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ABSTRACT

16S rRNA gene is one of the preferred targets
for resolving species phylogenesis issues in micro-
biological-related contexts. However, the identifi-
cation of single-nucleotide variations capable of
distinguishing a sequence among a set of homolo-
gous ones can be problematic. Here we present
ORMA (Oligonucleotide Retrieving for Molecular
Applications), a set of scripts for discriminating
positions search and for performing the selection
of high-quality oligonucleotide probes to be used
in molecular applications. Two assays based on
Ligase Detection Reaction (LDR) are presented.
First, a new set of probe pairs on cyanobacteria
16S rRNA sequences of 18 different species was
compared to that of a previous study. Then, a
set of LDR probe pairs for the discrimination of
13 pathogens contaminating bovine milk was eval-
uated. The software determined more than 100 can-
didate probe pairs per dataset, from more than
300 16S rRNA sequences, in less than 5 min.
Results demonstrated how ORMA improved the
performance of the LDR assay on cyanobacteria,
correctly identifying 12 out of 14 samples, and
allowed the perfect discrimination among the
13 milk pathogenic-related species. ORMA repre-
sents a significant improvement from other con-
texts where enzyme-based techniques have been
employed on already known mutations of a single
base or on entire subsequences.

INTRODUCTION

During the last decades, different nucleic-acid-based detec-
tion techniques have been developed in order to employ

identification based on single-nucleotide variations in both
genotyping and detection experiments on a multiplicity
of targets. These techniques allowed distinguishing alleles
and correctly assessing the genotype at the single-
base level.
In particular, 16S rRNA gene sequences have been

used to resolve bacterial phylogeny and taxonomy issues
in different contexts. The DNA sequence coding for the
small ribosomal subunit has been by far the most common
genetic marker employed by the scientific community,
because of: (i) its presence in almost all bacteria, often
existing as a multi-gene family, or operons; (ii) the func-
tion of the 16S rRNA gene has not changed over time,
suggesting that random sequence changes are an accurate
measure of time (evolution); and (iii) the 16S rRNA gene
(more than 1500 bp) is large enough for informatics pur-
poses (1) with large stretches of conserved regions and few
different loci.
DNA microarrays represent one of the most popular

platforms in molecular technologies, allowing a high-
throughput format for the parallel detection of 16S
rRNA genes from environmental samples (2). DNA
chips have been developed as a preferred device for the
identification of different microorganisms based on 16S
gene sequences. The multiplicity of species which can be
arrayed on a single-DNA chip allows a high multiplexing
capability, with the possibility of identifying many differ-
ent targets at one time (3). Single-base variations by
microarray analysis can be detected by differential hybrid-
ization techniques using allele-specific oligonucleotide
probes (4), or by enzyme-mediated detection methods
(5). One of the most critical points of the molecular rec-
ognition procedures is the design of the specific probes
needed to perform the entire analysis. In genotyping
experiments, this is accomplished on the basis of the
already-known information about each single-base varia-
tion. In detection experiments, on the other hand, in order
to explore whether a certain target sequence is present
in a DNA sample or not, the main problem is searching

*To whom correspondence should be addressed. Tel: +39 02 26422705; Fax: +39 02 26422770; Email: marco.severgnini@itb.cnr.it

� 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



for a priori not yet identified specific positions that can
discriminate exactly between one target and another.
In hybridization-based techniques, mutations are iden-

tified on the basis of the higher thermal stability of the
perfectly-matched probes as compared to mismatched
probes. Although this has been the most frequently
applied technique, it is characterized by many hindrances
which make hybridization-based strategy function poorly
in high-complexity biological samples. Therefore, for
analytical and diagnostic purposes, hybridization is gener-
ally combined with some other selection or enrichment
procedures. Enzyme-mediated ligation methods, on the
other hand, rely on interrogation of a mutation by a
couple of oligonucleotides annealing immediately adjacent
to each other on a target DNA, with one of the probes
having its 30-end complementary to the point mutation.
In this case, the search is for a single base that charac-
terizes a species against all the others in a group of inter-
est. The presence of a point mutation is assessed by the
ligation of the two adjacent oligonucleotides, which occurs
only when both are correctly base-paired (6). The Ligation
Detection Reaction (LDR) (7), for instance, represents a
reliable technique for identifying one or more sequences
differing by one or more single-base changes, insertions,
deletions, or translocations in a plurality of target-
nucleotide sequences. This enzymatic in vitro reaction is
based on the design of two oligonucleotide probes for each
target sequence: a probe specific for the variation (called
‘Discriminating Probe’, or DS), which is 50-fluorescently
labeled, and a 50-phosphorylated ‘Common Probe’ (or
CP), starting one base 30-downstream of the DS. The pre-
viously polymerase chain reaction (PCR)-amplified
sample, the oligonucleotide probe pairs and a thermo-
stable DNA ligase are blended to form a mixture: the
two probes hybridize consecutively along the template
and the DNA ligase joins their ends only in the case of
a perfect match. This reaction is cycled to increase product
yield. The PCR–LDR approach, usually, is associated to
the hybridization onto a Universal Array (UA), where a
set of artificial sequences, called Zip-codes are arranged
(7). This entire approach was proven to be rapid, flexible
and easily adaptable from one target to another, useful,
for example, in environmental monitoring (8,9), forensics
(10) and the food industry (11,12).
Here we present Oligonucleotide Retrieving for

