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clinical applications of brain age prediction. Studies on brain age typically involve the creation of a regression
machine learning model of age-related neuroanatomical changes in healthy people. This model is then

applied to new subjects to predict their brain age. The difference between predicted brain age and chronolog-

Keywords:

brain age
brain-age gap
machine learning
ageing

ical age in a given individual is known as ‘brain-age gap’. This value is thought to reflect neuroanatomical
abnormalities and may be a marker of overall brain health. It may aid early detection of brain-based disorders
and support differential diagnosis, prognosis, and treatment choices. These applications could lead to more
timely and more targeted interventions in age-related disorders.
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1. Introduction

Ageing and its associated health conditions present a major chal-
lenge to individuals and societies worldwide. To address this chal-
lenge, increasing efforts are being made towards the early detection
of age-related diseases with the ultimate aim of preventing or delay-
ing their progression. The effects of ageing on the brain can be mea-
sured through an approach known as brain age prediction, which
builds on the well-established relationship between age and neuro-
anatomy across the lifespan [1]. The past decade has seen an expo-
nential increase in studies on brain age (Figure 1). The majority of
these involve the application of machine learning methods to struc-
tural neuroimaging data. Machine learning models learn patterns
from data and then use these patterns to make predictions about
new data. A key advantage of these methods over traditional statis-
tics is that it is possible to make inferences at individual level rather
than at group level, thereby increasing the potential for clinical trans-
lation [2]. Brain age prediction studies commonly build a regression
machine learning model using structural magnetic resonance imag-
ing (MRI) data from healthy controls. This normative model is then
applied to new subjects to assess to what extent their neuroanatomy
deviates from the norm and estimate brain abnormalities, resulting
in their predicted brain age.
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The main outcome measure in brain age prediction is the differ-
ence between an individual’'s predicted age and their chronological
age, which is referred to as ‘brain-age gap’ in the present review.
Studies of clinical groups typically estimate the mean brain-age gap
across all patients and then either compare it to the mean brain-age
gap of a control group or to zero, where predicted and chronological
age are equal (Figure 2). A positive brain-age gap means that the indi-
vidual’s predicted brain age was higher than their actual age, which is
sometimes referred to as ‘accelerated’ or ‘premature’ ageing. A nega-
tive brain-age gap implies a lower predicted brain age, occasionally
referred to as ‘delayed’ ageing. However, further research into the
neurobiological mechanisms of brain ageing is needed to assess to
what extent the terminology of ‘accelerated’ or ‘delayed’ ageing is
warranted. In contrast, studies of healthy people typically assess the
accuracy of a prediction model in terms of mean absolute error
(MAE), which is the mean of the absolute brain-age gaps across sub-
jects. Where applicable, therefore, this review will report a study’s
results as mean brain-age gap (+/- X years) or MAE (MAE X years).

Research suggests that an individual's brain-age gap can be
understood as a marker of brain health [3]. The validity of brain age
as an ageing biomarker is supported by the evidence that brain-age
gap is significantly correlated with other measures of ageing, such as
decline in cognitive function, weaker grip strength, and walking
speed [4]. This indicates clear potential for clinical translation.

In this state-of-the-art review, we aim to introduce the reader to
the field of brain age prediction and highlight its clinical potential.
Our aim is not to present an exhaustive account of the literature but
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Figure 1. Number of publications on brain age per year (2010-2020). The search
was conducted on the PubMed database using the search term ‘brain age’. The number
of publications per year was obtained using the ‘Results by Year’ function.

to explain the most common methodological approaches to brain age
prediction and discuss five promising clinical applications and possi-
ble next steps, with reference to the most recent studies. As the vast
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majority of published studies on brain age prediction use structural
MRI, we focus on findings from this modality.

2. Methodological basics of brain age prediction
2.1. Designing a brain age study

When designing a brain age study, the most important decisions a
researcher will face concern the type of input data, machine learning
model, and performance assessment. This section aims to provide a
general overview on these three decisions in the context of a struc-
tural brain age prediction study.

