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Breaching the Bacterial Envelope:
The Pivotal Role of Perforin-2
(MPEG1) Within Phagocytes
Leidy C. Merselis†, Zachary P. Rivas† and George P. Munson*

Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States

The membrane attack complex (MAC) of the complement system and Perforin-1 are well
characterized innate immune effectors. MAC is composed of C9 and other complement
proteins that target the envelope of gram-negative bacteria. Perforin-1 is deployed when
killer lymphocytes degranulate to destroy virally infected or cancerous cells. These
molecules polymerize with MAC-perforin/cholesterol-dependent cytolysin (MACPF/
CDC) domains of each monomer deploying amphipathic b-strands to form pores
through target lipid bilayers. In this review we discuss one of the most recently
discovered members of this family; Perforin-2, the product of the Mpeg1 gene. Since
their initial description more than 100 years ago, innumerable studies have made
macrophages and other phagocytes some of the best understood cells of the immune
system. Yet remarkably it was only recently revealed that Perforin-2 underpins a pivotal
function of phagocytes; the destruction of phagocytosed microbes. Several studies have
established that phagocytosed bacteria persist and in some cases flourish within
phagocytes that lack Perforin-2. When challenged with either gram-negative or gram-
positive pathogens Mpeg1 knockout mice succumb to infectious doses that the majority
of wild-type mice survive. As expected by their immunocompromised phenotype,
bacterial pathogens replicate and disseminate to deeper tissues of Mpeg1 knockout
mice. Thus, this evolutionarily ancient gene endows phagocytes with potent bactericidal
capability across taxa spanning sponges to humans. The recently elucidated structures of
mammalian Perforin-2 reveal it to be a homopolymer that depends upon low pH, such as
within phagosomes, to transition to its membrane-spanning pore conformation. Clinical
manifestations ofMpeg1missense mutations further highlight the pivotal role of Perforin-2
within phagocytes. Controversies and gaps within the field of Perforin-2 research are also
discussed as well as animal models that may be used to resolve the outstanding issues.
Our review concludes with a discussion of bacterial counter measures against Perforin-2.
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INTRODUCTION

Perforin-2 is a member of the Membrane Attack Complex,
Perforin/Cholesterol-Dependent Cytolysin (MACPF/CDC)
superfamily of proteins (1). Most, but not all, members of this
family are pore-forming proteins (2–6). This includes lytic
bacterial toxins such as pneumolysin and perfringolysin O, as
well as innate immune effectors such as complement protein C9
and Perforin-1. In the blood C9, together with other complement
proteins, forms the membrane attack complex (MAC) to perforate
the envelope of gram-negative bacteria (7, 8). Perforin-1 is
deployed when killer lymphocytes degranulate to destroy virally
infected or cancerous cells (9, 10). These molecules polymerize
into rings with inner diameters of 120–300 Å (7, 10–12). Pores are
formed when each MACPF deploys four amphipathic b-strands
through lipid bilayers to form the b-barrel of the pore.

The gene encoding Perforin-2, Mpeg1, was first described in
1995 as a highly expressed gene within macrophages (13). After
noting the presence of a MACPF domain the authors proposed
that Perforin-2 was likely another pore-forming protein.
However, more than a decade would lapse before functional,
mechanistic, and structural research would begin in earnest. It is
now clear that Mpeg1 is a primordial gene present in taxa
spanning sponges to humans. Its domain organization has
remained little changed by evolution except in cases of gene
duplication. In such cases the paralog may diverge from Mpeg1.
Indeed analyses across taxa and gene families suggest Mpeg1 is
the ancestor of Perforin-1 and MACPF-containing complement
proteins (14). In this review we critically evaluate recent
progress in the nascent but growing field of Perforin-2
research with an emphasis on its expression and function
within phagocytic cells.
PERFORIN-2 STRUCTURE AND
CELLULAR LOCATION

Unlike soluble Perforin-1 and C9, Perforin-2 is a type I
transmembrane protein (Figure 1). In this orientation the
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MACPF of Perforin-2 resides within the lumen of vesicular
structures. As determined by subcellular fractionation of
human macrophages, endogenous Perforin-2 colocalizes with
markers of the ER, Golgi, endosomes, and phagosomes (15). A
proteomic study identified Perforin-2 (referred to as MPS1 in
that study) in the phagolysosome compartment of activated
murine macrophages (16). Another analyzed bone marrow
derived dendritic cells and reported that Perforin-2 co-resides
with subunits of the phagocytic NAPDH oxidase and other
antimicrobial effectors of endo/phagosomes (17). Moreover,
LPS stimulation increased the abundance of Perforin-2 within
those vesicles. A third proteomic study found Perforin-2 within
macrophage endo/phagosomes following phagocytosis of latex
beads (18). Consistent with the studies above, a Perforin-2-RFP
fusion protein was shown to co-localize with phagocytosed
bacteria (15). This is unlikely to be an artefact because the
fusion protein was also shown to be bactericidal against
phagocytosed bacteria. In aggregate these studies provide
compelling evidence that Perforin-2 is trafficked to
endo/phagosomes.