Molecular Applications (ORMA), a series of integrated
scripts in Matlab, which performs an accurate search
of all the positions able to specifically discriminate one
species among homologous ones, based on the 16S
rRNA gene sequence. ORMA also performs an accurate
selection of high-quality oligonucleotide probes to be used
in molecular applications. Automated and computer-
based methods can be very useful for performing accu-
rately and rapidly all the requested operations, through
the many steps between the original, complete, set of
sequences and the final list of application-oriented probes.
The problem of designing specific oligonucleotide

probes for the identification of target species has already
been addressed by a certain number of software (13–16).
At present, there is no preferential reference strategy for
designing microarrays for species identification based

on 16S rRNA sequences: many authors rely on academic
software (17,18), others develop their own scripts (19,20).
Among the currently available academic software, ARB
(21) and PRIMROSE (22) are very diffused, both being
tools implemented specifically on 16S rRNA, structured
for interacting with and retrieving sequences from specific
databases and operating a probe design on the basis of
the phylogenesis of the species under analysis. Also, some
commercial software, like Oligo 7 (Molecular Biology
Insights, Cascade, CO, USA) (23) or AlleleID (Premier
Biosoft, Palo Alto, CA, USA) (24) have been applied for
probe design in a pathogen characterization experiment
(25). In this article ORMA was used for determining
sets of LDR probe pairs in microbiological-related con-
texts (water safety and food safety applications, respec-
tively). The approach was evaluated and validated using
the probe pairs derived from ORMA-determined discrim-
inating positions on a set of cyanobacteria 16S rRNA
sequences belonging to 18 different species; the results
were compared to those of a previously published study
(8). Secondly, a set of LDR probe pairs for the discrimi-
nation of 13 mastitis- or intoxication-related pathogens
species in bovine milk was designed and experimentally
evaluated. The tool, although here applied on 16S
rRNA, can be used on any set of highly correlated
sequences.

MATERIALS AND METHODS

Algorithm

ORMA scripts were developed under Matlab 6.1
(Mathworks, Natick, MA, USA) environment (Release
12.1). No additional toolboxes are required. All statistical
analyses and representations were made by the same soft-
ware. Probe designs and simulations were run onto a hp
Workstation xw4100, with a Dual-core 3.2GHz. Intel
Processor and 2.5GB RAM. ORMA functions and
m-code are available for free upon request.

Overall structure. ORMA overall structure is tree-like,
with a main function that, sequentially, recalls all the
side scripts needed to perform each requested operation.
The software also comprises a series of scripts for retriev-
ing oligonucleotide sequences, quality-check them and
design probes for different applications, such as Ligase
Detection Reaction (LDR) or Minisequencing/Primer
Extension probes. The overall procedure is accomplished
in four main steps (Figure 1, Supplementary Figure 1):
(i) sequence importing and processing; (ii) discriminating
positions finding; (iii) designing of the candidate probes,
starting from the positions found and (iv) ranking (i.e.
assignment of a quality score to each) and exporting of
the candidates (in tabular format).

(i) Sequence import and processing. The search for
discriminating positions on 16S rRNA starts from the
import of a set of already-aligned sequences (which can
be optionally used for the creation of consensus sequences,
grouping them in homogeneous clusters, before being
used for the discriminating position search algorithm).
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Standard multiple-alignment formats (Clustal-like, Multi
Sequence Files, or aligned FASTA format) can be used.
A careful check of multiple alignment scores should be
made, in order to avoid designs on sequence datasets of
distantly related species, which can occur in base misalign-
ments. The scripts also include a procedure for consensus
determination from a set of user-defined sequences,
according to four different rules: (a) majority rule, in
which the consensus base is the most frequently present
in the aligned sequences and no degenerated bases are
used. In case of equal occurrences, ‘N’s are used in the
consensus; (b) threshold rule ‘simple’, which assigns a
specific base to the corresponding position in the con-
sensus only if its frequency is above a given threshold.

Different thresholds can be set for gaps and bases.
Degenerated bases are not used and are substituted by
‘N’s in the consensus; (c) threshold rule ‘complex’, which
comprises also degenerated bases. The algorithm is the
same as point (b) option, but requires a threshold for sub-
stituting positions with multiple bases above the threshold
with the corresponding IUPAC code degenerated base
and (d) ARB-like algorithm, with separate thresholds
for gaps and bases. All the bases above the given threshold
are used to compute eventual degenerated bases.
For each of these four options, consensus score accu-

racy is calculated, as the percentage of original sequences
that carried the same base as the consensus in each
position.

