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Abstract: This work aimed to unravel the retention mechanisms of 30 structurally different flavonoids
separated on three chromatographic columns: conventional Kinetex C18 (K-C18), Kinetex F5 (K-F5),
and IAM.PC.DD2. Interactions between analytes and chromatographic phases governing the retention
were analyzed and mechanistically interpreted via quantum chemical descriptors as compared to the
typical ‘black box’ approach. Statistically significant consensus genetic algorithm-partial least squares
(GA-PLS) quantitative structure retention relationship (QSRR) models were built and comprehensively
validated. Results showed that for the K-C18 column, hydrophobicity and solvent effects were
dominating, whereas electrostatic interactions were less pronounced. Similarly, for the K-F5 column,
hydrophobicity, dispersion effects, and electrostatic interactions were found to be governing the
retention of flavonoids. Conversely, besides hydrophobic forces and dispersion effects, electrostatic
interactions were found to be dominating the IAM.PC.DD2 retention mechanism. As such, the
developed approach has a great potential for gaining insights into biological activity upon analysis of
interactions between analytes and stationary phases imitating molecular targets, giving rise to an
exceptional alternative to existing methods lacking exhaustive interpretations.

Keywords: RP-HPLC; mixed-mode HPLC; QSRR; flavonoids; antioxidant activity; mechanistic study

1. Introduction

Flavonoids as secondary plant metabolites perform various functions in growth, development,
reproduction, and abiotic responses [1]. The structural diversity, biological and ecological significance,
and health-promoting and anti-cancer properties of flavonoids have been attractive for scientists from
different disciplines [2]. Special attention to flavonoids is paid by analytical chemists because of
their bio- and nutraceutical-activity, as well as benefits for dietary supplementation. Therefore, there
is increased interest in the advancement of analytical techniques for plant extract and food quality
analysis. However, the structural diversity of flavonoids can also lead to challenges in separation
and, thereby, their analysis. It was estimated that, in 2003, more than 9000 flavonoid derivatives were
reported. Based on the possible substitution patterns of ten carbon atoms comprising the flavonoid
skeleton, the number of theoretically-viable structures is monumental [2].
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Reverse-phased high-performance liquid chromatography (RP-HPLC) has proven to be a suitable
method for the analysis of flavonoids due to their aglycone structure, nature, and degree of glycosylation
and acylation [3]. Therefore, understanding the retention mechanism and interactions of flavonoids
with the chromatographic phases governing the retention is of great concern to enhance selectivity and
reduce the costs of analysis by shortening the number of required experiments for method development.

Quantitative structure retention relationships (QSRRs), introduced by the pioneering research of
Professor Roman Kaliszan, relate solute retention and their molecular structure [4]. Since the inception
of QSRRs in the early 1970s, numerous applications have been reported, such as (i) prediction of
retention time [5], (ii) estimation of the lipophilic character of analytes [6,7], (iii) determination of
biological activities of analytes [8,9], (iv) metabolite identification in non-targeted metabolomics [10],
and (v) columns characterization and selection [11–13].

In the case of flavonoids, QSRRs have been mostly employed for prediction of retention time and
estimating their lipophilic character, as outlined in a recent review [14]. Since the key drawback of
QSRR modeling of flavonoids is lack of exhaustive interpretations (i.e., ‘black box’ approach), notable
improvements can still be made. With the rapid development of computational methods and thus the
increase in the number of available molecular descriptors, risk of over-fitting and chance correlation
increases and can be avoided using appropriate regression methodology in combination with variable
selection, leading to improved accuracy and robustness of QSRR models [15,16]. However, many
molecular descriptors are difficult to physically interpret or have no physical meaning whatsoever.
Mechanistic interpretations are not only important for the prevailing QSRR applications but may also
be employed for evaluation of biological activity if the stationary phase imitates a molecular target.

Quantum-mechanical (QM) descriptors calculated using density functional theory (DFT) methods
allow for insights into retention mechanisms at the molecular level [17]. Since DFT calculations can
be time-consuming, whereas the correlations of QM-derived descriptors with retention time are not
always satisfactory [18], their application in QSRR retention mechanism modeling is challenging.

For instance, Akbar et al. [19] used QM descriptors together with 18 blocks of 2D and 3D
descriptors to build robust stepwise multiple linear regression (MLR) QSRR models for the prediction
of retention times of naturally-occurring flavonoids. The authors based their conclusions about the
RP-HPLC retention mechanism on vague interpretations, while QM descriptors failed to be included
in the QSRR models.

Conversely, Zapadka et al. [6] comprehensively assessed lipophilicity (expressed as logkw [20])
of a series of flavonoids using QSRRs on two chromatographic columns—Synergy POLAR and
Synergy-FUSION in the RP mode together with MLR, molecular properties (e.g., in silico logP), and
3D-descriptors. However, the application of selected descriptors for two QSRR models allowed for the
identification of the structural features, governing the retention without the insights into the underlying
molecular mechanisms. The largest contributing parameter was predictably found to be in silico logP,
introducing considerable redundancy to the model.

Tache et al. [21] reported yet another approach for insights into chromatographic interactions
governing the separation of flavonoids on different stationary phases, namely, chemically-bonded
silica phases with highly end-capped octadecyl, polar embedded linker octadecyl, phenyl, and
pentafluorophenyl ligands. Chromatographic behavior of these stationary phases was evaluated by
means of graphical profiles and correlation matrices, lipophilicity charts, and principal component
analysis (PCA) loading plots. Despite the given insights into interactions of analytes with the stationary
phases, such an approach was more suitable for the estimation of lipophilic character since the
interactions themselves were not thoroughly discussed.

In this work, we presented a novel approach for predicting the retention of 30 structurally-different
flavonoids on three chemically-bonded stationary phases (classical octadecyl chain, pentafluorophenyl,
and diacylated phosphatidylcholine) using genetic algorithms–partial least squares QSRR
modeling [10,16,22] based on DFT-derived QM molecular descriptors. Mechanistic interpretations
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were given for the first time based on a comprehensive analysis of underlying relationships between
the DFT-derived QM descriptors and retention inferring valuable physicochemical meaning.

2. Results and Discussion

2.1. HPLC-MS/MS Analyses

Triple quadrupole mass spectrometry allowed for the identification of retained flavonoids via
specific multiple reaction monitoring (MRM) transitions without the need for comprehensive separation.
Some representative MRM transitions and retention times for all the columns are depicted in Figure 1,
whereas the remaining chromatograms can be found in the Supporting Information (Figures S1–S3 and
retention times in Table S1). Co-eluting compounds with similar MRM transitions were identified by
additional analysis of standards. Results of the chromatographic analyses showed that different peak
shapes could be observed across three stationary phases. For instance, peaks of fisetin, scutellarein,
and myricetin, when separated on the K-C18 column (Figure 1A), exhibited significant tailing. Peaks
of the same analytes separated on the K-F5 column (Figure 1B) had a shape closer to the Gaussian
distribution. The noisiness of the scutellarein peak (Figure 1C) likely originated because of its low
retention on the immobilized artificial membrane (IAM) column, and its retained concentration was on
the border of limit of detection (LOD). Additional peaks for scutellarein (Figure 1B) and myricetin
(Figure 1A,B) were artifacts and did not correspond to the presence of another conformation.
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Figure 1. Representative multiple reaction monitoring (MRM) transitions and retention times as
represented by scutellarein, fisetin, and myricetin, analyzed using HPLC-MS/MS on the: (A) K-C18,
(B) K-F5, and (C) IAM.PC.DD2 chromatographic column.