The transmembrane domain of Perforin-2 is followed by a
cytosolic tail; typically, of less than 40 residues. As discussed
below this short cytosolic tail is involved in the intracellular
trafficking of Perforin-2 (19). In addition to the loss of the
transmembrane domain, Perforin-1 and C9 have also lost the
P2 domain. This latter domain is conserved across taxa and to
date has not been found in any gene other than Mpeg1. The
function of the novel P2 domain was only recently investigated
through structural and mechanistic studies (20, 21). Its most
prominent feature is an extended b-hairpin—stiffened by inter-
strand disulfide bonds—that culminates in a hydrophobic tip
(Figure 2) (20). The extended b-hairpin is likely involved in the
initial interactions with membranes as determined by liposome
binding studies with the isolated P2 domain (20). As expected,
liposome binding was abolished by deletion of the b-hairpin (20).
Consistent with the composition of bacterial membranes, the P2
domain was also found to preferentially bind liposomes
containing negatively charged lipids (20). Although more work
is required these studies suggest that the P2 domain mediates
FIGURE 1 | Domain Organization of Mammalian C9 and Perforins. Each of the immune effectors contains a signal peptide (SP), membrane attack complex perforin
(MACPF), and epidermal growth factor-like (EGF) domains. However, the latter is truncated in Perforin-2. The P2 domain is unique to Perforin-2 and has been
evolutionarily conserved across taxa. Recent structural and functional studies suggest the P2 domain initiates contact with target membranes. However, this does
not preclude other putative functions such oligomerization and/or ring stabilization. Another distinctive feature of Perforin-2 is a transmembrane domain (TM) near its
carboxy terminus. Although Perforin-2 is initially a Type I transmembrane protein, it is likely cleaved from its TM domain as it is delivered to phagosomes to facilitate
oligomerization and pore formation. The TM domain is followed by a short cytosolic tail that is involved in the intracellular trafficking of Perforin-2 to phagosomes.
TSP1, thrombospondin type-1 repeat; LDL, low-density lipoprotein receptor class A repeat; C2, calcium-dependent phospholipid binding domain; CTR, carboxy-
terminal region.
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Perforin-2’s initial interactions with target membranes.
Moreover, its extended b-hairpin may be functionally
analogous to domain 4 of cholesterol-dependent cytolysins.
Domain 4 contains the cholesterol binding motif as well as a
signature undecapeptide at the tip of the domain that anchors the
cytolysins to the target membrane (22, 23).

In the recently determined structures of polymerized human
and mouse Perforin-2 the P2 and MACPF domains form the
exterior and interior rings of the polymer respectively (Figure 3)
(20, 21). On average these rings are composed of 16 monomers
with a height of 83 Å in the pre-pore conformation (20, 21). The
pre-pore to pore transition is accompanied by a dramatic 170%
increase in height as each monomer deploys its four amphipathic
b-strands (Figure 3) (20). These b-strands align with each other
and those of neighboring subunits to form the barrel of the pore.
Acidic pH drives the pre-pore to pore transition (20, 21). This
trigger is biologically relevant because it has long been
established that phagosomes rapidly acidify and Perforin-2 has
been shown to colocalize with phagocytosed bacteria such as
Salmonella enterica serovar Typhimurium; hereafter S.
Typhimurium (15, 24, 25). A separate study—graphically
summarized in Figure 4—found that periplasmic proteins of S.
Typhimurium were efficiently degraded within the phagosomes
of wild-type macrophages and neutrophils (26). In contrast, the
Frontiers in Immunology | www.frontiersin.org 3
degradation of periplasmic proteins was delayed within the
phagosomes of Mpeg1−/− phagocytes. This was not due to
differences in phagosomal proteases because a surface marker
(flagellin) was efficiently degraded in both wild-type and
Perforin-2 deficient phagocytes. Thus, the in situ observations
are consistent with Perforin-2 pores breaching the outer
membrane of S. Typhimurium allowing the passage of
phagosomal hydrolases to the periplasmic space.
PERFORIN-2 IN NON-MAMMALIAN
SPECIES

Mpeg1 Expression in Invertebrates
and Bony Fish
As in other animals the innate immune responses of
invertebrates and bony fish provide protection against
pathogenic threats. Some of those responses involve changes
within the transcriptome and pathogen or PAMP induced
expression can be indicative of a gene’s immunological role.
Mpeg1 expression is upregulated in the sponge Suberites
domuncula following LPS challenge relative to untreated
animals (27). Similarly, LPS has been shown to induce the
expression of Mpeg1 in the stony coral Pocillopora damicornis
(28). Mpeg1 mRNA was significantly upregulated in the brain,
head kidney, heart, liver, intestine, and spleen of the starry
flounder Platichthys stellatus following infection with
Streptococcus parauberis (29). Relative to untreated controls
the expression of Mpeg1 is significantly increased when the
Mediterranean mussel Mytilus galloprovincialis is exposed to
heat-killed Vibrio anguillarum (30). Likewise infection of the
disk abalone Haliotis discus discus with either gram-negative
Vibrio parahaemolyticus or gram-positive Listeria monocytogenes
induces the expression of Mpeg1 (31). Transcriptome analysis of
the larvae of the eastern oyster Crassostrea virginica revealed that
exposure to either the gram-negative Phaeobacter inhibens or
gram-positive Bacillus pumilus induces expression of Mpeg1
(32). Similar results were observed when another species of
mollusk, Haliotis midae, was challenged with live V. anguillarum
(33). In the latter study increased transcription of Mpeg1
corresponded with elevated levels of Perforin-2. Of the studies
discussed directly above the latter was the only one to evaluate
expression at the protein level.