As the first step, the researcher has to decide how to pre-process
their MRI data. The most common approaches are region-based (e.g.
FreeSurfer, http://surfer.nmr.mgh.harvard.edu/) [5-12] or voxel-
based (e.g. Statistical Parametric Mapping, http://www.fil.ion.ucl.ac.
uk/spm) [13—19] methods to obtain measures such as regional or tis-
sue-specific volumes, cortical thickness, or surface area. Next, the
researcher may choose to use measures from the whole brain [4,11],
perform some kind of feature selection [9,20—22], or compare both
of these approaches [1,23,24]. Dimensionality reduction through

Training samples Hold-out sample

|

f 1

a. Training and

’_L‘

cross-validation
Trained model
b. Testing Independent sample
N
- brain-age /_,-’
0 o
- A gap > A
é‘) E /'// i
c. Calculation of g L brain-a%e
brain-age ga i o iogap<
ge gap 'g E o v
i v, brain-age °
ﬂ s B
4 gap=0
& 4 ~
>
Chronological age

Figure 2. Overview on the machine learning method of a simplified brain age prediction study.

a. Training and cross-validation (CV): A brain age study often uses k-fold CV during training, which means that k models are trained using (k-1)/k of the main sample, while 1/k of
the sample (different for each fold) is used as a hold-out set to test how well the model predicts the subjects’ ages. CV may be used to tune hyperparameters of the machine learning
model, where a different parameter is tested in each fold. This figure illustrates a 10-fold CV approach.

b. Testing (optional): The trained model is applied to an independent dataset to test. Using an independent dataset allows a better estimation of model bias.

c. Calculation of brain-age gap: Brain-age gap is calculated for each subject as predicted age — chronological age.


http://surfer.nmr.mgh.harvard.edu/
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automatic models like principal component analysis are commonly
employed to reduce the high dimensionality of voxel-based data and
remove redundant information, as this can reduce computational
cost and increase accuracy [1,8,24—-26].

As the second step, the researcher will choose and develop a
machine learning model. The majority of publications on brain age
prediction uses supervised machine learning methods, meaning that
the models are first trained on labelled data (i.e. the subject’s MRI
scan is associated with their chronological age) and then applied to a
test dataset without labels to assess how well they predict the brain
age of unseen subjects. The majority of these models make use of
regression techniques, where structural brain features are the inde-
pendent variables and chronological age is the dependent variable
[1,4,11,12,24]. Overall, the available machine learning models for
brain age prediction differ with regards to complexity, computational
resources, and involvement by the researcher. Recent studies com-
pared the performance of commonly used models like support vector
regression and relevance vector regression to provide guidance on
the most suitable model choices for brain age prediction (MAE 2.6-
7.7 years [12]; MAE 3.7-4.7 years [24]); however, as demonstrated by
Wolpert [27] in what is known as the ‘no free lunch’ theorem for
machine learning, the performance of different models will depend
on the characteristics of the datasets, so there is no single best model
for a certain task. This means that a researcher may choose to train
different types of models on their data before choosing the most suit-
able one.

Studies have begun to explore deep learning approaches for brain
age prediction, which are potentially more complex and powerful
than supervised methods [28—-34]. Nevertheless, in direct compari-
son to the commonly used shallow machine learning approaches like
relevance vector regression, deep learning approaches appear to be
comparable (MAE 4-5 years) [28,29] or superior (MAE 7-8 years ver-
sus MAE 5-6 years) [33] . One of the main advantages of deep learn-
ing methods is that they can be applied to raw structural MRI data,
which may make the prediction models less susceptible to bias from
pre-processing decisions [28] and ultimately more translational.

As the third step, the researcher may choose to assess model per-
formance through cross-validation (CV) in the same dataset used for
training, and/or evaluate generalisation performance in an indepen-
dent dataset (Figure 2). It is highly recommended that all models are
trained and tested in distinct datasets, which provides a more reliable
estimation of performance in unseen data from different scanner and
acquisition protocols. In practice, however, the approach often
depends on the amount of available data, with CV used in the context
of smaller studies where it is not possible to have separate training
and testing datasets.