However, fisetin and scutellarein still exhibited minor peak tailing. On the other hand, when
separated on the IAM.PC.DD2 column, these flavonoids exhibited a broad shape (Figure 1C). Despite
the discussed differences across the three columns, it is worth noting that on an experimental scale, the
elution order for most of the analytes was similar: (1) K-F5, (2) K-C18, and (3) IAM.PC.DD2 except for
hesperetin (with quite similar retention times for K-C18 and IAM.PC.DD2). Other exceptions included
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wogonin, pinocembrin, pectolinarigenin, 5-hydroxyflavone, 3,5-dihydroxyflavone, tectochrysin, and,
for them, the elution order across the stationary phases was: (1) K-F5, (2) IAM.PC.DD2, and (3) K-C18.

Upon transforming the retention time for all the three chromatographic columns to the natural
logarithm scale, their respective values followed a statistical distribution with a considerably higher
degree of normality.

Similarities/dissimilarities between K-C18, K-F5, and IAM.PC.DD2 columns were initially
evaluated via simple (Pearson) correlation analysis with a two-tailed significance test. As could
be observed from Table 1, all the retention times (tR) were significantly correlated (p < 10−5) across
the three evaluated columns. The conventional K-C18 and K-F5 columns exhibited the strongest
correlation, and thereby the highest degree of similarity. The IAM.PC.DD2 column exhibited the lowest
correlation with both K-C18 and K-F5 columns (R < 0.8, p < 10−5), and it was thereby the least similar.
The dissimilarities could be attributed to the dual nature of the phosphatidylcholine (PC) ligand of the
IAM.PC.DD2, a lipid with a long hydrophilic chain (tail) and a hydrophobic head comprising of two
charged centers.

Table 1. Univariate retention time correlation matrix for the three evaluated columns.

Retention Coefficients tR (K-C18) tR (K-F5) tR (IAM.PC.DD2)

tR (K-C18) R 1
p n.a.

tR (K-F5) R 0.93 1
p 1.42 × 10−13 n.a.

tR (IAM.PC.DD2) R 0.81 0.79 1
p 2.81 × 10−7 1.22 × 10−6 n.a.

tR—retention times for each columns: K-C18, K-F5 and IAM.PC.DD2.

2.2. Consensus Genetic Algorithm-Partial Least Squares (GA-PLS) QSRR Model for the K-C18 Column

Results of GA hyper-parameter optimization showed that the minimum root mean square error
of cross-validation RMSECV values were obtained for a population size of 20, cross-over fraction of 0.8,
and the mutation rate of 0.2. The number of latent variables (LVs) was optimized within each unit of a
GA population using leave-one-out cross-validation (LOO-CV) and was reported separately for each
chromatographic column.

2.2.1. Selected Molecular Descriptors and Predictive Ability for the Consensus K-C18 GA-PLS
QSRR Model

Final consensus QSRR model for the K-C18 column after 1000 GA-PLS runs comprised of four
variables, namely, in the order of decreasing occurrence (Figure 2A): the number of hydroxyl groups
(n(OH)), the total dipole moment (Mtot.), solvation energy (SE), and the ionization potential (IP).
The minimum bond dissociation enthalpy of the first oxidation step of the hydrogen atom transfer
(HAT) mechanism (BDEmin) was oddly not included in the final model and, as such, did not affect
retention of flavonoids on the K-C18 stationary phase. Nevertheless, it was accounted for through the
number of OH groups to which it was significantly inversely correlated (R < −0.7, p > 10−5). Other
parameters describing electrostatic interactions between the analytes and both of the chromatographic
phases were less represented.

Besides the GA parameters, the number of LVs was carefully optimized (Figure S4A). The optimal
number of LVs for the K-C18 consensus GA-PLS QSRR model was found to be three with an RMSECV
of 2.39 min (0.190 on the ln scale). Three LVs explained 98.1% of the variance in X-space (molecular
descriptors), and 92.6% of the variance in Y-space (retention time). The developed QSRR model
exhibited strong predictive ability, as evident from Figure 2B, on both the training and the validation
sets. The resulting average RMSE was 1.95 min (0.164 on the ln scale), with a slightly higher error of
the training set, which could be attributed to the lower number of compounds analyzed in this study
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(30 flavonoids). Finally, the consensus model was found to be strongly statistically significant (Table 2)
with an F value of 70.28 and a p-value < 10−3.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 22 
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Figure 2. Performance characteristics of the consensus genetic algorithm-partial least squares (GA-PLS)
quantitative structure retention relationships (QSRR) model for the C18 column. (A) Occurrence
(expressed through % of selection) of molecular descriptor selection in 1000 GA-PLS runs. (B) Predictive
ability on the training and validation sets (n = 30). (C) Distribution of the PLS coefficients (intercept =

0, due to autoscaling). (D) Applicability domain computed on the training and testing sets. Warning
limits: three multiples of the standard deviation of standardized residuals, and critical leverage (h*)
of 0.714 (n = 30). Royal blue circles depict the training set observations, whereas the pink diamonds
depict the testing set observations.

Table 2. Statistical significance of the consensus genetic algorithm-partial least squares (GA-PLS) model
for the K-C18 column.

Source SS df MS F Prob. > F

Total 19.33 20 0.966 36.27 1.27 × 10−4

Fit 18.15 6 3.024
Residual 1.18 14 0.083

SS—sum of squares, df —degrees of freedom, MS—mean square.

2.2.2. Mechanistic Interpretations of the K-C18 Consensus GA-PLS QSRR Model

According to the PLS coefficients (Figure 2C), the most influential variables were SE and n(OH),
while the influence of the molecular descriptors encoding the electrostatic interactions between
flavonoids and the two chromatographic phases was considerably less pronounced.

It was not surprising that SE was found to be the most important variable as it accounted
for both of the key driving forces that dominate the RP-HPLC retention mechanism involving the
octadecyl-bonded stationary phases: hydrophobicity (typically expressed as log P) and solvent effects.
Solvent effects expressed through the dispersive (van der Waals) interactions between the analytes
and the chromatographic phases are typically approximated using the solvent-accessible surface area
(SASA) [23]. Levy et al. [24] argued that due to the poor transferability of the surface area models,



Int. J. Mol. Sci. 2020, 21, 2053 6 of 21

a single SASA parameter was insufficient to reproduce the solute-solvent van der Waals energies.
Thereby, SE is a better parameter to account for not only hydrophobic interactions but also the effects of
dispersion within the K-C18 retention mechanism because the solvation model based on density SMD
solvation model comprises of electrostatic and cavity-dispersion-solvent-structure terms [25]. With the
increase of SE (i.e., the difficulty of solvating the analytes), retention time also notably increased due to
the positive sign and high magnitude of its corresponding PLS coefficient (Figure 2C).

The number of hydroxyl groups and total dipole moment were negatively correlated to retention
time. With the increase of n(OH) and Mtot. values, retention time decreased due to the increased
polarity of the flavonoids, whereby they were less likely to interact with the non-polar stationary phase.
Furthermore, ionization potential exhibited weaker negative correlations with retention time.

2.2.3. Chemical Domain of Applicability of the K-C18 Consensus GA-PLS QSRR Model

Figure 2 shows that all of the analytes fell well within the warning limits of applicability domain
(AD) (i.e., three multiples of the standard deviation of standardized residuals and critical leverage – h*
of 0.714). This readily confirmed the robustness and stability of the K-C18 QSRR model.