Figure 1. Block diagram representing the steps through which ORMA works. The four steps described in the main text are highlighted in gray:
(I) Sequence importing and consensus creation; (II) Search of the discriminating positions by SBS algorithm; (III) Retrieval of the candidate
sequences from the found positions. The actual design depends on the molecular application chosen; (IV) Quality filtering and ranking of the
candidate probes. On the right, in boxes, example screenshots (probe pair design on cyanobacteria dataset) are given for each step. Steps (II) and
(III) are indistinguishable in ORMA output and have been represented together. Please note that for visualization purposes only a part of the total
18 sequences are represented.
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(ii–iii) Design of candidate probes. We have implemented a
Single Base Seeker (SBS) algorithm, for the determination
of positions able to discriminate one sequence among a set
of homologous ones. The discriminating position finding
procedure can be summarized as follows in four basic
steps: (a) Choice of a user-defined subset of sequences
of the dataset (indicated as the ‘positive set’). The remain-
ing sequences are used as a group of the discriminating
positions must be different from; these are addressed, in
the present article, as the ‘negative set’. ‘Positive’ and
‘Negative’ sets differ for the fact that every consensus in
the ‘positive set’ group will be subjected to probe design,
whereas those of the ‘negative set’ will not; (b) For each
sequence, determination of a list of the positions of non-
degenerated bases; (c) For each position on point b, cal-
culation of a score as the sum of all the sequences carrying
the same base as the considered sequence, in the same
position. If the only sequence carrying the base is the
tested one, the position is set as discriminating and (d)
Re-calculation of the score on point c, substituting to
each (eventual) degenerated base its two or three alter-
natives (an ‘N’ automatically flags the position as non-
discriminating).
ORMA, then, retrieves the sequences flanking each of

the putative discriminating positions. Actual oligonucleo-
tide design is dependent on the molecular application
chosen. The maximum length and the thermodynamic
model for calculation of the parameters of the probes
can be specified by the user. For the LDR experiments
here described, two oligonucleotide probes are designed,
one upstream (Discriminating Probe, DS, comprising the
discriminating position) and one downstream (Common
Probe, CP) of each position.

(iv) Discriminating position related filters and scores. The
putative discriminating positions and related candidate
probes are subjected to a series of constraints and quality
filters. The software keeps track of all the designed candi-
dates, assigning a quality score, depending on how many
filters they pass. The current options of the script on the
discriminant base are: (a) limiting the range of positions,
in order to exclude candidates insisting on positions too
close to the 50- or 30-end of the sequences, where, usually,
the majority of errors in the alignment or characterization
of the sequences occur and (b) testing the presence of
other species with probes insisting on the same position,
thus excluding eventual interactions between a single CP
and multiple DS, with subsequent non-specificity. The
candidate probes can also be filtered and ranked according
to their thermodynamic properties (length, melting tem-
perature, number of degenerated bases, low complexity
regions), evidencing the candidates having a certain
length, a melting temperature comprised in a user-speci-
fied range, having no more than the inputted number of
degenerated bases (which can be a real issue for the oligo-
nucleotide specificity), having short homopolymeric
regions and not comprising short tandem repeats.
Then, ORMA calculates some specific statistics for the
qualitative evaluation of the candidates designed on con-
sensus sequences, compared to the original dataset (i.e.
the subset of sequences from which every consensus is

built): (a) the intra-group score, as the number of initial
sequences having the same discriminating base as the
consensus and (b) the inter-group score, as the number
of sequences other than those used for that consensus
having the same discriminating base as the candidate
one. This latter score is calculated only when the con-
sensus were created inside ORMA, starting from a
single-global alignment. These scores allow the choice of
probes that best discriminate between the target and the
non-target sequences (i.e. having the highest intra-group
and the lowest inter-group score). The software output
can be exported as a comma-separated spreadsheet report-
ing: (a) the list of all the discriminating bases, grouped per
species, with absolute (referring to the global alignment)
and relative (referring to the specific consensus) positions
of the discriminating base, and the base distributions of
all the other consensus sequences in the same position;
(b) the thermodynamic parameters of the candidate
probe pairs, including the Tm, the length of DS and CP
probes and the number of degenerated bases in each and
(c) the qualitative filtering and the specificity-related
scores, including the sequence score, as the average of
the consensus scores along all the bases constituting the
DS and CP, with penalties for degenerated bases.

Experimental data

Cyanobacteria dataset experiment. The complete cyano-
bacteria 16S rRNA data set comprised a total of 352
sequences, which were organized by phylogenetical simi-
larity and grouped in a total of 18 clusters, as described
in (8). Multiple alignments of all the sequences was per-
formed by ClustalW (26) and the resulting file was
imported into ORMA, where 18 consensus, one per clus-
ter, were built. Consensus sequences were determined
following the ‘ARB-like’ algorithm (as described in
‘Materials and Methods’ section and in Supplementary
Methods), setting 50% as the threshold for gaps and
40% as the threshold for other bases. Melting temperature
calculations followed the ‘salt-adjusted’ method, with
50mM Na+ and 0% formamide. Candidate probe pairs
were filtered on the basis of their length (minimum 25 nt,
maximum 60 nt per probe), melting temperature
(63–688C) and number of degenerated bases (maximum
4), on both DS and CP. The best probe pairs for all the
species were selected, according to their best intra- and
inter-group scores. We required that no less than 80%
of the sequences constituting each of the 18 clusters
carried the same base as the consensus in the candidate
discriminating position (intra-group score). When only
one candidate was designed or the intra-group score of
the best candidate was below 80%, we still picked that
candidate for further evaluations. On the other hand,
the inter-group score was set to be below a 2% threshold,
with the same exceptions as above. The ‘Unicyano’ probe,
which allowed the identification of any of the species in
the study, was the one proposed by Castiglioni et al., with
minor refinements for adjusting its melting temperature.
At first, the LDR mix made by all probe pairs (250 fmol/ml
each probe) was tested on specific synthetic templates (per-
fectly complementary to each probe pair) to assess the
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feasibility of the LDR procedure with the ORMA-
designed probe pairs. Then, a total of 14 DNA samples,
corresponding to 13 cyanobacteria species (kindly pro-
vided by MIDI_CHIP project partners, http://www.cip
.ulg.ac.be/midichip/) (Table 1), were tested in duplicate,
independent, LDR experiments, with both ORMA and
Castiglioni et al. probe pairs.