2.2. Potential sources of bias

There are several sources of bias that may affect the performance
of a brain age model. These include, among others, sex
[4,12,16,35-39], body-mass index [26,34,40], physical exercise
[4,35,41,42], substance use [20,26,35,43], and cognitive ability
[4,34,37,41,44]. For clinical samples, studies commonly examine how
medication [6,10,20,26,45], illness duration [6,14,15,20,43,45], and
symptom severity [6,10,26,37,45] affect the brain-age gap. A particu-
lar challenge for clinical applications is that some of these factors,
such as smoking and substance use, may be especially prevalent
among certain clinical groups, so it is important to adjust for these to
minimise model bias.

To date, little attention has been paid to the potential impact of
ethnicity [46—49], socioeconomic status [50], and education [42] on
brain age. For example, the vast majority of brain age studies has
been conducted in Caucasian/Western subjects, although the associa-
tion of ethnicity and/or culture with brain structure is recognised
[46—49]. Hence, current brain age models might not allow for reliable

predictions for people of other ethnicities, especially if disease effects
are subtle; to address this limitation, it is crucial to take ethnicity into
account to minimise model bias.

Chronological age is increasingly recognised as an important
source of systematic bias [11,36,51—55]. Brain age models tend to be
affected by regression to the mean, so the age of younger subjects is
overestimated and the age of older subjects is underestimated. Vari-
ous statistical approaches have been proposed to correct for this age
bias [10,11,36,51—55]. Whether a study took age bias into account
therefore is an important factor for their interpretation.

Other sources of bias and variance may stem from pre-processing
decisions. For example, standardised pre-processing includes steps
such as normalisation to a template, which may introduce bias when
applied to brains that are considerably different from the template,
especially in the presence of some kind of pathology [28]. Hence, fur-
ther research is needed to minimise the required pre-processing
decisions, for example using deep learning as discussed in section 2.1
[28].

3. Five promising clinical applications

Brain age has a range of potential applications for the clinical
assessment of individual patients at various stages of health and dis-
ease, including the support of diagnosis, prognosis, and treatment
decisions (Figure 3). Brain age studies are being conducted in a
wide range of clinical populations including neurological conditions
such as Alzheimer’s disease (AD) and mild cognitive impairment
(MCI) [1,14,15,25,37,56—59], traumatic brain injury [60,61], epilepsy
[18,19,62], multiple sclerosis [37,54,63], and stroke [64,65], as well as
psychiatric disorders such as schizophrenia
[10,12,69,20,26,37,38,45,66—68], including clinical high-risk for psy-
chosis (CHR) and first-episode psychosis (FEP), bipolar disorder
[37,38,66,67,70], major depressive disorder (MDD)
[6,20,32,37,71,72], borderline personality disorder [20], autism spec-
trum disorder [8,37,73], and attention deficit hyperactivity disorder
[37]. The results of the clinical studies are summarised in Tables 1
and 2.

3.1. Marker of general brain health

Predicted brain age could become part of regular clinical check-
ups to assess general brain health. Here, a high brain-age gap may
prompt the treating clinician to run further tests and/or suggest life-
style changes. This clinical application is based on the evidence
that brain age is correlated with a range of brain-related disorders,
as described above (Tables 1 and 2), and is predictive of mortality
risk [4].

Brain age as a marker of general brain health requires a clear
understanding of what factors contribute to a positive or negative
brain-age gap other than manifestations of disease, such as risky or
protective lifestyle behaviours. For instance, higher brain-age gap has
been found to be associated with a range of markers of poor health,
such as smoking (+3.4 years relative to controls) and alcohol con-
sumption (+4.1 years) [43] or high diastolic blood pressure (+6.6
years) [39]. Several studies - though not all [74] - have also reported
an association between obesity/high body-mass-index and higher
brain-age gap [26,39,40,69], with an increase of up to 10 years [40].

While the majority of studies illustrate the pathology of acceler-
ated ageing patterns, a few studies have revealed protective effects of
specific practices on brain age. For example, people who meditate
regularly (-7.5 years) [16], practise amateur music (-4.5 years) [75],
or have higher levels of education or physical activity (-1.5 years)
[42] had lower brain-age gaps than controls.