2.3. Selected Molecular Descriptors and Predictive Ability for the Consensus K-F5 GA-PLS QSRR Model

After 1000 runs of GA-PLS, a six-variable consensus QSRR model was built. The six variables
comprising the model with the highest occurrence (Figure 3A) were the solvation energy (SE), number
of hydroxyl groups (n(OH)), electron transfer enthalpy (ETE), total dipole moment (Mtot.), ionization
potential (IP), and electron affinity (EA). As could be observed from Figure 4A, SE was occurring in all
the models, whereas n(OH) and Mtot. occurred in nearly all the models, followed by IP, ETE, and EA.
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Occurrence (expressed through % of selection) of molecular descriptor selection in 1000 GA-PLS runs.
(B) Predictive ability on the training and validation sets (n = 30). (C) Distribution of the PLS coefficients
(intercept = 0, due to autoscaling). (D) Applicability domain computed on the training and testing
sets. Warning limits: three multiples of the standard deviation of standardized residuals, and critical
leverage (h*) of 1.000 (n = 30). Royal blue circles depict the training set observations, whereas the pink
diamonds depict the testing set observations.
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Figure 4. Performance characteristics of the consensus GA-PLS QSRR model for the IAM.PC.DD2
column. (A) Occurrence (expressed through % of selection) of molecular descriptor selection in 1000
GA-PLS runs. (B) Predictive ability on the training and validation sets (n = 27). (C) Distribution of the
PLS coefficients (intercept = 0, due to autoscaling). (D) Applicability domain computed on the training
and testing sets (n = 27). Warning limits: three multiples of the standard deviation of standardized
residuals, and critical leverage (h*) of 1.263. Royal blue circles depict the training set observations,
whereas the pink diamonds depict the testing set observations.

The final consensus QSRR GA-PLS model for the K-F5 was found to be statistically significant (F
value of 49.84, and p-value of 3.63 × 10−6, Table 3) and consisted of an optimal number of four latent
variables (LVs), which yielded an RMSECV of 1.49 min (0.216 on the ln scale, Figure S4B). Four LVs
explained 94.0 and 97.2% of the variance in X-space (molecular descriptors) and Y-space (retention
time), respectively. As could be observed from Figure 3B on the training and the validation sets, the
model was strongly predictive, with an average RMSE of 1.24 min (0.257 on the ln scale).

Table 3. Statistical significance of the consensus GA-PLS model for the K-F5 column.

Source SS df MS F Prob. > F

Total 19.36 20 0.97 49.84 3.6 × 10−6

Fit 18.81 8 2.35
Residual 0.55 12 0.05

SS—sum of squares, df —degrees of freedom, MS—mean square.

2.3.1. Mechanistic Interpretations of the K-F5 Consensus GA-PLS QSRR Model

Molecular descriptors with the strongest influence on retention time for the K-F5 QSRR model
were found to be the descriptors: SE, n(OH), ETE, and IP (Figure 3C). This confirmed the similarity
between K-F5 and K-C18 columns, as evident from the initial retention time correlation analysis (R =

0.929, p = 1.42 × 10−13). Hydrophobicity and dispersion effects still remained the dominant interactions
affecting retention, as SE exhibited the strongest positive correlation with retention time (Figure 3C).
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Again, the number of hydroxyl groups and total dipole moment were negatively correlated
to retention time. With the increase in n(OH) and Mtot., the polarity of the flavonoids increased,
which led to a decrease in the retention time. Since the employed mobile phase was polar, this
implied weaker interactions with the K-F5 stationary phase, which, despite comprising of polar ligands
(pentafluorophenyl), is known to exhibit both normal- and reversed-phase behavior depending on the
mobile phase composition [26].

Since the pentafluorophenyl ligand of the K-F5 column is a π-electron system, it is expected to
interact with aromatic solutes via π-π interactions.

Despite the fact that non-covalent interactions are usually weak, their contributions to retention
cannot be neglected as their collective strength can define retention behavior. Fluorine substituents
comprising the benzene ring of the K-F5 column ligands may also have an effect on the strength of
π-π interactions, but experimental evidence demonstrated that acetonitrile (ACN) might suppress
them [27]. Such a phenomenon may occur since ACN is an electron-rich organic modifier and tends to
participate in π-π interactions with a higher affinity towards flavonoids. Preferential sorption of ACN
onto the stationary phase may also occur in case when it is more electron-deficient than the solutes,
thus complicating solute-stationary phase interactions [28]. Experimental evidence demonstrates this
phenomenon, whereby using methanol as a mobile phase may enhance the selectivity of phenyl-based
stationary phases towards aromatic solutes by enhancing the strength ofπ-π interactions [29]. Moreover,
Emenike et al. [30] reported that the solvent notably affected CH-π interactions, and the substituent
effect could be washed out for particular solvents, thus emphasizing the importance of considering
solvent effects on weak non-covalent interactions. The interplay between solvent and substitution
effects have also been observed for edge-to-face aromatic interactions [31].

Furthermore, the flavonoids also exhibited electron transfer behavior with the mobile and
stationary phases, both donation and acceptance. This was encoded through the ETE, IP, and EA
descriptors. ETE and EA exhibited strong and weak positive correlations with retention time. On the
other hand, IP, the susceptibility of the flavonoids to lose electrons, exhibited a strong negative
correlation. Thereby, the analytes exhibited the stronger and more immediate influence of electrostatic
interactions (Figure 3C).

2.3.2. Chemical Domain of Applicability of the K-F5 Consensus GA-PLS QSRR Model

The Williams plot displayed in Figure 3D represents the chemical domain of applicability (AD)
for the K-F5 consensus GA-PLS QSRR model. All the analytes were found to be well within the AD
limits of three multiples of the standard deviation of standardized residuals and the critical leverage
value of 1.000, except tectochrysin with a high standardized residual of −3.735. This flavonoid had
some specific features that contributed to its high retention time value, as it could be observed from
Figure 3D.

Instead of an O-H group at the 5′ position, it had an O-CH3 group, while the sole O-H group (on
the 3′ position) formed an intramolecular hydrogen bond with techtochrysin’s C=O group.

2.4. Selected Molecular Descriptors and Predictive Ability for the Consensus IAM.PC.DD2 GA-PLS
QSRR Model

For the IAM.PC.DD2 column, 1000 runs of GA-PLS yielded a consensus QSRR model comprising
of seven molecular descriptors. In the order of decreasing occurrence: solvation energy (SE), total
dipole moment (Mtot.), number of hydroxyl groups (n(OH)), minimum bond dissociation enthalpy
(BDE), ionization potential (IP), energy gap between the highest occupied molecular orbital and
lowest unoccupied molecular orbital (HOMO-LUMO gap,∆EHOMO-LUMO), and the global hardness (η)
(Figure 4A).

The resulting consensus model was built out of four latent variables that yielded an RMSECV
of 1.96 min (0.129 on the ln scale, Figure S4C) and explained 91% of the variance in X- (molecular
descriptors) and 93% of the variance in Y-space (retention time). Although not as strong as in the
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case of K-C18 and K-F5 columns, the IAM.PC.DD2 model exhibited a reasonable predictive ability
with an average RMSE (over the training and validation sets) value of 1.60 min (0.099 on the ln scale).
Regardless, the model was found to be strongly statistically significant (Table 4) with an F value of
39.39 and a p-value of 1.05 × 10−4.

Table 4. Statistical significance of the consensus GA-PLS model for the IAM.PC.DD2. column.

Source SS df MS F Prob. > F

Total 17.46 18 0.97 39.39 1.05 × 10−4

Fit 16.75 6 2.79
Residual 0.71 12 0.07

SS—sum of squares, df —degrees of freedom, MS—mean square.

