210
- Graham LA, Wagner TH, Richman JS, Morris MS, Copeland LA, Harris AH, et al. Exploring Trajectories of Health Care Utilization Before and After Surgery. J Am Coll Surg. 2019; 228: 116–128. https:// doi.org/10.1016/j.jamcollsurg.2018.10.010 PMID: 30359825

- Hendrie HC, Tu W, Tabbey R, Purnell CE, Ambuehl RJ, Callahan CM. Health outcomes and cost of care among older adults with schizophrenia: A 10-year study using medical records across the continuum of care. American Journal of Geriatric Psychiatry. 2014; 22: 427–436. <u>https://doi.org/10.1016/j.jagp.2012.10.025</u> PMID: 23933423
- Hunter G, Yoon J, Blonigen DM, Asch SM, Zulman DM. Health Care Utilization Patterns Among High-Cost VA Patients With Mental Health Conditions. Psychiatr Serv. 2015; 66: 952–958. https://doi.org/ 10.1176/appi.ps.201400286 PMID: 25930040
- Krein SL, Bingham CR, McCarthy JF, Mitchinson A, Payes J, Valenstein M. Diabetes treatment among VA patients with comorbid serious mental illness. Psychiatr Serv. 2006; 57: 1016–1021. https://doi.org/10.1176/ps.2006.57.7.1016 PMID: 16816287
- Kurdyak P, Vigod S, Duchen R, Jacob B, Stukel T, Kiran T. Diabetes quality of care and outcomes: Comparison of individuals with and without schizophrenia. Gen Hosp Psychiatry. 2017; 46: 7–13. https://doi.org/10.1016/j.genhosppsych.2017.02.001 PMID: 28622820
- Lafeuille MH, Dean J, Fastenau J, Panish J, Olson W, Markowitz M, et al. Burden of schizophrenia on selected comorbidity costs. Expert Review of Pharmacoeconomics and Outcomes Research. 2014; 14: 259–267. https://doi.org/10.1586/14737167.2014.894463 PMID: 24593801
- Moore DT, Rosenheck RA. Medical-Surgical Hospitalization Among Veterans With Psychiatric and Substance Use Disorders. Psychosomatics. 2019; 60: 591–598. <u>https://doi.org/10.1016/j.psym.2019</u>. 04.005 PMID: 31470980
- Norbeck S, Schuster H, Driscoll D, Ramaswamy S. An examination of physical illness and health service use in homeless veterans with PTSD, major depressive disorder, anxiety disorder, and/or bipolar disorder in Nebraska. J Soc Distress Homel. 2019; 0: 1–8. https://doi.org/10.1080/10530789.2019. 1684067
- Lemke KW, Weiner JP, Clark JM. Development and validation of a model for predicting inpatient hospitalization. Med Care. 2012; 50: 131–139. <u>https://doi.org/10.1097/MLR.0b013e3182353ceb</u> PMID: 22002640
- Li Y, Glance LG, Cai X, Mukamel DB. Mental illness and hospitalization for ambulatory care sensitive medical conditions. Med Care. 2008; 46: 1249–1256. <u>https://doi.org/10.1097/MLR.</u> 0b013e31817e188c PMID: 19300315
- Lin H-C, Huang C-C, Chen S-F, Chen Y-H. Increased risk of avoidable hospitalization among patients with schizophrenia. Can J Psychiatry. 2011; 56: 171–178. https://doi.org/10.1177/ 070674371105600307 PMID: 21443824
- Mai Q, Holman CD, Sanfilippo FM, Emery JD. The impact of mental illness on potentially preventable hospitalisations: a population-based cohort study. BMC Psychiatry. 2011; 11: 163. <u>https://doi.org/10. 1186/1471-244X-11-163 PMID: 21985082</u>
- Minen MT, Tanev K. Influence of psychiatric comorbidities in migraineurs in the emergency department. General Hospital Psychiatry. 2014; 36: 533–538. <u>https://doi.org/10.1016/j.genhosppsych.2014</u>. 05.004 PMID: 24950915
- Sayers SL, Hanrahan N, Kutney A, Clarke SP, Reis BF, Riegel B. Psychiatric comorbidity and greater hospitalization risk, longer length of stay, and higher hospitalization costs in older adults with heart failure. J Am Geriatr Soc. 2007; 55: 1585–91. <u>https://doi.org/10.1111/j.1532-5415.2007.01368.x</u> PMID: 17714458
- Schoepf D, Uppal H, Potluri R, Heun R. Physical comorbidity and its relevance on mortality in schizophrenia: A naturalistic 12-year follow-up in general hospital admissions. Eur Arch Psychiatry Clin Neurosci. 2014; 264: 3–28. https://doi.org/10.1007/s00406-013-0436-x PMID: 23942824
- Sporinova B, Manns B, Tonelli M, Hemmelgarn B, MacMaster F, Mitchell N, et al. Association of Mental Health Disorders With Health Care Utilization and Costs Among Adults With Chronic Disease. JAMA Netw Open. 2019; 2: e199910. https://doi.org/10.1001/jamanetworkopen.2019.9910 PMID: 31441939
- **43.** Sullivan G, Han X, Moore S, Kotrla K. Disparities in hospitalization for diabetes among persons with and without co-occurring mental disorders. Psychiatr Serv. 2006; 57: 1126–31. <u>https://doi.org/10.1176/ps.2006.57.8.1126</u> PMID: 16870963
- Wallace A, Barron J, York W, Isenberg K, Franchino-Elder J, Sidovar M, et al. Health Care Resource Utilization and Cost Before Initial Schizophrenia Diagnosis. J Manag Care Pharm. 2019; 25: 1102– 1110.