The genome of the orange spotted grouper, Epinephelus
coioides, harbors two copies of Mpeg1. Relative to other organs
both are constitutively expressed at high levels in the spleen and
head kidney (34). Hematopoiesis occurs in the latter organ and it
is analogous to mammalian bone marrow (35). Both copies were
significantly upregulated in the spleen and gills following
challenge with Cryptocaryon irritans, a protozoan parasite of
significant concern to the aquaculture industry (34, 36). These
results were subsequently confirmed by immunofluorescence
with polyclonal antibodies that recognize both isoforms of E.
coiodes Perforin-2 (37). In aggregate studies across species of
invertebrates and bony fish have shown that infection and/or
PAMPs induce the expression of Mpeg1.
FIGURE 2 | The P2 domain of murine Perforin-2. The most prominent
feature within the P2 domain is an extended b-hairpin; highlighted in dark
orange. Two disulfide bonds stiffen the b-hairpin. Hydrophobic residues at the
b-hairpin’s tip are shown in dark green. These residues likely orient Perforin-2
on phagocytosed bacteria by initiating contact with target lipid bilayers.
Numbering is relative to UniProt accession number A1L314. This graphic was
rendered with UCSF Chimera from PDB file 6SB1 (http://www.rcsb.org/
structure/6SB1) (20).
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Although infection or PAMP induced expression of Mpeg1
suggests Perforin-2 plays a role in host defense, Mpeg1
downregulation following bacterial infection may be indicative
of bacterial countermeasures. For example, in S. domuncula
expression of Mpeg1 is dampened by the bacterial sponge
pathogen Pseudoalteromonas sp., but not the commensal
bacterium Endozoicomonas sp.; species were indeterminate
(38). This differential effect is suggestive of a pathogenic
countermeasure deployed to defeat Perforin-2. Reduced Mpeg1
expression has also been documented in the corals Acropora
cerviconis and Acropora palmata when they present with white
band disease (28, 39). Although the etiological agent of white
band disease is currently unknown, it has been suggested to be
bacterial (40). Although the number of studies is few and the data
preliminary, they raise the possibility that certain species of
pathogenic bacteria may suppress the expression of Mpeg1 to
promote colonization of invertebrates. Whether this is through
stealth strategies, such as LPS modifications, or active counter
measures, such as effector proteins and toxins, remains to
be elucidated.
Frontiers in Immunology | www.frontiersin.org 4
Analyses of Recombinant Perforin-2 From
Invertebrates and Bony Fish
Seminal studies have reconstituted the activity of the
complement membrane attack complex and Perforin-1 in vitro
(7, 12, 41, 42). In recent years researchers have attempted to
extend such analyses to Perforin-2. Although the P2 domain of
Perforin-2 is evolutionarily conserved from sponges to humans,
three studies dispensed with it to evaluate the activity of the
MACPF domain from abalone, H. discus discus, oyster
Crassostrea gigas, or flounder Platichthys stellatus (29, 31, 43).
These studies reported at least some activity against gram-
negative (Edwardsiella piscicida, Escherichia coli, Vibrio
anguillarum, Vibrio campbelli, Vibrio harveyi, Vibrio ordalii,
Vibrio tapetis, and Vibrio alginolyticus) and gram-positive
(Streptococcus iniae, Streptococcus parauberis, Staphylococcus
aureus, Bacillus thuringiensis, and Bacillus subtilis) bacteria.
Others have examined the antibacterial effects of mostly full-
length Perforin-2; minus signal peptides, transmembrane
domains and carboxy terminal residues (27, 34). Recombinant
Perforin-2 from sponge, S. domuncula, was reported to have a
FIGURE 3 | The pre-pore and acid-dependent pore of murine Perforin-2 from top and side views. Each polymer is composed of 16 subunits. MACPF domains line
the interior of each polymer and are depicted in alternating shades of green. P2 domains are depicted as orange ribbons that encircle the exterior of each polymer. A
truncated EGF domain, light gray, links the MACPF and P2 domains. The carboxy-terminal region is shown in black. This region is visible in the pre-pore but was not
resolved in the pore. Images were rendered with UCSF Chimera from PDB files 6SB3 (http://www.rcsb.org/structure/6SB3) and 6SB5 (http://www.rcsb.org/
structure/6SB5) (20).
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negative effect upon E. coli K-12 and B; but not gram-positive
Staphylococcus aureus (27). In contrast, Perforin-2a from orange
spotted grouper, E. coiodes, was reported to inhibit the growth of
both gram-negative and gram-positive bacteria (34). E. coiodes
Perforin-2b was found to be active against only gram-positive
bacteria (34). This difference is surprising because the two
proteins have 90% overall identity. Nevertheless, differences
were also observed when the two proteins were tested against
parasitic C. irritans. Perforin-2b has no activity against C.
irritans. In contrast Perforin-2a inhibited motility and caused
rounding of theronts, the free-swimming infective form of the
parasite. This rounding led the authors to speculate that
Perforin-2a decreases C. irritans infectivity although this was
not directly tested (34).