2.4.1. Mechanistic Interpretations of the IAM.PC.DD2 Consensus GA-PLS QSRR Model

Retention mechanisms of the K-C18 and K-F5 stationary phases were dominated by hydrophobic
interactions and pronounced solvent effects. Interestingly, despite a considerable positive contribution
of SE towards retention (interactions with the hydrophilic “tail” of phosphatidylcholine – PC), in the
case of the IAM.PC.DD2 stationary phase, electrostatic interactions with the hydrophobic “head” of PC
were also found to be dominating (Figure 4C). These findings highlighted the advantages of the study
over existing works on the retention of flavonoids using the IAM.PC.DD2 column. As compared to the
conventional approaches, the developed QSRR model did not exploit the logkw/logP and logkw/logD
ratios for neutral and ionizable compounds, respectively. Typically, the use of such partition coefficient
ratios yields good statistics, but the interpretation of retention mechanisms can be insufficient. For
instance, Tsopelas et al. [32] had not considered the influence of electrostatic interactions on the retention
of flavonoids on the IAM.PC.DD2 and IAM.PC.MMG columns (typically studied by introducing
positively (F+) and negatively (F−) charged molecular fractions of analytes). Instead, the authors
remarked that hydrogen bonding between the analytes and the chromatographic phases affected the
retention of the IAM.PC.DD2 column based on only moderate correlations between logkw values of
the IAM.PC.DD2 and IAM.PC.MMG columns. Despite the authors’ focus on relating the retention
behavior of flavonoids to cell permeability, retention mechanisms were poorly characterized [32].

Santoro et al. [9] analyzed the interactions of the analytes with the three IAM columns (IAM.PC.DD,
IAM.PC.DD2, and cholesteryl ester) using the conventional partition coefficient ratio approach.
Slopes of the corresponding retention curves allowed for the separation of analytes into two groups:
hydroxylated and non-hydroxylated. The reported differences in the retention behaviors between
these two groups on IAM.PC.DD and IAM.PC.DD2 columns might be attributed to the contribution of
hydrogen bonding. However, even the authors themselves remarked that the use of such an approach
could give rise to a wrong impression of similarity between retention mechanisms of IAM.PC.DD
and IAM.PC.DD2 vs. cholesteryl ester columns based solely on statistical parameters (Q2, slopes
of QSRR equations). Correlations between logPoct. and logkw showed that for the cholesteryl ester
column, predominant retention mechanism was partitioning, while, for the IAM column, there was an
additional mechanism present [9].

Besides partitioning, our approach also considered polarity of the flavonoids and electrostatic
interactions. It was shown that the number of hydroxyl groups and the total dipole moment were still
contributing descriptors, exhibiting an intermediate negative correlation to retention time. This was
not surprising since, with the decrease of the polarity of the flavonoids, they were more strongly
attracted to the non-polar hydrophilic segment of PC, and thereby retained more strongly on the
IAM.PC.DD2 stationary phase.

On the other hand, the minimum O-H bond strength expressed through BDE (significantly
negatively correlated with n(OH), R < −0.7, p > 10−5) was found to be positively correlated with
retention time. The stronger the (weakest) O-H bond was (higher the BDE), the more electron-deficient



Int. J. Mol. Sci. 2020, 21, 2053 10 of 21

was its respective O-H hydrogen. This led to a formation of stronger hydrogen bonds between O-H
hydrogen and the active charged centers of the hydrophobic “head” of PC.

The other key contributing descriptors, encoding the electrostatics of the IAM.PC.DD2 column,
were the global hardness (η) and HOMO-LUMO energy gap, which were both strongly negatively
correlated to retention time (Figure 4C), whereas the most negative excess (NBO, natural bond orbital)
charge exhibited a weaker positive correlation to retention time. Accordingly, the decrease in the
HOMO-LUMO gap, which resulted in an ease of charge transfer, as well as the decrease of the η
molecular descriptor, which accounted for the resistance of flavonoids towards charge transfer, led to
a considerable increase in retention time. On the other hand, the more negative was the atom with
the most negative charge, the stronger was that flavonoid retained on the IAM.PC.DD2 stationary
phase. Such a mechanistic description pointed to a fact that there are competing interactions for the
separation of flavonoids on the IAM.PC.DD2 stationary phase, which is in excellent agreement with its
dual nature.

2.4.2. Chemical Domain of Applicability of the IAM.PC.DD2 Consensus GA-PLS QSRR Model

Finally, the chemical domain of applicability (AD) of the IAM.PC.DD2 consensus QSRR GA-PLS
model was also defined. All the analytes were found to lay within the warning limits of the AD
(three multiples of the standard deviation of standardized residuals, and the critical leverage of 1.263
(Figure 4D). Although well within the AD, one flavonoid, catechin, was found to be considerably
structurally different from the others, exhibiting nearly the lowest SE value of −27.785 kcal/mol.
Only epicatechin and epigallocatechin had similar values: −27.271 kcal/mol and −27.626 kcal/mol,
respectively. Since both epicatechin and epigallocatechin were included in the training set, the low
standardized residual for catechin was not surprising, despite its somewhat large leverage. All three
belonged to the family of catechins, exhibiting notable deviations from planarity and stereoisomerism,
whereas their C-ring did not contain both C=C and C=O double bond. The presence of a C=C bond
within the C-ring of the flavonoids (the readers are referred to Figure S5 for the 3D molecular structures)
made its structure nearly planar together with the benzene ring, stabilizing it in the process. For the
purposes of this study, we considered the more stable equatorial catechin isomers.

3. Materials and Methods

3.1. Reagents and Chemicals

Standards of flavonoids (genistein, scutellarein, epicatechin, kaempferol, eriodictyol, apigenin,
liquiritigenin, fisetin, taxifolin, hesperetin, 3′,4′-dihydroxyflavonol, diosmetin, morin, epigallocatechin,
dihydroxymyricetin, myricetin, wogonin, 7,8-dihydroxyflavone, chrysin, pinocembrin, catechin,
baicalein, 3,5-dihydroxyflavone, galangin, genkwanin, 5-hydroxyflavone, tectochrysin) were purchased
from Sigma Aldrich (St. Louis, MO, USA) with purities > 90%. Pectolinarigenin (min. 75% purity),
3,5,7,8,3′,4′-hexahydroxyflavone (min. 98% purity), 5,3′,4′-trihydroxyflavone (min. 98% purity)
were purchased from Carbosynth (Oxford, United Kingdom). Stock solutions were prepared by
dissolving them in ethanol (90%), except for scutellarein, genkwanin, 5,3′,4′ - hydroxyflavone that
were dissolved in 1:1 mixture of acetonitrile-methanol (w/w) with subsequent sonication because of
their very low solubility (determined in-house due to lack of literature data). The final concentration
of standard solutions was 1 mg/mL. Solvents, such as methanol, acetonitrile, were of LC-MS grade
purity. Fresh mixtures of analytes consisted of 30 flavonoids and were prepared by transferring 50 µL
of a standard solution of each analyte into 2-mL vials, followed by thorough mixing and were applied
for each column.

Coverage of the different flavonoid families analyzed in this work focused mostly on flavones
and flavonols, and flavonol species. Out of a total of 30 flavonoids, 40.0% belonged to flavones, 26.3%
to flavonols, 13.33% to flavanones, 10.0% to flavans, 6.7% to flavanonols, and 3.3% to isoflavones.
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3.2. HPLC-MS/MS Conditions

Retention data of selected flavonoids was obtained in 3 replications and using 3 different
chromatographic columns: Kinetex C18 (K-C18), Kinetex F5 (K-F5), immobilized artificial membrane
column (IAM.PC.DD2) with 0.1% trifluoroacetic acid (TFA) in water as mobile phase A and acetonitrile
as mobile phase B. Gradient program was as follows: 0.01 min − 25%, 30 min − 80%, 35 min −
80%, 40 min − 25% of mobile phase B at 30 ◦C for all columns. Measurements were carried out
using LC-MS 8050 triple quadrupole mass spectrometer (Shimadzu, Kyoto, Japan) equipped with a
binary solvent delivery system (LC-30AD), a controller (CBM 20A), an autosampler (SIL-30A), column
thermostat (CTO-20AC). Chromatograms were processed using LabSolutions 5.8 software (Shimadzu,
Kyoto, Japan).