Milk-pathogen dataset experiment. Milk pathogens-
related 16S sequences were retrieved from RDP-
Ribosomal Database Project II (release 9.51, http://
rdp.cme.msu.edu/) (27) for a total of 738 sequences and
divided into 13 subgroups, according to their phylogenetic
classification. Only sequences of length >1200 bp and
flagged as of ‘good’ quality were retrieved. Each subgroup
was aligned independently in ClustalW, since the overall
number of 16S sequences was >500 (above the maximum
limit of the alignment tool) and imported into ORMA.
The consensus sequence for each group was calculated
with the same parameters specified for the cyanobacteria
data set. Then, a new multiple-alignment step was per-
formed before proceeding to actual probe design. One
probe pair for each of the main six subspecies of the
Streptococcus group (Streptococcus agalactiae, S. bovis,
S. equi, S. canis, S. dysgalactiae S. uberis) was designed;
moreover, the Staphylococcus aureus probe pair was
designed independently from all the remaining coagulase
negative Staphylococci (grouped in the ‘Staphylococcus,
no aureus’ probe), because of its relationship with out-
breaks of mastitis in dairy ruminants (28) and with
major health issues, like food-related intoxications (29).
In order to have the best homogeneity among the species
within each group, the design was actually performed in
three rounds: (a) Salmonella spp. was aligned against
Escherichia coli and related spp. consensus sequence
only; (b) S. canis was aligned against Streptococcus
group sequences only; (c) All the remaining positions
were selected considering the alignment of all other sub-
species. One probe pair per species was designed, except
for Campylobacter spp. for which two probe pairs were
evaluated in terms of reproducibility and specificity.
The thermodynamic parameters were the same described
for the cyanobacteria data set, except for the melting
temperature, which was required to be in the range
67–698C. The inter-group score of the candidates
was required to be above a threshold of 80%, as in the
cyanobacteria dataset. Probe pair specificity was checked
by both RDP II database and BLAST (Basic Local
Alignment Search Tool, http://www.ncbi.nlm.nih.gov/
blast/Blast.cgi) (30) analysis, carefully examining the
30-region of the discriminating probe, in order to exclude
any interaction between probe pairs targeting different
species. LDR probe pairs were mixed at a final concen-
tration of 1 pmol/ml and tested on 13 DNAs from ATCC
reference strains (LGC Promochem, Middlesex, UK) and
bacterial collections (Supplementary Table 1). Genomic
DNA was extracted following the protocol described
by (31), PCR amplified and analyzed in duplicate, by sepa-
rated LDR reactions.

PCR and LDR/Universal Array approach. Complete
experimental procedures concerning the amplification of
16S rRNA sequences (including primers and thermal
cycling), LDR mixes, Universal Arrays preparation and
hybridization are reported in Supplementary Data.

Data analysis. All arrays were scanned with ScanArray
5000 scanner (Perkin Elmer Life Sciences, Boston, MA,
USA), at 10 mm resolution, with different acquisition para-
meters on both laser power and photo-multiplier gain, in
order to avoid saturation. Intensities of fluorescence (IF)
were quantitated by ScanArray Express 3.0 software,
using the ‘Adaptive circle’ option, letting diameters vary
from 60 to 300mm. No normalization procedures on the
IFs were performed.
To assess whether a probe pair was significantly above

the background (i.e. was ‘present’ or not), we performed a
one-sided t-test (a=0.01). At the same time, also the type
II error was calculated and 1-b used as the estimate of the
power of the statistical test. The null distribution was set
as the population of ‘Blank’ spots (e.g. with no oligonu-
cleotide spotted, n=6) IFs. Two times the standard devi-
ation of pixel intensities of the same spots was added
to obtain a conservative estimate. For each Zip-code, we
considered the population of the IFs of all the replicates
(n=4) and tested it for being significantly above the null-
distribution (H0: mtest= mnull; H1: mtest> mnull).
Signal-to-noise ratios, SNRp and SNRnp were calcu-

lated, for each ‘present’ and ‘non-present’ probe pairs,
respectively, indicating the ratio between the mean IF of
each probe pair and the mean ‘Blank’ IF, divided on the
probe-type.