- Wetmore JB, Li S, Yan H, Irfan M, Rashid N, Peng Y, et al. Increases in institutionalization, healthcare resource utilization, and mortality risk associated with Parkinson disease psychosis: Retrospective cohort study. Parkinsonism Relat Disord. 2019; 68: 95–101. https://doi.org/10.1016/j.parkreldis.2019. 10.018 PMID: 31679990

- 46. Attar R, Valentin JB, Freeman P, Andell P, Aagaard J, Jensen SE. The effect of schizophrenia on major adverse cardiac events, length of hospital stay, and prevalence of somatic comorbidities following acute coronary syndrome. Eur Heart J Qual Care Clin Outcomes. 2019; 5: 121–126. <u>https://doi.org/10.1093/ehjqcco/qcy055 PMID: 30496375</u>
- Bailey EA, Wirtalla C, Sharoky CE, Kelz RR. Disparities in operative outcomes in patients with comorbid mental illness. Surgery. 2018; 163: 667–671. <u>https://doi.org/10.1016/j.surg.2017.09.029</u> PMID: 29241988
- Banta JE, Andersen RM, Young AS, Kominski G, Cunningham WE. Psychiatric Comorbidity and Mortality Among Veterans Hospitalized for Congestive Heart Failure. Milit Med. 2010; 175: 732–741. https://doi.org/10.7205/milmed-d-10-00002 PMID: 20968262
- 49. Beydoun MA, Beydoun HA, Gamaldo AA, Rostant OS, Dore GA, Zonderman AB, et al. Nationwide Inpatient Prevalence, Predictors, and Outcomes of Alzheimer's Disease among Older Adults in the United States, 2002–2012. J Alzheimers Dis. 2015; 48: 361–375. https://doi.org/10.3233/JAD-150228 PMID: 26402000
- Carter P, Reynolds J, Carter A, Potluri S, Uppal H, Chandran S, et al. The impact of psychiatric comorbidities on the length of hospital stay in patients with heart failure. Int J Cardiol. 2016; 207: 292–296. https://doi.org/10.1016/j.ijcard.2016.01.132 PMID: 26814630
- Chen PH, Kao YW, Shia BC, Lin HC, Kang JH. Adverse stroke outcomes among patients with bipolar disorder. PLoS ONE. 2019; 14: e0213072. <u>https://doi.org/10.1371/journal.pone.0213072</u> PMID: 30830937
- Cholankeril G, Hu M, Tanner E, Cholankeril R, Reha J, Somasundar P. Skilled nursing facility placement in hospitalized elderly patients with colon cancer. Eur J Surg Oncol. 2016; 42: 1660–1666. https://doi.org/10.1016/j.ejso.2016.06.005 PMID: 27387271
- Dolp R, Rehou S, McCann MR, Jeschke MG. Contributors to the length-of-stay trajectory in burninjured patients. Burns. 2018; 44: 2011–2017. <u>https://doi.org/10.1016/j.burns.2018.07.004</u> PMID: 30104050
- Falsgraf E, Inaba K, De Roulet A, Johnson M, Benjamin E, Lam L, et al. Outcomes after traumatic injury in patients with preexisting psychiatric illness. J Trauma Acute Care. 2017; 83: 882–887. https:// doi.org/10.1097/TA.00000000001588 PMID: 28538629
- Kaplan GG, Hubbard J, Panaccione R, Shaheen AAM, Quan H, Nguyen GC, et al. Risk of comorbidities on postoperative outcomes in patients with inflammatory bowel disease. Arch Surg. 2011; 146: 959–964. https://doi.org/10.1001/archsurg.2011.194 PMID: 21844437
- Gholson JJ, Bedard NA, Dowdle SB, Brown TS, Gao YB, Callaghan JJ. Total Joint Arthroplasty in Patients With Schizophrenia: How Much Does It Increase the Risk of Complications? J Arthroplast. 2018; 33: 2082–2086. https://doi.org/10.1016/j.arth.2018.01.074 PMID: 29526332
- Maeda T, Babazono A, Nishi T, Tamaki K. Influence of psychiatric disorders on surgical outcomes and care resource use in Japan. Gen Hosp Psychiatry. 2014; 36: 523–527. <u>https://doi.org/10.1016/j.genhosppsych.2014.05.014</u> PMID: 24973124