Although each of the above studies claim that recombinant
Perforin-2, or its MACPF, has antimicrobial activity, each has
methodological and analytical weaknesses. For example, each
recombinant protein was expressed in E. coli and thus would lack
their usual post-translational modifications. The MACPFs of
complement protein C9 and Perforin-1 are known to be
glycosylated (10, 44–49). Likewise, the MACPFs of Perforin-2
from sponges to humans are predicted to be N-glycosylated at
two or more Asn residues (http://www.cbs.dtu.dk/services/
NetNGlyc/). In the case of murine and human Perforin-2 these
modifications have been confirmed and may play critical roles in
folding and/or pore formation (20, 21, 50, 51). It is also
important to point out that none of the four studies reported
bacterial killing. Rather, three simply measured the optical
absorbance of bacterial cultures (31, 34, 43). The fourth did
quantify CFUs but only after overnight incubation with the
Frontiers in Immunology | www.frontiersin.org 5
protein (27). Thus, in all four cases it is unknown if the
reported effects are due to bacterial death or growth inhibition.

Although it is impossible to discern the mechanism(s) of the
reported effects, we can deduce that pore formation was probably
not involved when only the MACPF domain of Perforin-2 was
used (31, 43). Structural studies have shown that the P2 domain
is likely intrinsic to polymerization and pore formation as it
forms the outer ring of both pre-pores and pores with extensive
surface area contacts between adjacent P2 domains and MACPFs
(Figure 3) (20, 21). Phospholipid and liposome binding studies
have also revealed that the P2 domain (Figure 2) is likely
required for initiating interactions with the bacterial envelope
(20, 21). The reported activity against gram-positive bacteria is
also unexpected because they are surrounded by thick layers of
peptidoglycan (27, 31, 34, 43). Although Perforin-2 does kill
phagocytosed gram-positive bacteria, this likely requires the
assistance of phagosomal hydrolases to degrade the peptidoglycan
barrier (15, 52–54).
ANIMAL MODELS FOR PERFORIN-2
RESEARCH

Zebrafish
Zebrafishhave threeMpeg1paralogs:Mpeg1,Mpeg1.2, andMpeg1.3
(55, 56). Both Mpeg1 and Mpeg1.2 are expressed in macrophages
(57). In contrast, transcriptomic studies of both larval and adult
zebrafish have determined thatMpeg1.3 is a silent gene (57).Mpeg1
is under the control of the spi/pu.1 transcription factor which also
regulates the expression of genes associated with myeloid
FIGURE 4 | Perforin-2 facilitates protease entry to the periplasmic space. Shortly after microbe phagocytosis Perforin-2 is delivered to the phagosome and deposits
on the bacterial envelope. As the phagosome acidifies pre-pores transition to pores that breach the outer membrane. This allows proteases to enter the periplasmic
space and begin the digestion of periplasmic and inner membrane proteins. In the absence of Perforin-2 phagosomal proteases are restricted to digestion of outer
membrane proteins such as flagellin. This graphic is an adaptation from a previously published version (26).
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differentiation (56). Thus, fluorescent reporters such as mCherry
can be used to track macrophages in situ when the reporter is
expressed from the Mpeg1 promoter (56) (Figure 5). Mpeg1.2
expression is upregulated during infection with mycobacteria,
gram-negative and gram-positive bacteria (57). Curiously, the
same bacterial infections inhibit Mpeg1 expression (57). This
expression pattern is unlikely the result of bacterial effectors or
toxins, asMpeg1 downregulationwas also observed when zebrafish
were challenged with heat killed or avirulent bacteria.

Although Mpeg1 and Mpeg1.2 are inversely expressed during
bacterial infections, both genes produce antibacterial responses (57).
Zebrafish embryos treated with Mpeg1 specific morpholinos have
increased intracellular loads of S. Typhimurium andMycobacterium
marinum relative to control morpholinos. Likewise embryos treated
with Mpeg1.2 morpholinos succumb to bacterial infection
significantly earlier than Mpeg1 knockdowns and controls (57). It
was also observed that Mpeg1.2 has a greater antibacterial
contribution than Mpeg1 which is consistent with their expression
patterns during infection (57). Curiously, Mpeg1 knockdowns
survive infections longer than control embryos despite greater
bacterial burden. It has been proposed that Mpeg1 is a broad
regulator of innate immune responses that promotes survival by
diminishing lethal inflammatory responses whileMpeg1.2 is directly
Frontiers in Immunology | www.frontiersin.org 6
responsible for the bactericidal effects (57). This is surprising given
that the two proteins share a common domain architecture and are
80%–90% identical. Additional experimentation is required to
clarify the roles of Mpeg1 and Mpeg1.2 during infection.

Transgenic Mice
Eckhard R. Podack (1943–2015), in a remarkably productive
collaboration with his trainee Dr. Ryan M. McCormack (59), was
the first to demonstrate that mammalian Perforin-2 plays a pivotal
role in the elimination of intracellular bacteria including MRSA,
Mycobacterium smegmatis, and S. Typhimurium (15, 53). The
Podack laboratory was also the first to report colocalization of
Perforin-2with phagocytosed bacteria (15), and interferon induced
expression of Mpeg1 in keratinocytes, fibroblast and a plethora of
other cell types (15). Prof. Podack was also the first to demonstrate
that bacterial challenge elicits the expression of Mpeg1 in murine
embryonic fibroblasts (53). Prof. Podack also coined the moniker
“Perforin-2” and vigorously advocated for its usage because he
understood that Perforin-2 is more descriptive of the protein’s
function than macrophage-expressed gene 1 protein (MPEG1)
(60, 61). When coupled with his lifelong interest in MACPFs of
the immune system (62–71), these and other foundational
contributions to the field motivated Prof. Podack to commission
the development of Mpeg1 knockout mice at the University of
MiamiMiller School ofMedicine,USA.When raised under specific
pathogen-free conditions these knockout mice develop normally
and are phenotypically indistinguishable from their wild-type
counterparts. However, in another seminal publication—and his
last as sole corresponding author — Prof. Podack reported that
Perforin-2 deficient mice succumb to low dose bacterial infections
that most wild-type mice survive (15). As described below these
results are not limited to a particular route of infection or pathogen.