RESULTS AND DISCUSSION

Searching, designing and selecting oligonucleotide probes
for molecular applications experiments on sets of highly
similar sequences, such as the 16S rRNA, is a non-trivial
procedure, which involves many complex and time-
consuming steps. In this article, this procedure was accom-
plished by the use of ORMA, an integrated architecture
of Matlab scripts. The 16S rRNA, a gene sequence of
more than 1500 bp, is the preferred genomic target for
analyses in the microbiological field (17–20). It should
be noted that 16S region is commonly used in taxonomical
classifications involving in silico alignment and procedures
for its two basic properties: (i) 16S presents highly con-
served regions which can be used to correctly align all
the sequences in the database; (ii) on the other side, 16S
presents highly polymorphic regions that can be used in
clusterization, phylogenetic tree construction and molecu-
lar discrimination of microbiological families even very
close one to each other (32). Use of an automated
method for discriminating positions determination,
probe retrieval and filtering has obvious and evident
advantages over the manual design, often used in pre-
viously published papers (8,33–35). These advantages
become more significant with increasing dimension of
the databases and of the sequences length. ORMA can
perform all these operations with user-specified param-
eters in an automated way and calculates a series of
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ä
rd
en
,
Å
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qualitative parameters which help in the choice of candi-
date probes that best discriminate between the sequences
of the positive and those of the negative set. The general
idea of these scores is to distinguish the sequences/groups
which are of interest in a given experiment from those who
aren’t and that can potentially have a cross-contamination
with the positive set, because they could be amplified by
PCR, contributing to the molecular complexity of the
sample. In this article, performances of ORMA were eval-
uated by considering the experimental evidences coming
from the design of LDR probe pairs on two different 16S
rRNA datasets. First, a new set of cyano-specific probe
pairs was designed and compared to the original one (8),
generated on the same database of sequences. Then, the
tool was used to setup LDR probe pairs for the identifi-
cation of pathogenic species present in bovine milk.

Cyanobacteria dataset

Species-specific probe pairs were designed in a single
round, starting from the whole dataset of 352 ClustalW-
aligned cyanobacteria 16S rRNA sequences, imported,
converted and grouped into 18 group-specific consensus
sequences by ORMA. Calculated consensus sequences
were highly similar, (ClustalW score=87.31� 2.13,
n=18), had a high consensus score (average score
89.20� 4.16, n=352) and a very low content of degener-
ated bases (average < 2%, max=6%). ORMA identified
a total of 192 candidate probe pairs for the 18 species, with
an overall duration of the whole procedure of less than
5min (Table 2). More tests on speed performances of the
SBS algorithm on simulated data available as Supplemen-
tary Data and Supplementary Figure 2. One probe pair
per species was chosen, according to its ranking after
ORMA filtering steps. The probe pair for Anabaena +
Aphanizomenon group was flagged as inadequate by
ORMA, having six degenerated bases in the CP, which
could negatively influence its thermodynamical properties.
However, this probe pair insisted on the only discriminat-
ing position found for that cluster. The mix containing all
probe pairs was tested on the corresponding synthetic tem-
plates and, as expected, all except Anabaena+Aphanizo-
menon gave positive results. Duplicate LDR experiments
on 18 probe pairs (17 species-specific+1 universal) were
carried out on 14 16S rRNA PCR products. We per-
formed side-by-side tests of the same DNA samples by
the two probe pairs datasets, ORMA and the one
described in Castiglioni et al., comparing their perfor-
mances and specificity.

Probe pairs used in Castiglioni et al. identified correctly
(P< 0.005, average beta power of the test: 0.85) 6 out of
14 analyzed DNAs (in both duplicate LDR), whereas
other two completely failed. Six other DNAs somehow
showed a degree of aspecificity (i.e. the correct probe
pair was present, but non-specific probe pairs were also
called present) (Table 1, Figure 2). Cyanobacteria univer-
sal probe pair was called as statistically over the back-
ground in all the experiments. Evaluations on ratio of
signal intensities suggested that hybridizations went well
and were not responsible for the aspecificity. In fact,
excluding non-specific signals, SNRnp had an average

value of 1.18� 0.61 and SNRp varied between 10 and
680, with an average of about 149 (data not shown).
The Anabaena + Aphanizomenon probe pair of
Castiglioni et al. study resulted specific on both synthetic
and environmental samples (data not shown). This probe
pair, however, was designed with its DS insisting on a posi-
tion which did not discriminate univocally the Anabaena
+ Aphanizomenon consensus from the consensuses of
the other species. Thus, it would never be identified by
ORMA as discriminating (because of the way the algo-
rithm is built). Instead, the presence of some internal mis-
matches (especially the one on the second base before the
30-end of the DS) is probably the reason for this finding. In
fact, the mismatch gives instability to the 30-end of the DS
when annealing on the 16S rRNA sequences of species
other than those of Anabaena + Aphanizomenon cluster,
impeding the ligase to join the two adjacent end of the DS
and CP oligonucleotides.
ORMA designed probe pairs have been capable of cor-

rectly identifying (P< 0.005, average beta power of the
test: 0.85) 12 out of 14 analyzed cyanobacteria samples,
on both replicates. Also in this experimental set, the cya-
nobacteria universal probe pair was called as statistically
over the background in all the experiments (as expected,
since this probe pair and the ones used in Castiglioni et al.
coincided). Performances of the LDR procedure, in terms
of signal-to-noise ratios were comparable to those
obtained with the Castiglioni et al. probe set, having a
SNRnp of 1.1� 0.26 and a SNRp ranging from 7 to 387
(average �131) (data not shown), indicating a certain
variability. In this case, we had no signs of aspecificity
in the experiments (Figure 2), even in those cases which
were critical with Castiglioni et al. probe pairs. In fact,
probes were chosen in order to maximize the intra-group
similarity (i.e. having the maximum number of sequences
in the positive set carrying the discriminating base) and
minimize the possibility of an inter-group cross-talk (i.e.
having a minimum number of sequences in the negative set
carrying the discriminating base) (Figure 3). The average
of intra-group scores of the candidates was 95.1% �

10.1% (n=17), varying in the range 60–100%. The min-
imum value was that of the cluster of Gleotheceae, in
which we had only five sequences, whereas 13 out of the
17 clusters were characterized by a score of 100%. Inter-
group scores, on the other hand, were always very low,
with an average of 0.4%� 1% (n=17). Thus, where
ORMA probe pairs failed, we had a false negative call
(with the cyanobacteria universal probe pair called as ‘pre-
sent’), but not a false positive. Experiments on the two
Nostoc DNAs gave no results on the species-specific
probe pair; anyway the presence of a cyanobacterial
DNA was correctly assessed by the Universal probe
pair. Sequencing of the two products revealed that one
of them has been correctly classified by microbiological
methods, whereas the other DNA was very uncertain
and classified as ‘cylindrospermum’ (58% confidence) by
RDP ‘Classifier’ tool, release 9.60. [On 22 May 2008, RDP
II database for cyanobacteria (release 9.61) underwent a
major change in hierarchical classification of the species.
The taxonomies here presented refer to older versions,
which at present, can be found within genus GpI of
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Figure 2. Heat maps of P-values deriving from the duplicate LDR experiments on cyanobacteria dataset. (A) Castiglioni et al. probes; (B) ORMA-
designed probes. The scale varies between non-significance (>0.05) to high-significance (<0.005). On the x-axis, the IDs of the tested samples (see
Table 1 for full description) are reported. On the y-axis, the probe pair name is reported. The line ‘Other’ represents the mean of all the remaining
Zip-codes in the universal arrays that were not associated to any actual probe. Experiments on Nostoc samples were repeated twice on different
DNAs because of the failure of the first test. Halotolerans probe pair in one replicate of sample 8 (classified as Nostoc) has a P-value of 0.02, above
the threshold of 0.01 chosen for significance.
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family Family I, philum cyanobacteria.] Both sequences
found very little similarity with our probe pairs, with inter-
nal mismatches and a different base in the discriminating
position. Anyway, the probe pair itself was successfully
tested on the synthetic template. The failure of ORMA-
designed Anabaena + Aphanizomenon probe pair sug-
gests the possibility of making a re-design in the near
future, increasing the number of sequences of the database
and improving the information content of the dataset.
Another strategy could be designing probe pairs on sub-
clusters of Anabaena + Aphanizomenon, building new
consensuses from more homogeneous groups; in this
way, the presence of such two species would be assessed
by multiple probe pairs and not only by one.

Milk-pathogens dataset

16S rRNA sequences of pathogens contaminating bovine
milk or related to bovine mastitis were used to design
LDR oligonucleotide probes by ORMA, providing a fur-
ther confirmation of its reliability and specificity. In this
study, three round of design were actually performed, in
order to have the best homogeneity between the species
used in each round. A single round would have caused the
loss of discriminating positions due to misalignment of
some species (e.g. Salmonella) which are somehow differ-
ent from all others. ORMA found a total of 392 candidate
positions (34, 4 and 354 in the design for Salmonella,
S. canis and all remaining species, respectively), which
were selected according to the quality ranking scores
assigned by ORMA. In this experiment, ORMA calcu-
lated only the intra-group score, but not the inter-group
score, because of the fact that the sequences for each
group were imported separately and the software was
unable to recall the position corresponding to discriminat-
ing ones in all the sequences constituting each of the con-
sensuses. The candidate probes were all characterized
by an optimal specificity of the discriminating base, as
suggested by the intra-group scores which were above
90% in 11 out of 14 cases. The scores were, in any case,
above the fixed threshold of 80%, having an average of
94.0%� 6.9% (n=14). Also in this case, the lowest score

(i.e. 80%) was that of the cluster (i.e. S. equi) constituted
by the lowest number of sequences (n=5). The final eval-
uation on the candidate probe pairs was made by RDP
and BLAST checks, because of the multiplicity of species,
whose 16S rRNA gene was amplified by means of univer-
sal primers, potentially present in milk-derived matrixes
and the lack of a complete internal negative set in
ORMA. The probes were slightly longer than the ones
on cyanobacteria dataset, with an average length of
about 40 nt, with very homogeneous melting temperatures
(mean Tm=67.6� 0.4, n=28) and a very low number of
degenerated bases (only the DS probe for S. equi had 1
degenerate base) (Table 3). The consensus scores for both
the DS and CP confirmed the overall quality of the probes
(average score of 96.5� 4.2, n=28, with 60% of the
probes having a score >99%).