- Menendez ME, Neuhaus V, Bot AGJ, Vrahas MS, Ring D. Do psychiatric comorbidities influence inpatient death, adverse events, and discharge after lower extremity fractures? Clin Orthop Relat R. 2013; 471: 3336–3348. https://doi.org/10.1007/s11999-013-3138-9 PMID: 23813242
- Protty MB, Lacey A, Smith D, Hannoodee S, Freeman P. Increased morbidity, mortality and length of in-hospital stay for patients with acute coronary syndrome with pre-morbid psychiatric diagnoses. Int J Cardiol. 2017; 236: 5–8. https://doi.org/10.1016/j.ijcard.2017.01.067 PMID: 28111056
- Sams JD, Francis ML, Scaife SL, Robinson BS, Novicoff WM, Saleh KJ. Redefining Revision Total Hip Arthroplasty Based on Hospital Admission Status. J Arthroplasty. 2012; 27: 758–763. <u>https://doi.org/10.1016/j.arth.2011.09.007</u> PMID: 22019324
- Siddiqui N, Dwyer M, Stankovich J, Peterson G, Greenfield D, Si L, et al. Hospital length of stay variation and comorbidity of mental illness: a retrospective study of five common chronic medical conditions. BMC Health Serv Res. 2018; 18: 498. https://doi.org/10.1186/s12913-018-3316-2 PMID: 29945622
- Tarrier N, Gregg L, Edwards J, Dunn K. The influence of pre-existing psychiatric illness on recovery in burn injury patients: The impact of psychosis and depression. Burns. 2005; 31: 45–49. https://doi.org/ 10.1016/j.burns.2004.06.010 PMID: 15639364
- Uldall KK, Koutsky LA, Bradshaw DH, Krone M. Use of hospital services by AIDS patients with psychiatric illness. Gen Hosp Psych. 1998; 20: 292–301. https://doi.org/10.1016/s0163-8343(98)00041-3
- Vakharia RM, Sabeh KG, Sodhi N, Mont MA, Roche MW, Hernandez VH. A Nationwide Analysis on the Impact of Schizophrenia Following Primary Total Knee Arthroplasty: A Matched-Control Analysis of 49,176 Medicare Patients. J Arthroplasty. 2020; 35: 417–421. <u>https://doi.org/10.1016/j.arth.2019</u>. 09.034 PMID: 31711803

- **65.** Willers C, Lekander I, Sunnerhagen KS, Von Euler M. Pre-stroke psychosis and its association with levels of health, resource utilization and care process after ischemic stroke: A register-based study. Eur Stroke J. 2018; 3: 329–330. https://doi.org/10.1177/2396987318770127
- Ahmedani BK, Solberg LI, Copeland LA, Fang-Hollingsworth Y, Stewart C, Hu J, et al. Psychiatric comorbidity and 30-day readmissions after hospitalization for heart failure, AMI, and pneumonia. Psychiatric Services. 2015; 66: 134–140. https://doi.org/10.1176/appi.ps.201300518 PMID: 25642610
- 67. Ali AM, Loeffler MD, Aylin P, Bottle A. Factors associated with 30-day readmission after primary total hip arthroplasty analysis of 514 455 procedures in the UK National Health Service. JAMA Surgery. 2017; 152. https://doi.org/10.1001/jamasurg.2017.3949 PMID: 28979994
- Ali AM, Loeffler MD, Aylin P, Bottle A. Predictors of 30-Day Readmission After Total Knee Arthroplasty: Analysis of 566,323 Procedures in the United Kingdom. J Arthroplasty. 2019; 34: 242–248.e1. https://doi.org/10.1016/j.arth.2018.10.026 PMID: 30477965
- Chwastiak LA, Davydow DS, McKibbin CL, Schur E, Burley M, McDonell MG, et al. The Effect of Serious Mental Illness on the Risk of Rehospitalization Among Patients With Diabetes. Psychosomatics. 2014; 55: 134–143. https://doi.org/10.1016/j.psym.2013.08.012 PMID: 24367898
- Clark BJ, Keniston A, Douglas IS, Beresford T, Macht M, Williams A, et al. Healthcare utilization in medical intensive care unit survivors with alcohol withdrawal. Alcohol Clin Exp Res. 2013; 37: 1536– 1543. https://doi.org/10.1111/acer.12124 PMID: 23647435