Orogastric Inoculation of Enteric, Gram-Negative
Pathogens
Wild-type, Mpeg1 +/− and −/− mice have been orogastrically
challenged with the enteric pathogens Yersinia pseudotuberculosis
and S. Typhimurium (15, 19). In both cases all Mpeg1 −/− mice
succumbed to infection within 15 days of inoculation (Figure 6). In
contrast all wild-type mice survived sublethal challenges.
Heterozygous mice revealed a gene dosage effect with survival
profiles between wild-type and Mpeg1 −/− mice. Perforin-2
deficiency also correlated with significantly higher loads of the
pathogens in the intestines and dissemination to deeper tissues
such as spleens and livers (Figure 6) (15, 19). Thus, two
independent studies have demonstrated that Perforin-2 deficient
mice are immunocompromised and unable to control infections
that their wild-type cohorts survive (15, 19). These findings
are further supported by in vitro studies which have
demonstrated that Perforin-2 deficient phagocytes and fibroblasts
are less efficient killers of intracellular bacteria than wild-type cells
(15, 26, 52, 53, 72).

Chlamydia Intravaginal Infection
Because phagocytes limit chlamydiae infections, investigators
evaluated the role of Perforin-2 in an intravaginal infection
model with Chlamydia muridarum; a gram-negative, obligate
FIGURE 5 | Mpeg1::mCherry reporters facilitate the tracking of macrophages in
larval zebrafish. Because the expression of Perforin-2 is largely restricted to
macrophages in zebrafish, the insertion of mCherry into the Mpeg1 locus allows
localization of macrophages in both fixed and live animals. The transgenic animals
above were infected with sublethal and lethal doses of Shigella flexneri and fixed
24 h post infection. The above images have been previously published (58) and
are a composite of the red and green fluorescent channels. This figure was
adapted from source images posted at https://doi.org/10.1371/journal.ppat.
1003588.g002 under the CC BY 4.0 license.
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intracellular pathogen (73, 74). In addition, cell based assays had
previously established that Perforin-2 limits the growth of
chlamydiae in macrophages (72). In the intravaginal model
Mpeg1 −/− mice exhibited significantly greater weight loss than
wild-type controls and displayed other signs of morbidity such as
ruffled fur (74). Surprisingly, there was no difference in the time to
resolution— as determined by shedding of inclusion forming units,
a quantitative indicator of infectivity and/or transmissibility—
between the two groups. However, the researchers also observed
that Perforin-2 deficient mice shed less inclusion forming units;
especially, at mid-time points of the infection. To explain this
conundrum the researchers speculate that C. muridarum may
more easily ascend the genital tract and disseminate in Perforin-2
deficient than wild-type mice (74). However the experiment was not
designed to test that hypothesis. Therefore, it will be necessary to
revisit this model and monitor dissemination to peripheral sites to
determine whether or not C. muridarum does disseminate in
Perforin-2 deficient mice.

Epicutaneous Infection With MRSA
S. aureus is a gram-positive bacterium often present on human
skin as a part of the dermal microbiome. To evaluate the role of
Perforin-2 at the dermal barrier investigators shaved mice then
used tape to disrupt the epidermal barrier prior to administering
methicillin resistant S. aureus (MRSA) (15). As with other
Frontiers in Immunology | www.frontiersin.org 7
infection modalities the vast majority of infected Mpeg1 −/−
mice perished; although, the time to death was significantly
delayed compared to the orogastric models discussed above. In
contrast, ca. 80%–100% of the heterozygous and wild-type mice
survived MRSA challenge. In another experiment the skin of
Mpeg1 −/− mice contained 3 logs more MRSA than that of wild-
type or heterozygous mice (15). As expected, Perforin-2
deficiency was accompanied by bacterial dissemination to the
blood, spleen, and kidneys. MRSA may manipulate the
transcriptome of host cells to promote its own survival because
the pathogen was shown to decrease the expression of Mpeg1 in
human skin cells (75). However, pretreating human skin cells
with the commensal bacterium S. epidermidis prior to MRSA
infection led to increasedMpeg1 expression and enhanced killing
of intracellular bacteria.