The procedure showed optimal specificity, with excel-
lent signal-to-noise ratios, as shown in detail in the arti-
cle of Cremonesi and co-workers (36). Results were in
complete concordance with sample identification made
by ATCC; only probes associated to the supposed species
were present (P-values always <0.005), whereas all
remaining probes were well below any acceptable
P-value for the t-test (Figure 4). In this dataset, SNRp

varied from 4.31 to 238.3, with an average of 34.28; at
the same time, SNRnp varied between 0.12 and 0.83,
with an average of 0.48� 0.18. The two probes on
Campylobacter species (insisting on two different posi-
tions) performed nearly the same in terms of specificity,
both giving P-values far below the acceptance threshold of
0.01, whereas performances in terms of signal intensity
varied, with one probe having average IFs about 2-fold
higher than the other, in both replicates, suggesting a
somehow different sensitivity in the two competing
probes.

Thus, ORMA helped in developing a reliable PCR-
LDR-UA assay, which allowed the identification of
pathogenic species in milk, based only on 16S rRNA
gene, whereas other assays (37) needed multiple genes.
The molecular procedure permitted the discrimination
between the most frequently isolated or emerging

Figure 3. Graphical comparison between the Castiglioni et al. and the ORMA-designed probe pair (DS+CP) on Cylindrospermum species, aligned
in ClustalW with Cylindrospermum strain sequences (Cy�) and the Leptolyngbya strain sequences (Leptolyngbya� and Lpg�). The part of each probe
flanking the discriminating position is highlighted in red (Castiglioni et al. probe pair) or green (ORMA). The bases aligned with the discriminating
base are marked by a black box. In Castiglioni et al. probe pair, the discriminating position was found also on some Leptolyngbya strains, whereas
in ORMA probe pair, the discriminating position is unique to all Cylindrospermum sequences. Absolute positions of the bases in the alignment are
reported on the top ruler.
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pathogens in mastitis (e.g. S. aureus, S. agalactiae,
S. uberis), or potentially dangerous for human health
(e.g. E. coli and related species, Salmonella, S. aureus
and Bacillus spp). Streptococcus spp. was identified
at the species level, even in the cases, like the one of
S. uberis and S. parauberis, where the molecular identifi-
cation on the basis of the 16S rRNA gene required PCRs
with species-specific primers. Moreover, the ORMA-based
LDR technique represents a significant improvement of
the existing detection methods for Mycoplasma spp.
strains (38), known to be contagious causes of intramam-
mary infection in herds, overcoming the long and labori-
ous standard-detection methods based on microbiological
procedures (36). These results confirmed the ability of this
tool to determine discriminating positions in complex
datasets.

Important remarks

The ability to identify ‘fingerprint’ positions within a set
of homologous sequences, like those of 16S rRNA gene, is
the main feature of ORMA. To achieve optimal results,
the starting set of sequences should be carefully selected,
because, if sequences are characterized by many low-
similarity regions, the determination of terminally dis-
criminating position could be biased by badly aligned
subsequences. In that case, a different algorithm (actually

not included, but under development) for the determina-
tion of detection probes by means of the hybridization
strategy, can be more appropriated. On the other side,
using sequences nearly identical one to each other can
cause the opposite behavior, where no discriminating posi-
tions can be determined. A careful grouping of the
sequences in clusters (as we did for both of our examples,
building 18 consensus out of 352 sequences in cyanobac-
teria dataset and 13 consensus out of 752 sequences in
milk pathogens dataset) is strongly suggested. In this
latter application three rounds of design were applied, in
order to compensate the non-perfect homogeneity of some
species. Experimental results demonstrated the correctness
of this approach and the specificity of the probe pairs
obtained with this design strategy. Experimental data on
the 16S rRNA cyanobacteria and milk-pathogens dataset
demonstrated that ORMA specifically addressed discrim-
inating positions within a set of highly similar sequences.
Nonetheless, our tool identified a total of 192 and 392
candidate positions, respectively. The intra- and inter-
group scores were demonstrated to be very helpful in
determining the best probes for discrimination and avoid-
ing cross-talk between species.

ORMA is a bioinformatic tool for the search and
determination of single-discriminating positions among
a set of highly homologous sequences and represents a

Figure 4. Heat map of P-values deriving from the duplicate LDR experiments on milk pathogen dataset. The scale varies between non-significance
(>0.05) to high-significance (<0.005). The line ‘Other’ represents the mean of all the remaining Zip-codes in the universal arrays that were not
associated to any actual probe. Complete association between samples numbers and names is given in Supplementary Table 2.

e109 Nucleic Acids Research, 2009, Vol. 37, No. 16 PAGE 12 OF 15



significant improvement from other contexts where
enzyme-based techniques have been employed on already
known single-nucleotide polymorphisms (SNPs) (39) or
on entire subsequences (11). This unique feature makes
ORMA completely different from all the other available
software for probe design in detection experiments.
During the past years, academic software for species
detection have been developed. ProDesign (13) is a tool
based on a ‘spaced seed algorithm’ for the determination
of probes capable of discriminating multiple pathogenic
species, at different hierarchical levels. Similarly, YODA
(14) performs design tasks on complete genomes against
non-target species. TOFI-beta (15) implements a suffix-
tree-based algorithm for isolating suitable candidate
probes from a target genome and filters the list according
to thermodynamical and specificity requirements. These
three software are implemented for the design of probes
for hybridization-based detection assays. PathogenMIPer
(16), instead, is based on a different strategy (i.e. molecular
inversion assays), which starts from the selection of unique
sequences on a reduced dataset and then does a global
comparison to all those potentially matching.