A general barrier to any clinical implementation of brain age is the
requirement for highly accurate and replicable performance across a
variety of scanning environments (Section 4.1) and in the presence of
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At different clinical stages, brain age may be used to ...
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Figure 3. Potential clinical applications of brain age at different stages of the patient lifecycle. Brain age has a range of potential uses in health and disease of an individual per-
son.

Table 1

Overview of brain age prediction studies on neurological disorders.Studies were included if they reported mean brain-
age gaps from machine learning models trained on healthy controls and applied to clinical groups. Where the table
lists more than one mean brain-age gap, the study evaluated multiple models.

Authors Clinical group n Agerange  Mean brain-age gap
Mohajer et al. 2020 [58] AD 48 56-91 +9.10
Ly et al. 2020 [14] AD 74 60-85 +6.79
Beheshti et al. 2018 [59] AD 147 n.s. +5.36
Varikuti et al. 2018 [57] AD 163 56-91 +8.50/+10.70
Lowe et al. 2016 [15] AD (APOE carrier) 101 n.s. +5.76

AD (APOE noncarrier) 49 n.s. +6.20
Franke et al. 2012 [25] AD 150 n.s. +6.67
Franke et al. 2010 [1] AD 102 55-88 +10.00
Mohajer et al. 2020 [58] MCI 222 56-91 +4.00
Ly et al. 2020 [14] MCI (early stages) 195 60-85 +1.02

MCI (late stages) 88 60-85 +4.23
Beheshti et al. 2018 [59] MCI (stable) 102 n.s. +2.38

MCI (progressive) 112 n.s. +3.15
Varikuti et al. 2018 [57] MCI 64 55-87 +6.20/+5.40
Lowe et al. 2016 [15] MCI (stable, APOE carrier) 14 n.s. -0.88

M(CI (stable, APOE noncarrier) 22 n.s. +0.09

MCI (progressive, APOE carrier) 78 n.s. +5.83

MCI (progressive, APOE noncarrier) 34 n.s. +5.54
Gaser et al. 2013 [56] MCI (progressive, early) 58 55-86 +8.73

MCI (progressive, late) 75 56-88 +5.62

MCI (stable) 62 58-88 +0.75
Franke et al. 2012 [25] MCI (stable) 36 n.s -0.48

MCI (progressive) 112 n.s +6.19
de Bezenac et al. 2021 [62]  TLE (before surgery) 48 16-70 +7.97*

TLE (after surgery) 48 16-70 +2.80"
Sone et al. 2021 [19] TLE (no psychosis) 206 n.s. +5.30

TLE (with psychosis) 21 n.s. +10.90
Pardoe et al. 2017 [18] Focal epilepsy (refractory) 94 n.s. +4.50"

Focal epilepsy (newly diagnosed) 42 12-60 nonsignificant*
Cole et al. 2020 [54] Multiple sclerosis 1354 15-68 +10.30
Hogestol et al. 2019 [63] Multiple sclerosis 76 21-49 +4.40*
Egorova et al. 2019 [65] Stroke 135 >18 +3.87*
Savjani et al. 2017 [61] Traumatic brain injury 92 22-57 +5.4/+3.6/+9.8
Cole et al. 2015 [60] Traumatic brain injury 99 n.s. +4.66/+5.97

Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive impairment; n.s., not specified; TLE, temporal lobe
epilepsy
* Mean brain-age gaps marked with an asterisk reported the brain-age gap difference to healthy controls.
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Overview of brain age prediction studies on psychiatric disorders. Studies were included if they reported mean brain-
age gaps from machine learning models trained on healthy controls and applied to clinical groups. Where the table

lists more than one mean brain-age gap, the study evaluated multiple models.