Intravenous Delivery of Listeria
Perforin-2 has also been shown to aid in defense against another
gram-positive bacterium, Listeria monocytogenes. Perforin-2
deficient mice infected intravenously with L. monocytogenes
have significantly greater loads of the pathogen in their spleens
and livers than wild-type mice (52). In a pregnancy model of
infection Perforin-2 deficient mice had significantly higher loads
of L. monocytogenes in both the placenta and fetuses (76). In these
models injected bacteria are phagocytosed and killed by splenic and
A

B

FIGURE 6 | Peforin-2 deficient mice are immunocompromised. (A) Survival curves of wild-type, Mpeg1 +/−, and −/− C57Bl/6 x 129X1/SvJ mice after orogastric
inoculation with 106 CFU Y. pseudotuberculosis or 105 CFU S. Typhimurium. P values determined by Log-rank (Mantel-Cox) test. (B) Organ loads of wild-type, Mpeg1
+/−, and −/− C57Bl/6 x 129X1/SvJ mice after orogastric inoculation with 106 CFU Y. pseudotuberculosis or 105 CFU S. Typhimurium. The former group of animals were
sacrificed 10 days post inoculation while the latter were sacrificed 5 days post inoculation. Horizontal bars denote the medians. P values were determined by non-
parametric Kruskal-Wallis test. This figure was adapted from previously published work (15, 19) from source data posted at https://doi.org/10.35092/yhjc.12584993.v1
under the CC BY 4.0 license. Sm. Int., small intestine.
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liver macrophages (77). But some phagocytosed bacteria escape to
the cytosol where they replicate and disseminate to other cells via
actin polymerization (78). To escape the phagosomal vacuole L.
monocytogenes deploys its own pore-forming protein, the
cholesterol-dependent cytolysin listeriolysin O (79). Timing is
likely critical: L. monocytogenes must escape the vacuole before
Perforin-2 delivers its lethal blow. Consistent with this hypothesis
significantly more bacteria escape to the cytosol ofMpeg1 −/− than
wild-type macrophages in cell based assays (52).

In the above experiments the authors also observed that
phagocytosed L. monocytogenes were more likely to reside
within acidic vacuoles of Perforin-2 deficient macrophages
than wild-type macrophages (52). To explain this phenomenon
the authors proposed that Perforin-2 limits vacuole acidification.
This is controversial as to date there is no mechanistic evidence
to support that hypothesis. Rather, the recent discovery that acid
drives the Perforin-2 pre-pore to pore transition suggests an
alternative hypothesis (20, 21). In our reinterpretation of the
available data we propose that fewer L. monocytogenes reside
within acidic vacuoles because acid activates Perforin-2 which
then facilitates the destruction of vacuolar bacteria. In the
absence of Perforin-2 bacteria are simply able to persist longer
within acidic vacuoles. We also note that another study found
that the acidification of Salmonella containing vacuoles was
equivalent between wild-type and Perforin-2 deficient
macrophages; see Bai et al., 2018, Supplementary Materials (26).

Contradictory Signals: Perforin-2 and
Type I IFN Signaling
Although Mpeg1 is an IFN stimulated gene (15, 53), it has also
been reported that Perforin-2 is required for Type I IFN signaling
by forming complexes with IFN receptors IFNAR1 and IFNAR2
(80). The impetus for that study was the observation that Mpeg1
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deficient mice are resistant to LPS induced septic shock; a model
in which Type I IFNs play a central role in driving the cytokine
storm. However other studies found that Mpeg1 deficient mice,
on either C57BL/6 or 129X1/SvJ backgrounds, are not more
resistant to LPS induced septic shock than wild-type animals
(81). As validation of the latter study’s experimental design and
outcome, both wild-type and knockout mice on the 129X1/SvJ
genetic background were more resistant to LPS than C57BL/6
mice. This effect is consistent with previous studies and is due to
the fact that 129X1/SvJ mice lack caspase-11 (82, 83).

Further contradicting Perforin-2’s role in Type I IFN
signaling, an RNAseq study found that Type I IFN signaling is
functional in Mpeg1 −/− murine phagocytes stimulated with
IFN-b (84). It is also difficult to reconcile the proposed
complexes with the structures of Perforin-2 and IFNARs (20,
21, 80, 85). For example, it was reported that binding to and
signaling through IFNAR1 requires glycosylation of Perforin-2
residues Asn185 and Asn269; numbering relative to UniProt
entry A1L314 (https://www.uniprot.org/uniprot/A1L314) (80).
Although the structures of both mouse and human Perforin-2
confirm that both residues are glycosylated, Asn185 and Asn269
reside on opposite faces of the MACPF domain (Figure 7) (20,
21). Not surprisingly, docking simulations with the known
structures of IFNAR1 and Perforin-2 monomers found no
plausible pathway for simultaneous binding to Asn185 and
Asn269 by IFNAR1 (86). Thus, it is not clear how IFNAR1 is
able to contact both as has been proposed (80). Likewise, it has
been reported that glycosylation of Asn375 in the P2 domain is
essential for interactions with IFNAR2 (80). This residue is
visible in all published structures of murine and human
Perforin-2 but unlike Asn185 and Asn269, Asn375 is not
glycosylated (Figure 7, middle image) (20, 21). Although it is
possible that the glycosylation pattern of Perforin-2 differs
FIGURE 7 | Glycosylated Asn185 and Asn269 are located on opposite faces of the MACPF domain. A monomer of murine Perforin-2 shown in (Left) full view and
(Middle & Right) progressive cross-sections into the molecule. The MACPF and P2 domains are shaded green and orange respectively. The truncated EGF domain,
which connects the MACPF and P2 domains, is shaded grey and is partially visible in the upper right of the far right image. The extended carboxy terminal region is
shown in tan. Asn185 and 269 are conserved and glycosylated in both murine and human Perforin-2 (20, 21). Their glycans are shown as pink spheres. In contrast
to the MACPFs, the P2 domains of both species are devoid of glycosylation. This includes the absence of glycosylation of Asn375; shaded deep blue above and
visible in the middle image. Images were rendered with UCSF Chimera from PDB file 6SB3 (http://www.rcsb.org/structure/6SB3) (20). Residue numbering is relative
to UniProt entry A1L314 (https://www.uniprot.org/uniprot/A1L314).
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between expression systems and cell lines, bioinformatics
suggests otherwise. Like other servers, NetNGlyc identifies Asn-X-
Ser/Thr sequons (http://www.cbs.dtu.dk/services/NetNGlyc/).
However, its neural network also evaluates the surrounding
sequences to predict the probability of glycosylation. In agreement
with the structural studies (20, 21). NetNGlyc predicts glycosylation
of Asn185 and Asn269 but not Asn375. In summary, the reported
requirement for Perforin-2 in Type I IFN signaling and proposed
mechanism (80) are challenged by transcriptomics, LPS induced
sterile septic shock, and molecular analyses. Clearly additional
studies are required to resolve these contradictions.