All these software perform smart designs where the
probes have to be selected on the whole genomic DNA;
this is the typical pipeline in contexts where no pre-
selection of the target sequences has been made, which is
not the case of ORMA. In fact, in both the presented
datasets, the molecular complexity of the genomic mate-
rial has been reduced by PCR on the 16S rRNA. The
probe pairs design, then, was performed only on the
basis of a specific subset of the whole 16S dataset, limited
for the specific environment in which the target species
have to be detected: cyanobacteria DNA was selected
and amplified by cyano-specific PCR primers, while milk
pathogens 16S rRNA sequences, although amplified by
universal primers, were compared only to context-specific
species. The double check in RDP and BLAST, performed
after the complete probe pair design by ORMA, con-
firmed that our choice to work with such a reduced dataset
was indeed correct, because the detected species accounted
for the majority of the biological diversity present in the
target matrix (i.e. milk). Moreover, many of the aforemen-
tioned software perform the specificity checks by extensive
BLAST searches, which is a reasonable choice for design-
ing specific probes starting from the whole genomic DNA;
in case of datasets with limited complexity (or in which
the complexity has been reduced by means of molecular
procedures), this approach results too computationally
intensive and unnecessary for the scope. ARB (21) and
PRIMROSE (22) are tools widely used for the classifica-
tion and the phylogenesis of bacterial species, structured
for interacting with databases specific for the same molec-
ular target (i.e. 16S rRNA) and operate a probe design on
the basis of the phylogenesis of the species under analysis.
None of these two software, however, is built specifically
for the determination of discriminating positions within
a set of very similar sequences and they provide probe
design functionality only for hybridization assays or
PCR primers. When used for probe design in detection
application, the strategies are based on internal
mismatches or on unique stretches of nucleotides (40).

In this case, the discrimination power resides more in
the decreased melting temperature of mismatched
duplexes, rather than on a perfectly matched base pair
between the probe and the target. Although our tool
was applied on the design of probes for a specific tech-
nique (LDR) and on a specific target gene (16S rRNA),
the software is not limited to this combination. LDR tech-
nique approach implied the retrieval of a pair of
sequences, one of which (the DS probe) insisted on the
discriminating position, whereas the other (the CP
probe) is designed to anneal one base 30-downstream of
the discriminating position; the design of probes for min-
isequencing application would have implied only the
determination of one probe with its 30-end one base
before the variation. At the same time, the design of a
reporting probe for a TaqMan Real-time PCR assay
would have implied the determination of one oligo with
the single-base variation in the middle of the sequence.
Due to its modular structure and to the straightforward-
ness of other applications from the already implemented
one, probe sets retrieval and filtering methods could be
easily added, starting from the discriminating positions
found by the SBS algorithm. A further extension to
hybridization probes/standard PCR primer design will
be evaluated, changing the strategy for determining the
positions to be tested. Provided that the initial database
of sequences is accurate, updated and complete as much as
possible, ORMA can retrieve discriminating positions and
design specific probes on every set of sequences. Its imple-
mentation, in fact, is not based on an internal database
of sequences (which are, instead, retrieved and loaded
from external resources) and can be extended to any
gene. In any case, the database should be critically built
by only context-specific sequences. Standard procedures,
like PCR with specific primers, can help in isolating only
the subsets of sequences which constitute the actual data-
base from those completely unrelated to the biological
context under investigation, avoiding any interference
with actual probes, as exemplified by the cyanobacteria
dataset experiment. Sequences of off-target or distantly-
related species could negatively act in the process of multi-
ple-alignment, leading to poorly aligned datasets and
biased designs. Since the databases, cyanobacterias in par-
ticular, are constantly and frequently upgraded, ORMA
capability of determining discriminating positions can be
refined, depending on the completeness of the initial data-
sets (both positive and negative set). Moreover, the con-
tinuous changing of classification and the addition of new
sequences make an exhaustive and definitive design of the
best cyanobacteria probes absolutely not trivial.
ORMA represents a good alternative solution to the

troublesome problem of searching specific positions
within a large set of homologous 16S rRNA sequences
and provides tools for performing a series of probe-related
operations, such as sequence retrieval, filtering and scor-
ing, allowing the user to have a set of candidates on which
the actual and definitive selection can be done. The cal-
culation on intra- and inter-group scores allows the selec-
tion of highly specific probes for molecular applications,
covering the highest number of species of the positive set
and having the lowest interaction with the negative set.
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In silico checks versus public databases (e.g. RDP or
BLAST) are necessary only in case of lack of a reference
among the sequences imported in ORMA or when the
species eventually present in the biological context under
study are too many for being comprised into a reason-
ably small negative set (e.g. all the microorganisms poten-
tially present in bovine milk). Appropriate experimental
designs, comprising context-specific PCRs for reducing the
molecular complexity of the target can also be helpful. A
complete set of major thermodynamic parameters are
reported in the output, helping the researcher to carefully
select the best probes. Our data assessed and demon-
strated the performances of ORMA in designing probes
for molecular applications on 16S rRNA gene and their
feasibility for experimental use, with improved specificity
and sensitivity.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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