- Dailey EA, Cizik A, Kasten J, Chapman JR, Lee MJ. Risk factors for readmission of orthopaedic surgical patients. J Bone Joint Surg. 2013; 95: 1012–1019. <u>https://doi.org/10.2106/JBJS.K.01569</u> PMID: 23780539
- 72. Daratha KB, Barbosa-Leiker C, M HB, Short R, Layton ME, McPherson S, et al. Co-occurring mood disorders among hospitalized patients and risk for subsequent medical hospitalization. Gen Hosp Psychiatry. 2012; 34: 500–505. https://doi.org/10.1016/j.genhosppsych.2012.05.001 PMID: 22703606
- 73. Feller DJ, Akiyama MJ, Gordon P, Agins BD. Readmissions in HIV-infected inpatients: A large cohort analysis. J Acq Immun Def Synd. 2016; 71: 407–412. <u>https://doi.org/10.1097/QAI.00000000000876</u> PMID: 26505329
- 74. Fleming MM, Liu F, Luo J, Zhang Y, Pei KY. Predictors of 30 d readmission following percutaneous cholecystostomy. J Surg Res. 2019; 233: 1–7. <u>https://doi.org/10.1016/j.jss.2018.07.006</u> PMID: 30502233
- 75. Jørgensen M, Mainz J, Egstrup K, Johnsen SP. Quality of Care and Outcomes of Heart Failure Among Patients With Schizophrenia in Denmark. Am J Cardiol. 2017; 120: 980–985. <u>https://doi.org/ 10.1016/j.amjcard.2017.06.027 PMID: 28774428</u>
- 76. Kheir MM, Kheir YNP, Tan TL, Ackerman CT, Rondon AJ, Chen AF. Increased Complications for Schizophrenia and Bipolar Disorder Patients Undergoing Total Joint Arthroplasty. J Arthroplasty. 2018; 33: 1462–1466. https://doi.org/10.1016/j.arth.2017.12.006 PMID: 29310919
- 77. Lau CSM, Siracuse BL, Chamberlain RS. Readmission after COPD exacerbation scale: Determining 30-day readmission risk for COPD patients. Int J Chron Obstruct Pulmon Dis. 2017; 12: 1891–1902. https://doi.org/10.2147/COPD.S136768 PMID: 28721034
- 78. Lu MLR, De Venecia TA, Goyal A, Rodriguez Ziccardi M, Kanjanahattakij N, Shah MK, et al. Psychiatric conditions as predictors of rehospitalization among African American patients hospitalized with heart failure. Clin Cardiol. 2017; 40: 1020–1025. https://doi.org/10.1002/clc.22760 PMID: 28750156
- 79. Moore BJ, White S, Washington R, Coenen N, Elixhauser A. Identifying Increased Risk of Readmission and In-hospital Mortality Using Hospital Administrative Data: The AHRQ Elixhauser Comorbidity Index. Medical Care. 2017; 55: 698–705. <u>https://doi.org/10.1097/MLR.000000000000735</u> PMID: 28498196
- Paxton EW, Inacio MCS, Singh JA, Love R, Bini SA, Namba RS. Are There Modifiable Risk Factors for Hospital Readmission After Total Hip Arthroplasty in a US Healthcare System? Clin Orthop Rel Res. 2015; 473: 3446–3455. https://doi.org/10.1007/s11999-015-4278-x PMID: 25845947
- Prabhakaran K, Gogna S, Pee S, Samson DJ, Con J, Latifi R. Falling Again? Falls in Geriatric Adults —Risk Factors and Outcomes Associated With Recidivism. J Surg Res. 2020; 247: 66–76. https://doi. org/10.1016/j.jss.2019.10.041 PMID: 31767279
- Shah R, Haydek C, Mulki R, Qayed E. Incidence and predictors of 30-day readmissions in patients hospitalized with chronic pancreatitis: A nationwide analysis. Pancreatology. 2018; 18: 386–393. https://doi.org/10.1016/j.pan.2018.04.006 PMID: 29703552
- Singh G, Zhang W, Kuo YF, Sharma G. Association of Psychological Disorders With 30-Day Readmission Rates in Patients With COPD. Chest. 2016; 149: 905–15. <u>https://doi.org/10.1378/chest.15-0449</u> PMID: 26204260