PfpL, A Paralog of Murine Mpeg1
Unlike humans, mice have a paralog of Mpeg1 named Pore-
Forming Protein Like (PfpL, UniProt entry Q5RKV8). Over their
entire length PfpL and murine Perforin-2 are 65% identical. This
suggest that PfpL could also function as an immune effector.
However, to date there have been no functional studies of PfpL
and expression of the PfpL transcript appears to be more limited
than that ofMpeg1 as determined by the murine gene expression
database, GXD (87). Unlike Mpeg1, PfpL expression has only
been observed in the context of murine development and in the
adult mouse liver. Particularly high expression was also observed
in a subset of trophoblast giant cells and the parietal yolk sac
(88). Further experiments are needed to determine whether or
not PfpL is a functional immune effector. In addition, greater
clarity is required regarding the timing and location of its
expression. However, the restricted expression of PfpL and the
clear immunocompromised phenotype of Mpeg1 knockout mice
suggest PfpL is at best a minor player in host defense under
most circumstances.
Frontiers in Immunology | www.frontiersin.org 9
CLINICAL IMPACTS OF MPEG1 MISSENSE
AND NONSENSE MUTATIONS

The Genome Aggregation Database (gnomAD, https://gnomad.
broadinstitute.org/) catalogs 432 missense (codon changes) and
23 nonsense (premature stop codon) mutations in humanMpeg1
(89). With few exceptions these mutations are heterozygous and
to date only five have been functionally evaluated (90, 91). In one
study a young adult female with a history of recurrent
polymicrobial skin infections was found to have a heterozygous
nonsense mutation in codon Tyr430*; numbering relative to
UniProt entry Q2M385 (https://www.uniprot.org/uniprot/
Q2M385) (91). This nonsense mutation is within the extended b-
hairpin of the P2 domain (Figure 8A). It is not known if this
truncated protein is stably expressed. But even if it is, it is unlikely to
reach endo/phagosomes because it lacks a transmembrane domain
and cytosolic tail for retention and intracellular trafficking
respectively. Thus, this mutation likely reduces the availability of
Perforin-2 within endo/phagosomes. As expected, the ability of the
patient’s blood derived phagocytes to eliminate intracellular
bacterial pathogens was found to be significantly impaired
compared to phagocytes from healthy donors (Figure 8B) (91).
This impairment is the likely cause of the patient’s clinical
presentations and is consistent with the gene dosage effects seen
with Perforin-2 heterozygous mice after infection with a variety of
pathogens (15, 19).

In another study three Mpeg1 missense mutations and one
nonsense mutation were identified within a cohort of patients
with pulmonary nontuberculous mycobacterial infections (90).
T73A and P316S are within the MACPF domain while Q398*
and P405T reside within the P2 domain (Figure 8A). All are
A B

FIGURE 8 | Perforin-2 haploinsufficiency results in the reduced ability of human phagocytes to kill intracellular bacteria. (A) A monomer of human Perforin-2 in its
pre-pore conformation. The MACPF and P2 domains are depicted in light green and orange respectively. The carboxy-terminal region is shown in tan. Glycans
attached to N185 and N269 are shown as space filling models. Also shown are the positions of deleterious missense (magenta) and nonsense (cyan) mutations
(90, 91). Residue numbering is relative to relative to UniProt entry Q2M385 (https://www.uniprot.org/uniprot/Q2M385). (B) Killing of intracellular S. Typhimurium by
neutrophils isolated from the blood of a donor carrying a heterozygous Y430* nonsense mutation or healthy controls. Relative bacterial colony forming units are
reported as Log2 Fold Change = log2(CFU at time X) – log2(CFU at time initial). **P < 0.01 by 2way ANOVA. This figure was adapted from previously published work
(91) under the CC BY 4.0 license. Molecular graphics were rendered with UCSF ChimeraX from PDB file 6U2J (http://www.rcsb.org/structure/6U2J) (21).
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heterozygous and each patient presented with a history of
pulmonary Mycobacterium avium complex as well as
nonmycobacterial pulmonary infections. Each of the mutations
are apparently deleterious because patient derived cells were less
able to kill M. avium than cells from age matched controls (90).
The researchers subsequently used CRISPR/Cas9 to introduce
the mutations into THP-1 cells, a human macrophage-like cell
line. As expected, THP-1 cells carrying the missense and
nonsense mutations exhibited reduced killing capacity when
infected with M. smegmatis, S. Typhimurium, and S. aureus.
Based on their locations within the structures of Perforin-2 T73A
and P316S may interfere with the deployment of the pore
forming b-strands and pre-pore to pore transition respectively
(20, 21). If it is stably expressed Q398* is likely secreted to the
extracellular milieu because it lacks the transmembrane domain
and cytosolic tail of full length Perforin-2. The impact of P405T is
harder to predict as it lies in a more disordered region of the
structure (21). However, it is also possible that the observed
phenotypes are the result of low protein expression and/or
instability since the researchers did not evaluate either (90). In
the future higher resolution Perforin-2 structures and greater
understanding of the mechanism of acid sensing, pre-pore to
pore transition, and pore formation may facilitate testable
hypotheses of the clinical impacts of Mpeg1 missense mutations.
BACTERIAL DEFENSES AGAINST
PERFORIN-2