Prior to the separation of a prepared mixture, MRM transitions specific for each analyte were
optimized without HPLC separation. Injection volume accounted for 1µL with a flow rate of 0.5 mL/min
in positive ionization mode and collision energy 30 keV.

The settings of ESI included: nebulizing gas flow 3 L/min, heating gas flow 10 L/min, the
temperature of the drying gas 400 ◦C, desolvation line (DL) temperature 250 ◦C, and interface
temperature 300 ◦C.

3.3. Chromatographic Columns

Chromatographic columns studied in this work included Kinetex C18 (K-C18, Phenomenex,
Torrance, CA, USA), Kinetex F5 (K-F5, Phenomenex, Torrance, CA, USA), and IAM.PC.DD2 (Regis
Technologies, Morton Grove, IL, USA). Technical parameters of the selected columns are summarized
in Table 5. Surface coverage (α) was determined according to the Berendsen-de-Galan equation [33].
According to the structures of the ligands chemically-bonded to the stationary phases (Figure 5) and
the information from the manufacturer, the K-C18 column is expected to demonstrate hydrophobic
interactions due to octadecyl carbon chain, while K-F5 may exhibit diverse interactions. Alongside the
classical reversed-phase retention mechanism dominated by hydrophobic interactions, π-π electrons of
the benzene ring could also affect retention. IAM.PC.DD2 columns are expected to exhibit a dual nature
since the immobilized PC ligands contain both hydrophobic regions and charged centers, resulting in
both hydrophobic and electrostatic interactions.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 12 of 22 
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Table 5. Physicochemical parameters of the evaluated chromatographic columns.

# Column
Name

Length
/ mm

Internal
Diameter
(ID) / mm

Particle
Size
/µm

Carbon
Load /

%

Pore
Size / Å

Surface
Area /
m−2 g

Ligand Type *
Surface coverage

density (αRP) /
µmol/m2 **

1 K-C18 150 4.6 5 12 100 200 C18 3.23
2 K-F5 100 2.1 2.6 9 100 200 C-F5 5.11
3 IAM.PC.DD2 150 4.6 10 7 300 110 diacylated PC 1.53

* C18—octadecyl, C-F5—pentafluorophenyl, PC—phosphatidylcholine. ** αRP was calculated according to the
Berendsen-de-Galan equation [23].

3.4. Mechanistic QSRR Model Development

Correlation analysis for retention times across all the evaluated chromatographic columns was
carried out using the Pearson correlation coefficient (R). The statistical significance of the R values was
tested using the two-tailed test. Retention times of all the chromatographic columns were transformed
to the natural logarithm scale to change its statistical distribution to normal. Subsequently, molecular
structures of 30 flavonoids were prepared according to the protocol of Žuvela et al. [34,35]. Briefly,
the structures were first drawn in ChemDraw Prime 18.2 (PerkinElmer Inc., Waltham, MA, USA) and
subjected to extensive conformational analysis using the molecular mechanics’ method with the Merck
molecular force field MMFF [36,37] force field. The conformational analysis was paramount due to
the possibility of intramolecular hydrogen bond formation within the B-ring of some of the analyzed
flavonoids [38].

It comprised of three segments: (1) torsion rotation, (2) two correlated rotations to keep the rings
closed, and (3) a six-member flip. After each step, the resulting structures were subjected to energy
minimization. All the produced structural conformations were optimized using the semi-empirical
AM1 [39] method. Twenty lowest energy structures were further refined at the HF/3-21G [40] level
of theory. Five final HF/3-21G conformers were optimized by employing density functional theory
(DFT) [41] with theωb97xD [42] functional and the 6-311++G(d,p) [40] basis set. The conformational
analysis was performed in vacuo.

Calculation of mechanism-specific molecular descriptors (see section Molecular descriptors for
mechanistic QSRR modeling) required building and optimizing molecular structures of not only neutral
but also anion, mono-radical, radical anion, and diradical species. The conformational analysis was
performed on neutral, anion, and mono-radical species of all the analytes. Due to high computational
costs, the radical anion and diradical species of the analytes were directly optimized at the highest
level of DFT theory.

Upon completing the in vacuo conformational analysis and optimization, all the calculations were
further carried out in implicit water solvent using the SMD solvation model [25] due to pronounced
solvent effects of the HPLC retention mechanism. Mechanistic QSRR models were built out of
13 molecular descriptors, which represented parameters of two well-established mechanisms of
antioxidant activity (hydrogen atom transfer - HAT, and sequential proton-loss electron-transfer
- SPLET) [43], electrostatics (dipole-dipole, dipole-induced dipole, polar interactions, hydrogen
bonding) [11,23,44,45], as well as hydrophobic and solvent effects (dispersive – London-type
interactions) [23].

Prior to modeling, the Kennard and Stone algorithm [46] was employed for stratified dataset
sampling into 23 training (70%) and 10 external validation (30%) analytes. Genetic algorithm-partial
least squares (GA-PLS), recently shown to be effective in QSRR [10,16,22], was used for simultaneous
modeling and selection of the most informative molecular descriptors. However, instead of a
mixed-integer formulation (with a fixed number of selected variables), the binary implementation
of GA [47,48] was employed instead. Parameters of GA-PLS (i.e., cross-over fraction, mutation rate,
and the number of latent variables) were optimized using leave-one-out-cross validation (LOO-CV).
Comprehensive validation of the models was performed using LOO-CV, external validation, while the
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models’ chemical domain of applicability was also defined. Statistical significance of the resulting
models was tested using a CV-analysis of variance (CV-ANOVA) [49].

Conformational analysis and all the pertinent QM and chemometric calculations were performed
using Spartan 14 (Wavefunction, Inc., Irvine, CA, USA), Gaussian 16 (Wallingford, CT, USA, Ref. S1),
and MATLAB 2019a (MathWorks, Natick, Massachusetts, USA), respectively.

3.5. Theoretical Methods

3.5.1. Partial Least Squares (PLS)

QSRR models developed in this work were built using (PLS). PLS is an exploratory analysis and
regression method introduced by Wold [50,51]. The method is based on compressing the original
variables (predictors, X, and dependent variables, Y) into a few latent variables (LVs), which represent
their linear combinations. The LVs are extracted in the direction of not only maximum variance in X
and Y but also the maximum covariance between X and Y (i.e., correlation). The original matrices X
and Y are linearly decomposed into:

X = TPT + E (1)

Y = UQT + F (2)

where T and U represent matrices of scores (with the extracted LVs), P and Q represent matrices of
loadings, whereas E and F represent the residual matrices. The LVs were originally computed using
the conventional NIPALS algorithm [50]. However, in this work, the SIMPLS algorithm was used due
to its simplicity and effectiveness [52]. In essence, both of these algorithms correlate X and Y through
two sets of weights—W and C, and the following relationships:

T = XW (3)

U = YC (4)

subject to wTw = 1, tTt = 1 for a maximum tTu.
Generally, the number of LVs is a parameter that requires careful optimization as not to over-fit

the relationships between X and Y. As such, the number of LVs was optimized using LOO-CV. From
the graphical depiction of root mean square error of CV (RMSECV) with respect to the number of LVs,
the optimal number was determined from the knee point. RMSECV was defined as:

RMSECV =

√∑n
i=1(y(LOO−CV) − y(exp .))2

n
(5)

where y(LOO-CV) represents the predicted retention times obtained through LOO-CV, y(exp.)
represents experimentally-obtained retention time values, whereas n is the number of training analytes.