- Pugh MJ, Zeber JE, Copeland LA, Tabares JV, Cramer JA. Psychiatric disease burden profiles among veterans with epilepsy: the association with health services utilization. Psychiatr Serv. 2008; 59: 925–8. https://doi.org/10.1176/ps.2008.59.8.925 PMID: 18678692
- Shim RS, Druss BG, Zhang S, Kim G, Oderinde A, Shoyinka S, et al. Emergency department utilization among Medicaid beneficiaries with schizophrenia and diabetes: The consequences of increasing medical complexity. Schizophr Res. 2014; 152: 490–497. <u>https://doi.org/10.1016/j.schres.2013.12</u>. 002 PMID: 24380780
- Weilburg JB, Wong HJ, Sistrom CL, Benzer TI, Taylor JB, Rockett H, et al. Behavioral Health Factors as Predictors of Emergency Department Use in the High-Risk, High-Cost Medicare Population. Psychiatr Serv. 2018; 69: 1230–1237. https://doi.org/10.1176/appi.ps.201800083 PMID: 30256183
- Copeland LA, Zeber JE, Wang CP, Parchman ML, Lawrence VA, Valenstein M, et al. Patterns of primary care and mortality among patients with schizophrenia or diabetes: A cluster analysis approach to the retrospective study of healthcare utilization. BMC Health Serv Res. 2009; 9. https://doi.org/10. 1186/1472-6963-9-127 PMID: 19630997
- Kontopantelis E, Olier I, Planner C, Reeves D, Ashcroft DM, Gask L, et al. Primary care consultation rates among people with and without severe mental illness: a UK cohort study using the Clinical Practice Research Datalink. BMJ Open. 2015; 5: 10. <u>https://doi.org/10.1136/bmjopen-2015-008650</u> PMID: 26674496
- Lichstein JC, Domino ME, Beadles CA, Ellis AR, Farley JF, Morrissey JP, et al. Use of medical homes by patients with comorbid physical and severe mental illness. Medical Care. 2014; 52: S85–S91. https://doi.org/10.1097/MLR.0000000000025 PMID: 24561764
- 90. Nørgaard HCB, Schou Pedersen H, Fenger-Grøn M, Vestergaard M, Nordentoft M, Laursen TM, et al. Schizophrenia and attendance in primary healthcare: a population-based matched cohort study. Scand J Prim Health Care. 2019; 37: 358–365. <u>https://doi.org/10.1080/02813432.2019.1639927</u> PMID: 31299863
- Anderson GF, Reinhardt UE, Hussey PS, Petrosyan V. It's The Prices, Stupid: Why The United States Is So Different From Other Countries. Health Affairs. 2003; 22: 89–105. https://doi.org/10.1377/hlthaff. 22.3.89 PMID: 12757275
- Parks J, Svendsen D, Singer P, Foti ME. Morbidity and mortality in people with serious mental illness. Virginia, US: National Association of State Mental Health Program Directors (NASMHPD) Medical Directors Council; 2006 [cited 2019 Nov 19]. Available from: <u>http://northernlakescmh.com/wp-content/uploads/2010/03/686.pdf</u>
- Peckham E, Brabyn S, Cook L, Tew G, Gilbody S. Smoking cessation in severe mental ill health: what works? an updated systematic review and meta-analysis. BMC Psychiatry. 2017; 17. <u>https://doi.org/ 10.1186/s12888-017-1419-7</u> PMID: 28705244
- 94. Galletly CA, Foley DL, Waterreus A, Watts GF, Castle DJ, McGrath JJ, et al. Cardiometabolic risk factors in people with psychotic disorders: the second Australian national survey of psychosis. Aust N Z J Psychiatry. 2012; 46: 753–761. https://doi.org/10.1177/0004867412453089 PMID: 22761397
- 95. Temmingh HS, Williams T, Siegfried N, Stein DJ. Risperidone versus other antipsychotics for people with severe mental illness and co-occurring substance misuse. Cochrane Database Syst Rev. 2018;2018. https://doi.org/10.1002/14651858.CD011057.pub2 PMID: 29355909