Authors Clinical group N Agerange  Mean brain-age gap
Lee et al. 2021 [12] Schizophrenia 90 n.s. +3.80 to +5.20
Schizophrenia 75 n.s. +4.53 to +11.72
Nenadic¢ et al. 2017 [38] Schizophrenia 45 21-64 +2.56
Schnack et al. 2016 [45] Schizophrenia 341 16-76 +3.36
Koutsouleris et al. 2014 [20] ~ Schizophrenia (total) 141 n.s. +5.50*
Schizophrenia (recent onset) 61 n.s. +4.20"
Schizophrenia (recurring) 80 n.s. +6.40"
Van Gestel et al. 2019 [70] Bipolar disorder (lithium Tx) 41 20-72 +0.48 (nonsignificant)
Bipolar disorder (no lithium Tx) 43 26-74 +4.28
Nenadic et al. 2017 [38] Bipolar disorder 22 23-57 -1.25 (nonsignificant)
McWhinney et al. 2021 [26] First-episode psychosis 183 18-35 +3.39
Hajek et al. 2019 [67] First-episode schizophrenia 43 15-35 +2.64
Chung et al. 2018 [10] First-episode psychosis 14 n.s. +1.17*
Kolenic et al. 2018 [69] First-episode psychosis 120 18-35 +2.64
Hajek et al. 2019 [67] Genetic risk of bipolar disorder 96 15-35 nonsignificant™
Chung et al. 2018 [10] CHR (total) 275 12-21 +0.64"
CHR (converted) 17 12-17 +1.58"
CHR (not converted) 125 12-17 nonsignificant*
CHR (converted) 22 17-21 nonsignificant™
CHR (not converted) 120 17-21 nonsignificant”
Koutsouleris et al. 2014 [20] ~ CHR (total) 89 n.s. +1.70"
CHR (early onset) 21 n.s. approx. -3*
CHR (late onset) 68 n.s. +2.70*
Koutsouleris et al. 2014 [20] Borderline personality disorder 57 n.s. +3.10"
Han et al. 2021 [72] MDD 195 11-37 +0.57"
Han et al. 2020 [6] MDD 2675  18-75 +1.08*
Christman et al. 2020 [32] MDD (adult) 76 20-50 nonsignificant”
MDD (geriatric) 118 >60 approx. 4-5*
Besteher et al. 2019 [71] MDD 38 19-66 nonsignificant™
Koutsouleris et al. 2014 [20] MDD 104 18-65 +4,00"

Abbreviations: CHR, clinical high risk for psychosis; MDD, major depressive disorder; n.s., not specified; Tx, treatment
* Mean brain-age gaps marked with an asterisk reported the brain-age gap difference to healthy controls.

a range of confounding factors (Section 2.2). Over the past years,
brain age models have generally become more accurate, as more data
sharing initiatives and advanced machine learning methods become
available, and it is likely that this will continue getting better. How-
ever, a specific limitation for brain age as a marker of general brain
health remains relevant: it might not add sufficient new information
to a clinical assessment that would justify the costs of an MRI scan.
For instance, a person’s weight, blood pressure, smoking and alcohol
consumption and their potential negative effects on health are gener-
ally already known to the clinician. Nevertheless, brain age could
become a standard output from every MRI scan that is already con-
ducted for other reasons, especially if it can be provided in real-time
at minimal extra cost [28]. It might still be a useful health marker,
because, as pointed out by Cole and colleagues [76], the concept of an
older-appearing brain could be easier for patients to understand than
conventional clinical measures.

3.2. Early detection of brain-based disorders

Using brain age as a screening tool could facilitate early detec-
tion of disorders or even their preclinical stages, which, in turn,
would allow early intervention. Early intervention in age-related
disorders is an important clinical focus, because it tends to be
associated with better functional outcome in the long run, e.g. for
psychosis [77]. Studies suggest that for schizophrenia, its preclini-
cal stage CHR (up to +2.7 years) [10,20] and early stage FEP (up
to +3.4 years) [67] already appear to be associated with higher
brain-age gaps (Table 2). Similarly, while the higher brain-age
gap in subjects with AD is well known (up to +10.0 years)
[1,15,25,37,56], its preclinical stage MCI also displays neuroana-
tomical changes that make it distinguishable from healthy con-
trols (up to +6.2 years) (Table 1) [14,15,25,37,56]. Brain age may

therefore present a helpful screening tool in these cases, espe-
cially in combination with the assessment of general brain health
(Section 3.1). Of note, Beheshti et al. [59] showed associations
between brain-age gap and traditional survey-based screening
tools for AD, such as the Mini-Mental State Examination, which
are prone to methodological bias and confounding factors. Adding
a biological dimension to the screening process through brain age
could therefore make diagnosis more reliable.