3.5.2. Genetic Algorithms (GAs)

GAs are a family of global optimization algorithms that mimic the theory of evolution.
First introduced by Holland [53,54], GAs have gained traction for solving various optimization
problems; in this case, the non-polynomial hard (NP-hard) problem of variable selection. In a typical
formulation of GA, an initial population of units is randomly generated and evolved through the
generations in the direction of optimal fitness. A specified number of elite units survive to each next
generation, while the other units are a result of cross-over (mating) of the remaining parent units. As in
natural evolution, in GA, there is a possibility of mutation in each generation. For variable selection,
the binary implementation of GA was used [47,48]. Binary encoding was employed to represent all
the 13 molecular descriptors, with values of one or zero being assigned to selected or not selected
variables. The objective function used for variable selection was RMSECV, defined with Equation (1)
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and calculated from the PLS model built out of the selected molecular descriptor subset. Parameters of
GA-PLS were carefully optimized, as described in the following section.

3.5.3. Optimization of GA-PLS Parameters

According to a previously published protocol [16], LOO-CV was used to optimize all the parameters
of the GA-PLS algorithm employing a grid search. Namely, for GA, the population size was optimized
in [10:10:20], the cross-over fraction in [0.1:0.1:0.8], the mutation rate in the same interval ([0.1:0.1:0.8]),
whereas, for creation of the initial population, a uniform function was used. Furthermore, a uniform
mutation, a single-point cross-over, and the tournament selection function were employed. The number
of elite units was limited to 2, the number of maximum generations to 100, whereas the stall limit (the
stopping criterion), i.e., the number of iterations without a change in RMSECV, was set to 10. All the
GA parameters were optimized for the K-C18 column and applied for GA-PLS QSRR models of other
chromatographic columns to preserve consistency. As for PLS, the number of latent variables was
optimized using LOO-CV in (2:1:rank(X)) each GA unit.

3.5.4. Consensus Modeling

For each chromatographic column, each GA-PLS run was repeated 1000 times, yielding 3000
QSRR models (1000 per column). Occurrence (% of selection) of the variables and its respective sample
mean were calculated. Final GA-PLS QSRR models, termed consensus models, were built out of the
variables with an occurrence higher than their respective sample mean.

3.5.5. Molecular Descriptors for Mechanistic QSRR Modeling

Mechanistic QSRR modeling was carried out, employing molecular descriptors, describing:
(i) hydrophobicity and the solvent effect, (ii) antioxidant activity, and (iii) electrostatic effects. Molecular
descriptors used for GA-PLS QSRR models with brief descriptions are defined in Table 6 (values of
QM parameters are given in Table S1).

Table 6. Molecular descriptors used for GA-PLS quantitative structure retention relationships
(QSRR) models.

Name Description

Solvation energy (SE) defined in Equation (6)

Number of hydroxyl groups (n(OH)) number of OH-groups in flavonoid structure

Minimum bond dissociation enthalpy (BDEmin) parameter of the first oxidation step of SPLET mechanism, defined in Equation (7)

Proton affinity (PA)
PA is the negative quantity of proton-gain enthalpy, which is a standard enthalpy

of the reaction: A− (g) +H+
(g) → HA(g)

Electron transfer enthalpy (ETE) parameter of the first oxidation step of SPLET mechanism, defined in Equation (8)

Excess charge of the most negatively charged atom
(δmin)

shows the ability of analytes to participate in polar interactions with the phases of
the charge transfer and hydrogen bonding

Total dipole moment Mtot.
accounts for the dipole-dipole and dipole-induced dipole attractive interactions

of the analyte with mobile and stationary phases

HOMO-LUMO energy gap (∆EHOMO-LUMO)

the difference between the HOMO and LUMO energies
GAP = ε LUMO − ε HOMO, where ε LUMO and ε HOMO are the energies of the

lowest unoccupied molecular orbital and the highest occupied molecular orbital,
respectively

Ionization potential (IP)
ionization potential (or ionization energy) is defined as the energy needed to

extract one electron from a chemical system, i.e.,
IP = E(Nel) − E (Nel − 1), where Nel is the number of electrons of the system

Electronic chemical potential (µ) negative of electronegativity

Electrophilicity (ω) electrophilicity can be defined as
ω = (EHOMO+ELUMO)2/2(ELUMO − EHOMO)

Global hardness (η) can be defined as resistance to charge transfer, Equation (10)

Electron affinity (EA)
EA is the energy released when an electron attaches to a gas-phase atom:

E(g) + e−(g) → E−(g)
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3.5.6. Hydrophobicity and the Solvent Effect

Hydrophobicity, as the predominant effect of the reversed phase-HPLC (RP-HPLC) mechanism,
was accounted for through the QM parameter solvation energy (SE). The mixture of the less polar
analytes (such as flavonoids) in the polar mobile phase (such as acetonitrile-water) was accompanied
by an increase in their SE. SE was defined as the difference between enthalpy-corrected energy values
of the analytes in implicit water solvent (E(analyte)in water solvent) and in vacuo (E(analyte)in vacuo):

SE = E(analyte)in water solvent − E(analyte)in vacuo (6)

3.5.7. Antioxidant Activity

As previously mentioned, analytes separated on the three evaluated columns belong to the
family of flavonoids, which are known for their antioxidant activity [55]. Besides hydrophobicity,
parameters of two established antioxidant activity mechanisms (hydrogen atom transfer—HAT [43]
and sequential proton-loss electron transfer—SPLET [56–58]) had, thereby, also been used for QSRR
modeling. Both the considered mechanisms are schematically depicted in Figure 6. Parameters of
the HAT mechanism were the number of hydroxyl groups (n(OH)) and minimum bond dissociation
enthalpy (BDEmin).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 16 of 22 

 

 

Figure 6. Schematic representation of the hydrogen atom transfer (HAT) and sequential proton-loss 

electron transfer (SPLET) mechanisms (adapted from Figure S1 in Ref. [35]). 

As for the SPLET mechanism, only the parameters of the first oxidation step: electron transfer 

enthalpy (ETE) and proton affinity (PA) were considered. Parameters of the second oxidation step 

were omitted from QSRR modeling because the diradical and diradical anion species are not 

energetically favorable and are unstable in solution [35]. BDEmin, ETE, and PA were defined with the 

following equations: 

BDE = H(Ar(OH)n(O˙)) + H(H˙) - H(Ar(OH)(n + 1)(O˙)) (7) 

ETE = H(Ar(OH)n(O˙)) + H(e-) - H([Ar(OH)n(O˙)O:]-) (8) 

PA = H[Ar(OH)n(O˙)] + H(H+) - H([Ar(OH)n + 1) (9) 

where E(H˙), H(e-), and H(H+) represent enthalpies of the hydrogen radical species H˙, electron 

e-, and proton H+, respectively. The values of these parameters were obtained from Refs. [35,60]. For 

in vacuo calculations, H(H+) and H(e-) were 1.481 kcal mol−1 and 0.752 kcal mol−1, respectively. In 

implicit (SMD) water solvent, H(H+) of −250.574 kcal mol−1 and H(e-) of −17.816 kcal mol−1 were used. 

3.5.8. Electrostatic Effects 

One of the earliest and quite robust QM-based QSRR models introduced by Kaliszan’s group 

[11,45,46] included two parameters to account for electrostatic interactions between the analytes and 

the mobile and stationary phases. The two parameters were the total dipole moment (Μtot.) and the 

excess charge of the most negatively charged atom (δmin). The dipole moment of the analytes 

accounted for the dipole-dipole and dipole-induced dipole interactions with both the mobile and 

stationary phases. Stronger polar interactions, including ion-dipole interaction between the analytes 

and both chromatographic phases, were reflected through the δmin parameter, which was calculated 

using the natural bond orbital (NBO) analysis [61,62]. 

Furthermore, in this work, the electrostatic contributions to the retention mechanism of 

flavonoids were expanded with the following important QM parameters: HOMO-LUMO energy 

gap (ΔEHOMO-LUMO), ionization potential (IP), electron affinity (EA), the global hardness (η), electronic 

chemical potential (µ), and electrophilicity (ω) [63,64]. 