- 96. Berger M, Kraeuter AK, Romanik D, Malouf P, Amminger GP, Sarnyai Z. Cortisol awakening response in patients with psychosis: Systematic review and meta-analysis. Neurosci Biobehav Rev. 2016; 68: 157–166. https://doi.org/10.1016/j.neubiorev.2016.05.027 PMID: 27229759
- 97. Girshkin L, Matheson SL, Shepherd AM, Green MJ. Morning cortisol levels in schizophrenia and bipolar disorder: A meta-analysis. Psychoneuroendocrinology. 2014; 49: 187–206. <u>https://doi.org/10.1016/j.psyneuen.2014.07.013 PMID: 25108162</u>
- Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011; 70: 663–671. https://doi. org/10.1016/j.biopsych.2011.04.013 PMID: 21641581
- Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E. Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry. 2008; 63: 801–808. https://doi.org/ 10.1016/j.biopsych.2007.09.024 PMID: 18005941
- Suvisaari J, Mantere O. Inflammation theories in psychotic disorders: a critical review. Infect Disord Drug Targets. 2013; 13: 59–70. https://doi.org/10.2174/18715265112129990032 PMID: 23713669
- Bradshaw T, Mairs H. Obesity and Serious Mental III Health: A Critical Review of the Literature. Healthcare. 2014; 2: 166–182. https://doi.org/10.3390/healthcare2020166 PMID: 27429268
- Michelsen JW, Meyer JM. Cardiovascular effects of antipsychotics. Exp Rev Neurother. 2007; 7: 829– 839. https://doi.org/10.1586/14737175.7.7.829 PMID: 17610390

- 103. Howard LM, Barley EA, Davies E, Rigg A, Lempp H, Rose D, et al. Cancer diagnosis in people with severe mental illness: practical and ethical issues. Lancet Oncol. 2010; 11: 797–804. https://doi.org/ 10.1016/S1470-2045(10)70085-1 PMID: 20599423
- 104. Trivedi JK. Cognitive deficits in psychiatric disorders: Current status. Indian J Psychiatry. 2006; 48: 10–20. https://doi.org/10.4103/0019-5545.31613 PMID: 20703409
- 105. De Hert M, Cohen D, Bobes J, Cetkovich-Bakmas M, Leucht S, Ndetei DM, et al. Physical illness in patients with severe mental disorders. II. Barriers to care, monitoring and treatment guidelines, plus recommendations at the system and individual level. World Psychiatry. 2011; 10: 138–151. https://doi.org/10.1002/j.2051-5545.2011.tb00036.x PMID: 21633691
- **106.** Nash M. Diagnostic overshadowing: a potential barrier to physical health care for mental health service users. Ment Health Prac. 2013; 17: 22–26.
- 107. Hudson CG. Socioeconomic Status and Mental Illness: Tests of the Social Causation and Selection Hypotheses. Am J Orthopsychiatry. 2005; 75: 3–18. <u>https://doi.org/10.1037/0002-9432.75.1.3</u> PMID: 15709846
- 108. Lo CK-L, Mertz D, Loeb M. Newcastle-Ottawa Scale: comparing reviewers' to authors' assessments. BMC Med Res Methodol. 2014; 14: 45. https://doi.org/10.1186/1471-2288-14-45 PMID: 24690082
- 109. Lang S, Kleijnen J. Quality assessment tools for observational studies: lack of consensus. International Journal of Evidence-Based Healthcare. 2010; 8: 247. https://doi.org/10.1111/j.1744-1609.2010. 00195.x PMID: 21091888
- 110. Finley CR, Chan DS, Garrison S, Korownyk C, Kolber MR, Campbell S, et al. What are the most common conditions in primary care? Can Fam Physician. 2018; 64: 832–840. PMID: 30429181
- 111. Bhalla IP, Rosenheck RA. A Change in Perspective: From Dual Diagnosis to Multimorbidity. Psychiatr Serv. 2017; 69: 112–116. https://doi.org/10.1176/appi.ps.201700194 PMID: 29032702
- 112. NHS England. The Five Year Forward View for Mental Health. 2016 [cited 2019 Jun 9]. Available from: https://www.england.nhs.uk/wp-content/uploads/2016/02/Mental-Health-Taskforce-FYFV-final.pdf