Tables 1 and 2 illustrate that the extent of the brain-age gap across
brain disorders tends to be similar, indicating a lack of specificity.
While this can be an issue in the diagnostic use (Section 3.4), brain-
age gap may be useful as a transdiagnostic marker for early detection
of brain disorders. For instance, a high brain-age gap in an individual
without obvious clinical symptoms could lead to further tests, which
might reveal pre-symptomatic disease. Future studies need to inves-
tigate whether a higher brain-age gap is present in the early stages of
disorders other than schizophrenia and AD.

3.3. Prognosis of brain-based disorders

Once a preclinical stage of a disorder is identified, being able to
establish a person’s (1) risk of transition to the full-blown disorder,
(2) future functional outcome, or (3) risk of relapse can aid targeted
intervention and thus save resources. For example, only about a third
of CHR patients develop full-blown psychosis within three years [78].
If those patients at greatest risk of transition could be identified
through measures like brain age (up to +2.7 years) [10,20], clinical
resources could be targeted at them instead of the whole CHR popu-
lation. Similarly, the higher brain-age gap of MCI subjects was associ-
ated with higher risk of converting to AD [15,25,56]. This early
evidence suggests the potential of brain age to estimate risk of transi-
tioning to full-blown illness.
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Brain age is also associated with various functional markers,
which may enable the identification of subjects that are likely to
experience worse symptoms and would thus benefit most from clini-
cal intervention. For instance, the observation that the brain-age gap
appears to be linked with cognition [4,25,39,56,60,79] and scores on
clinical scales [25,26,37,59] suggests that it might be possible to use
it as marker of future cognitive decline and disease progression, e.g.
in AD [25]. Longitudinal studies are needed to explore this further.

In disorders that are characterized by recurring episodes, such as
psychosis or multiple sclerosis, it is highly beneficial to be able to pre-
dict which patients are more vulnerable to future relapses in order to
intervene and potentially prevent them. To our knowledge, relapse
prediction has not yet been studied with brain age.

Overall, prognostic applications of brain age could be helpful
transdiagnostic as well as disorder-specific markers to highlight
those individuals that require more clinical attention. Indeed, prog-
nosis could be one of the most useful clinical applications, because it
contributes information that the clinician would not have had other-
wise. So far, research in this field has focused on schizophrenia and
AD, so future research should address to what extent risk of transi-
tion or functional outcome can also be predicted in other disorders.

3.4. Differential diagnosis of brain-based disorders

The presence of some brain disorder or abnormality can usually
be detected using standard clinical measurements or scales, but the
challenge lies in making an accurate diagnosis. Differential diagnosis
is a particular challenge in psychiatric disorders, where overlapping
symptoms between diagnoses are a known issue, along with the
prevalence of comorbidities. For example, misdiagnosis of the psy-
chotic disorders schizophrenia and bipolar disorder is common and
accurate diagnosis can take several years [77]. Initial studies suggest
that these two psychiatric disorders may differ in brain age. An
increased brain-age gap has consistently been found in subjects with
schizophrenia (up to +11.7 years) [12,20,37,38,45], while the effect of
bipolar disorder on brain-age gap is much less consistent
[37,38,67,70] (Table 2). Although further studies are required, this
initial evidence suggests that if an individual shows early symptoms
of psychosis, an MRI scan may help identify if they are more likely to
develop schizophrenia (increased brain-age gap relative to healthy
controls) or bipolar disorder (more likely to have normal brain-age
gap). However, a study looking at the effect of lithium in bipolar dis-
order found that those participants treated with lithium had normal
brain-age gap while those not treated had a higher brain-age gap
[70]. This highlights the importance of looking at medication use as a
possible confounding factor (Section 2.2).