Energies of the frontier orbitals (E(HOMO), E(LUMO)) of the analytes and their energy 

difference ΔEHOMO-LUMO reflect their ability to donate or accept electrons. HOMO and LUMO 

energetics can give an indication of such reactivity of the analytes through approximations of IP and 

EA using the Koopmans’ theorem [65]. IP is approximated as negative HOMO energy, whereas EA 

is approximated as negative LUMO energy. Employing the same approximation, η, associated with 

the stability of the analytes, can be expressed as: 

η =
IP − EA

2
=
E(LUMO) − E(HOMO)

2
 (10) 

Figure 6. Schematic representation of the hydrogen atom transfer (HAT) and sequential proton-loss
electron transfer (SPLET) mechanisms (adapted from Figure S1 in Ref. [34]).

As for the SPLET mechanism, only the parameters of the first oxidation step: electron transfer
enthalpy (ETE) and proton affinity (PA) were considered. Parameters of the second oxidation step were
omitted from QSRR modeling because the diradical and diradical anion species are not energetically
favorable and are unstable in solution [34]. BDEmin, ETE, and PA were defined with the following
equations:

BDE = H(Ar(OH)n(O·)) + H(H·) − H(Ar(OH)(n + 1)(O·)) (7)

ETE = H(Ar(OH)n(O·)) + H(e−) − H([Ar(OH)n(O·)O:]−) (8)

PA = H[Ar(OH)n(O·)] + H(H+) − H([Ar(OH)]n + 1) (9)

where E(H·), H(e-), and H(H+) represent enthalpies of the hydrogen radical species H·, electron e-, and
proton H+, respectively. The values of these parameters were obtained from Refs. [34,59]. For in vacuo
calculations, H(H+) and H(e-) were 1.481 kcal mol−1 and 0.752 kcal mol−1, respectively. In implicit
(SMD) water solvent, H(H+) of −250.574 kcal mol−1 and H(e-) of −17.816 kcal mol−1 were used.

3.5.8. Electrostatic Effects

One of the earliest and quite robust QM-based QSRR models introduced by Kaliszan’s
group [11,44,45] included two parameters to account for electrostatic interactions between the analytes
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and the mobile and stationary phases. The two parameters were the total dipole moment (Mtot.) and
the excess charge of the most negatively charged atom (δmin). The dipole moment of the analytes
accounted for the dipole-dipole and dipole-induced dipole interactions with both the mobile and
stationary phases. Stronger polar interactions, including ion-dipole interaction between the analytes
and both chromatographic phases, were reflected through the δmin parameter, which was calculated
using the natural bond orbital (NBO) analysis [60,61].

Furthermore, in this work, the electrostatic contributions to the retention mechanism of
flavonoids were expanded with the following important QM parameters: HOMO-LUMO energy gap
(∆EHOMO-LUMO), ionization potential (IP), electron affinity (EA), the global hardness (η), electronic
chemical potential (µ), and electrophilicity (ω) [62,63].

Energies of the frontier orbitals (E(HOMO), E(LUMO)) of the analytes and their energy difference
∆EHOMO-LUMO reflect their ability to donate or accept electrons. HOMO and LUMO energetics can
give an indication of such reactivity of the analytes through approximations of IP and EA using the
Koopmans’ theorem [64]. IP is approximated as negative HOMO energy, whereas EA is approximated
as negative LUMO energy. Employing the same approximation, η, associated with the stability of the
analytes, can be expressed as:

η =
IP− EA

2
=

E(LUMO) − E(HOMO)

2
(10)

while µ and ω can be expressed as:

u =
IP + EA

2
=

E(LUMO) − E(HOMO)

2
(11)

ω =
1
2

u2

η
(12)

Moreover, the negative of µ is considered to be absolute electronegativity. Smaller values of µ
(larger values of electronegativity) are characteristic of electron acceptors, whereas electron donors
exhibit large µ values (smaller values of electronegativity) [63]. Therefore, these parameters may
account for the hydrogen bond interactions between the analytes and the chromatographic phases.

When defining parameters describing electrostatics using the Koopman’s theorem and the DFT
HOMO-LUMO gap, one must take care of the so-called “band gap problem” [65,66], whereby the
HOMO-LUMO gap is strongly under-estimated at the DFT level. Instead, physically it is more of an
approximation of the excitation energy rather than I-A. However, in QSRR modeling, interest lies
with the relative rather than absolute values of molecular descriptors, and correlations occur due to a
cancellation of errors.

3.5.9. Mechanistic QSRR Model Validation

For comprehensive validation of the mechanistic QSRR models, both leave-one-out cross-validation
and external validation were employed.

3.5.10. Leave-One-Out Cross-Validation (LOO-CV)

LOO-CV is an iterative internal validation technique in which one observation (in this case analyte)
is left out, while the regression model is trained on the remaining ones. The process is repeated for n
times until all the observations are exhausted.

In each iteration, a performance metric, such as RMSECV (defined with Equation (5)), is computed
and averaged overall for a final LOO-CV performance.
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3.5.11. External Validation

As previously mentioned, the Kennard and Stone algorithm [46] was used to uniformly separate
the dataset into training and (external) validation set. In such a manner, all the GA-PLS QSRR models
were externally validated with new analytes. Besides LOO-CV performance, the final performance of
both the training and validation sets was reported as sample mean RMSE (averaged over the training
and testing sets):

RMSE =

√∑n
i=1(y(pred.) − y(exp .)2

n
(13)

where y(pred.) represents the predicted retention times.

3.5.12. Chemical Domain of Applicability

The chemical domain of applicability (AD) is a region in the X- and Y-spaces within the range
of the predictive ability of the developed QSRR model. Typically, AD is depicted using a Williams
plot, which represents a graphical depiction of the dependence between leverages (h) of analytes
and standardized residuals. Leverages measure the distance of each analyte from the centroid of
X-space and, as such, the influence of analytes on the QSRR model [67,68]. According to Atkinson [69],
leverages are defined as the diagonal of the leverage matrix (H):

h = diag(H) = diag
(
XT

2 (X
T
1 X1 )

−1X2
)

(14)

where X1 is the training set matrix of descriptors, whereas X2 can be either the training or validation
set matrix of descriptors. AD is generally bounded by warning limits: (i) critical leverage value (h*)
and (ii) standard deviation of standardized residuals. Standardized residuals are typically bounded
with two or three multiples of their respective standard deviation, whereas h* is defined as [16]:

h∗ =
3(n + 1)

m
(15)

where n represents the number of molecular descriptors, and m represents the number of observations
of the training set.

4. Conclusions

In conclusion, a new approach based on GA-PLS QSRR modeling with the use of meaningful
quantum-chemical descriptors was developed to shed light on the retention mechanisms for three
chromatographic columns at the molecular level. The obtained GA-PLS models were physically
interpretable due to the careful selection of molecular descriptors. Some distinct interactions affecting
the retention of flavonoids were observed. For the IAM.PC.DD2 column, electrostatic interactions
were found to be competing with solvent effects and hydrophobic forces. The π-π interactions for
pentafluorophenyl column were suggested not to have an impact considering that the mobile phase
was not fully comprised of acetonitrile.