It is important to note that an abnormal brain age cannot be a
stand-alone measure of diagnosis, as it lacks specificity, especially in
light of the inherently large neuroanatomical heterogeneity in the
general population. For example, a recent large-scale study from the
ENIGMA-MDD working group found large within-group variance for
both clinical and control samples with small (albeit significant)
between-group difference (+1.1 years) [6]. The brain-age gap there-
fore has implications on the group level but has limited clinical
meaning for individual MDD patients. Although the ENIGMA-MDD
group did not find a significant association of brain-age gap and clini-
cal factors such as symptom severity or remission status in a large
sample of MDD [6], others reported that increased brain-age gap cor-
related with age of onset and symptom severity more than with the
specific diagnosis in a sample of patients with schizophrenia, MDD
and borderline personality disorder [20]. As discussed by Cole et al.
[76], it is plausible that brain ageing may be a “global phenomenon”,
where different initial brain abnormalities manifest as similar
changes downstream. As more large-scale longitudinal studies are
being conducted, we gain greater understanding of dynamic ageing
patterns [15,18,25,26,45,54,56,63,65], but further investigations are

needed to examine brain age during the course of various diseases.
These will help establish when abnormal brain ages start being
noticeable and how they develop over time (Section 4.3), also on the
regional level (Section 4.2).

3.5. Treatment outcome

Treatment nonresponse in disorders such as psychosis or epilepsy
is common [80,81]. Longitudinal studies may be used to investigate if
future treatment response can be predicted using brain age at base-
line. To our knowledge, only three studies have examined treatment
response with regards to brain age [18,64,70]. One longitudinal study
assessed response to cognitive training interventions in stroke
patients, but global brain-age gap was not sensitive enough to predict
treatment outcome [64]. The other two studies used cross-sectional
designs that did not allow for predictions about future outcome, but
one of these found that subjects with treatment-resistant focal epi-
lepsy had advanced brain age (+4.5 years) while this effect was small
and nonsignificant in those with recently-diagnosed focal epilepsy
[18]. The authors speculate that this nonsignificant effect might be
due to the presence of subgroups who will and will not develop treat-
ment-resistant epilepsy in the future, suggesting that brain age could
be used to identify those more likely to be treatment resistant. Future
studies will need to establish whether this speculation is the case not
only for epilepsy but also for other brain disorders.

4. Outstanding questions and next steps

A number of outstanding questions need to be addressed before
brain-age gap could be considered a reliable and specific clinical
marker. These questions and possible next steps towards clinical
implementation are discussed in this section.

4.1. Account for inter-scanner heterogeneity

How can we develop brain age models that are robust against inter-
scanner heterogeneity? The impact of the scanner and the scanning pro-
tocol on the quality of the images is an important challenge in the field
of neuroimaging in general, affecting the results of multi-site studies
and the generalisation performance of machine learning models to new
scanners. This is a particularly important consideration for applications
to clinical practice, as scans obtained in the clinical setting tend to be of
considerably lower resolution and higher slice thickness than in the
research setting; the impact of using scans obtained in real-world clini-
cal settings is unknown. Although some multi-site studies in children
and detection of AD have found brain age to be relatively robust to scan-
ner differences [1,25,37,39], others found scanner-dependent perfor-
mance differences [25]. When a sufficiently large dataset from each
scanner is available, it is possible to make corrections to multi-site data
and reduce scanner bias, either by regressing out the scanner differen-
ces [25] or by applying harmonisation tools [82]. Future studies should
examine the robustness of these corrections using a greater range of
scanners, including acquisition protocols commonly used in clinical set-
tings. It is also possible that brain age models using deep learning may
be more robust to inter-scanner heterogeneity, so additional strategies
for correcting scanner bias would not be required. However, as com-
mented before, deep learning approaches have not consistently
achieved better accuracies than shallow learning applications [28,29].
Hence, the advantages of deep learning for mitigating the impact of
inter-scanner heterogeneity in brain age prediction look promising but
require further research.

4.2. Increase granularity of brain age

To what extent do different brain regions follow different ageing
patterns? At present, predicted brain age is typically studied as a
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single whole-brain measure. This means the same brain-age gap in
two different subjects may arise from very different neuroanatomical
signatures. Looking at brain ageing patterns for specific brain regions
could reveal distinct patterns of ageing between disorders. Initial
studies have estimated regional differences either by (1) examining
the weight of specific features providing information on different
regions [10,12,45,74,79,83], (2) resampling [34,42], or (3) comparing
models trained on individual regions (or a subset of regions) to those
trained on the whole brain [37,63]. For example, using the latter
approach, Kaufmann et al. [37] found that while most regional brain-
age gaps corresponded to whole-brain models, larger brain-age gaps
were reported in specific regions for disorders such as dementia and
multiple sclerosis (cerebellum and subcortical regions), schizophre-
nia (frontal lobe), and MDD (temporal lobe). These findings suggest
that region-level brain ages could support differential diagnosis.

Although this state-of-the-art review is focused on structural MRI
as a single modality, it is important to note that other types of neuro-
imaging may hold complementary information about brain ageing. It
has been shown that multimodal approaches lead to performance
improvements, for example when combining structural with func-
tional MRI [36,84,85] or diffusion MRI [66,85]. Overall, the integration
of different types of data is not only likely to improve prediction, but
it may also provide considerably greater granularity for a person’s
brain-age gap because of potential tissue- or modality-specific brain
ageing patterns.

4.3. Dynamic changes of brain age

How does the brain-age gap of a person change across their life-
span? The majority of studies on brain age are cross-sectional, so it is
not yet clear how it develops over time. Longitudinal studies are
needed to investigate the potential dynamic changes of brain age in
health and disease, which may aid the early detection and the differ-
ential diagnosis of disorders with overlapping symptom profiles. For
example, two disorders may be characterized by the same extent of
brain age deviation, but longitudinal studies could reveal that one
disorder displays a one-off insult to neuroanatomy while the other
one is progressive. In longitudinal studies of schizophrenia, illness
duration was associated with larger brain-age gap [15,25,45] but the
acceleration rate may be faster at earlier than later stages [45].

Longitudinal studies could also shed light on potential reversal of
advanced brain ageing through treatments, be it clinical intervention
or lifestyle changes. Initial evidence suggests that clinical interven-
tions could reduce brain age. For instance, in subjects with refractory
epilepsy, neurosurgery reduced the brain-age gap compared to
healthy controls from 7.9 years to 2.8 years [62]. In another study,
receiving ibuprofen decreased the brain-age gap in healthy controls
by 1.2 years after 45min [74]. To our knowledge, the potential effect
of lifestyle interventions on brain age has not been studied in a longi-
tudinal setup yet. However, the past 20 years have increasingly seen
evidence on learning-dependent structural neuroplasticity [86], so it
seems logical that such increases in grey matter would also affect
brain age. As obesity has repeatedly been shown to be linked to
increased brain age, a small study found that exercise-dependent
weight loss may induce plasticity [87]. Therefore, there is reason to
speculate about reversal of accelerated brain ageing, but the types of
beneficial interventions and the permanence of the effects remain an
area of further investigation.

5. Conclusion

The increasing recognition of the clinical potential of brain age
prediction has led to an exponential increase in the number of patient
studies, but it has not been translated to clinical practice yet. Its clini-
cal implementation will require greater evidence of clinical utility
and cost-effectiveness, as well as translation of current machine

learning models into practical and acceptable tools that can be used
by clinicians without specialised methodological expertise [88]. To
this end, the brain-age gap of an individual patient could be inte-
grated within personalised reports of online clinical tools [89].
Among the five clinical applications discussed in this review, we sug-
gest that the most promising one is the detection of disorders prior
to symptom onset. Once a preclinical stage is detected, brain age may
also be used to predict risk of transition to full-blown illness, so inter-
vention efforts can target those individuals who are most likely to
benefit from them.

6. Search strategy and selection criteria

Data for this state-of-the-art review were identified through
searches of PubMed using the keyword “brain age”, along with refer-
ence tracking from relevant articles. For the individual clinical appli-
cations, we conducted additional searches of (“brain age” AND
“clinical”), (“brain age” AND “diagnosis”), (“brain age” AND “progno-
sis”), and (“brain age” AND “treatment”). The searches were con-
ducted in June 2021 and study selection prioritised publications from
the past three years. The primary focus of the search was on struc-
tural MRI studies from adult subjects, specifically T1-weighted MRL
As a state-of-the-art review, articles were selected for inclusion based
on the authors’ judgment of their relevance and suitability.
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