The developed approach had the potential to serve as a starting point for a thorough analysis of
interactions governing retention in HPLC and, thus, enhancing the selectivity for routine applications.
Exemplified by our work, further research efforts should be directed towards the application of more
realistic molecular descriptors to shed light on the retention mechanisms accounting for both strong
and weak non-covalent interactions between the analytes and the chromatographic phases. Description
of such mechanisms may provide valuable new insights for the assessment of biological activities of
solutes using retention data obtained from stationary phases mimicking potential molecular targets,
considering the importance of non-covalent interactions in biomolecular recognition.
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MRM transitions and retention times for flavonoids analyzed on three chromatographic columns, Figure S4:
optimization of latent variables for the final consensus GA-PLS models for: (A) Kinetex C-18 column, (B) Kinetex
F5 column, (C) IAM.PC.DD2 column, Figure S5: graphical depiction of the optimized 3D molecular structures of
all the flavonoids.
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21. Tache, F.; Naşcu-Briciu, R.D.; Sârbu, C.; Micǎle, F.; Medvedovici, A. Estimation of the lipophilic character of
flavonoids from the retention behavior in reversed phase liquid chromatography on different stationary
phases: A comparative study. J. Pharm. Biomed. Anal. 2012, 57, 82–93. [CrossRef] [PubMed]

22. Taraji, M.; Haddad, P.R.; Amos, R.I.J.; Talebi, M.; Szucs, R.; Dolan, J.W.; Pohl, C.A. Rapid Method Development
in Hydrophilic Interaction Liquid Chromatography for Pharmaceutical Analysis Using a Combination of
Quantitative Structure–Retention Relationships and Design of Experiments. Anal. Chem. 2017, 89, 1870–1878.
[CrossRef] [PubMed]

23. Baczek, T.; Kaliszan, R. Predictive approaches to gradient retention based on analyte structural descriptors
from calculation chemistry. J. Chromatogr. A 2003, 987, 29–37. [CrossRef]

24. Levy, R.M.; Zhang, L.Y.; Gallicchio, E.; Felts, A.K. On the Nonpolar Hydration Free Energy of Proteins:
Surface Area and Continuum Solvent Models for the Solute−Solvent Interaction Energy. J. Am. Chem. Soc.
2003, 125, 9523–9530. [CrossRef]

25. Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and
on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions.
J. Phys. Chem. B 2009, 113, 6378–6396. [CrossRef]

26. Bell, D.S.; Jones, A.D. Solute attributes and molecular interactions contributing to “U-shape” retention on a
fluorinated high-performance liquid chromatography stationary phase. J. Chromatogr. A 2005, 1073, 99–109.
[CrossRef]

27. Croes, K.; Steffens, A.; Marchand, D.H.; Snyder, L.R. Relevance of π-π and dipole-dipole interactions for
retention on cyano and phenyl columns in reversed-phase liquid chromatography. J. Chromatogr. A 2005,
1098, 123–130. [CrossRef]

28. Janas, P.; Bocian, S.; Jandera, P.; Kowalkowski, T.; Buszewski, B. Separation of flavonoids on different
phenyl-bonded stationary phases-the influence of polar groups in stationary phase structure. J. Chromatogr.
A 2016, 1429, 198–206. [CrossRef]

29. Yang, M.; Fazio, S.; Munch, D.; Drumm, P. Impact of methanol and acetonitrile on separations based on π-π
interactions with a reversed-phase phenyl column. J. Chromatogr. A 2005, 1097, 124–129. [CrossRef]

30. Emenike, B.U.; Spinelle, R.A.; Rosario, A.; Shinn, D.W.; Yoo, B. Solvent Modulation of Aromatic Substituent
Effects in Molecular Balances Controlled by CH-π Interactions. J. Phys. Chem. A 2018, 122, 909–915.
[CrossRef]

31. Cockroft, S.L.; Hunter, C.A. Desolvation and substituent effects in edge-to-face aromatic interactions.
Chem. Commun. 2009, 3961–3963. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.chroma.2018.11.053
http://www.ncbi.nlm.nih.gov/pubmed/30477718
http://dx.doi.org/10.1016/j.trac.2018.10.012
http://dx.doi.org/10.1016/j.chroma.2015.10.099
http://dx.doi.org/10.1021/acs.analchem.5b02349
http://dx.doi.org/10.1016/0021-9673(93)80812-M
http://dx.doi.org/10.1021/ac00035a722
http://dx.doi.org/10.3390/ijms131115387
http://dx.doi.org/10.1021/ac049807q
http://dx.doi.org/10.1016/j.jpba.2011.08.044
http://www.ncbi.nlm.nih.gov/pubmed/21945453
http://dx.doi.org/10.1021/acs.analchem.6b04282
http://www.ncbi.nlm.nih.gov/pubmed/28208251
http://dx.doi.org/10.1016/S0021-9673(02)01701-6
http://dx.doi.org/10.1021/ja029833a
http://dx.doi.org/10.1021/jp810292n
http://dx.doi.org/10.1016/j.chroma.2004.08.163
http://dx.doi.org/10.1016/j.chroma.2005.08.090
http://dx.doi.org/10.1016/j.chroma.2015.12.024
http://dx.doi.org/10.1016/j.chroma.2005.08.028
http://dx.doi.org/10.1021/acs.jpca.7b09910
http://dx.doi.org/10.1039/b902351h
http://www.ncbi.nlm.nih.gov/pubmed/19662266


Int. J. Mol. Sci. 2020, 21, 2053 20 of 21

32. Tsopelas, F.; Tsagkrasouli, M.; Poursanidis, P.; Pitsaki, M.; Vasios, G.; Danias, P.; Panderi, I.;
Tsantili-Kakoulidou, A.; Giaginis, C. Retention behavior of flavonoids on immobilized artificial membrane
chromatography and correlation with cell-based permeability. Biomed. Chromatogr. 2018, 32, 1–11. [CrossRef]
[PubMed]

33. Berendsen, G.E.; Galan, L. de Preparation and Chromatographic Properties of Some Chemically Bonded
Phases For Reversed-Phase Liquid Chromatography. J. Liq. Chromatogr. 1978, 1, 561–586. [CrossRef]

34. Žuvela, P.; David, J.; Yang, X.; Huang, D.; Wong, M.W. Non-Linear Quantitative Structure–Activity
Relationships Modelling, Mechanistic Study and In-Silico Design of Flavonoids as Potent Antioxidants. Int.
J. Mol. Sci. 2019, 20, 2328. [CrossRef]

35. Zuvela, P.; David, J.; Wong, M.W. Interpretation of ANN-Based QSAR models for prediction of antioxidant
activity of flavonoids. J. Comput. Chem. 2018.

36. Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of
MMFF94. J. Comput. Chem. 1996, 17, 490–519. [CrossRef]

37. Halgren, T.A. MMFF VI. MMFF94s option for energy minimization studies. J. Comput. Chem. 1999, 20,
720–729. [CrossRef]

38. Musialik, M.; Kuzmicz, R.; Pawłowski, T.S.; Litwinienko, G. Acidity of Hydroxyl Groups: An Overlooked
Influence on Antiradical Properties of Flavonoids. J. Org. Chem. 2009, 74, 2699–2709. [CrossRef]

39. Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. Development and use of quantum mechanical
molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem.
Soc. 1985, 107, 3902–3909. [CrossRef]

40. Rassolov, V.A.; Ratner, M.A.; Pople, J.A.; Redfern, P.C.; Curtiss, L.A. 6-31G*basis set for third-row atoms.
J. Comput. Chem. 2001, 22, 976–984. [CrossRef]

41. Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965,
140, 1133–1138. [CrossRef]

42. Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom
dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615. [CrossRef] [PubMed]

43. Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005,
53, 1841–1856. [CrossRef] [PubMed]

44. Al-Haj, M.A.; Kaliszan, R.; Nasal, A. Test Analytes for Studies of the Molecular Mechanism of
Chromatographic Separations by Quantitative Structure−Retention Relationships. Anal. Chem. 1999,
71, 2976–2985. [CrossRef] [PubMed]

45. Kaliszan, R.; Marszałł, M.P.; Jan Markuszewski, M.; Bączek, T.; Pernak, J. Suppression of deleterious effects
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