In resting cells Perforin-2 has a diffuse, perinuclear dispersal.
However, it is rapidly relocated to punctate bodies upon
exposure to PAMPs or infection (19). Some of these punctate
bodies are likely phagosomes because Perforin-2 has been shown
to co-localize with phagocytosed bacteria (15). This is consistent
with a proteomic study that found Perforin-2 co-resides with
subunits of the phagocytic NAPDH oxidase, proton transporters,
and many other antimicrobial effectors of phagosomes (17). Other
punctate bodies may be sorting endosomes in the process of
delivering Perforin-2 to phagosomes because another proteomic
study found Perforin-2 in endosomes following phagocytosis of
latex beads by macrophages (18). LPS stimulation of bone marrow
derived macrophages has also been shown to increase the
abundance of Perforin-2 in endo-lysosomes compared to
untreated cells (17).

The intracellular trafficking of Perforin-2 is driven by PAMP-
dependent ubiquitination — most likely monoubiquitination—
of one or more conserved lysines in its short cytosolic tail (19).
Mutagenesis of the three most conserved lysines abolished the
formation of punctate bodies and Perforin-2 dependent killing of
bacteria. Ubiquitination of Perforin-2’s cytosolic tail was further
shown to be dependent upon a cullin-RING E3 ubiquitin ligase
(CRL) complex containing cullin-1 and bTrCP (Figure 9) (19).
This led to the hypothesis that certain pathogens may deploy Cifs
to block the intracellular trafficking of Perforin-2 because CRL
activity is dependent upon the ubiquitin like molecule NEDD8
and Cifs are NEDD8 deamidases (92–96). As predicted, the
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researchers found that wild-type but not cif mutants of Y.
pseudotuberculosis and enteropathogenic E. coli (EPEC)
blocked the ubiquitination and intracellular trafficking of
Perforin-2, as well as Perforin-2 dependent killing (19). In vivo
ca. 80% of C57BL/6 mice infected with wild-type Y.
pseudotuberculosis perished while all mice infected with a cif
mutant survived (Figure 10). This difference was abolished when
the two bacterial strains were used to infect Mpeg1 −/− mice.
Although Cif inactivation of CRLs has broad cellular
consequences, the latter results suggest that inhibition of
Perforin-2 is the primary objective and most consequential
effect. While Cifs are just one example of anti-Perforin-2
effectors bacterial pathogens express a multitude of effectors
aimed at promoting their survival; many of which have yet to
be fully characterized (97). Given that Perforin-2 is a recently
described immune effector, it is reasonable to predict that other
anti-Perforin-2 effectors will be discovered as the field matures.
DISCUSSION

Relative to other MACPF proteins of innate immune systems,
the field of Perforin-2 research is relatively new even though the
gene that encodes Perforin-2,Mpeg1, is likely the most ancient of
the MACPF encoding genes (14). Nevertheless in recent years
vertebrate studies have established that Perforin-2 has broad
spectrum bactericidal activity that significantly limits pathogen
proliferation and dissemination in vivo (15, 19, 26, 52–54, 57, 72,
90). There is also evidence to suggest that Perforin-2 functions
similarly in invertebrates; although, such studies are hampered
by the lack of animal and tractable cell culture models (27, 28, 30,
31, 33, 38, 39). The recent structural determinations of both
mouse and human Perforin-2 polymers have further provided
significant insight with regards to the mechanism(s) of pore
formation (20, 21). Eventually such high-resolution structures
may afford greater understanding of the clinical impacts of
Mpeg1 missense mutations amongst the human population.

In vitro recombinant mammalian Perforin-2 spontaneously
polymerizes and one of the most significant advancements from
in vitro studies was the discovery that the pre-pore to pore
transition is acid dependent (20, 21). In retrospect the fact that
low pH drives pore formation seems intuitive given that
Perforin-2 is deployed to acidic phagosomes. Acid dependency
may also be a safety mechanism, ensuring that Perforin-2
remains in a latent state so as not to damage the vesicular and
cellular membranes of the phagocyte. Acid dependency likely
evolved very early as lower metazoans such as sponges, corals,
and mollusks have been shown to express Mpeg1 and have
macrophage-like cells that phagocytose and eliminate foreign
invaders through the use of lysosomal enzymes, reactive oxygen
species, and cellular acidification (98–103). However, the exact
mechanism of acid driven pore formation remains to be
elucidated. One possibility is that acidification removes inhibitory
inter- or intra-domain contacts that prevent pore formation. Clearly
one of the most important objectives in this area will be to discover
the acid-dependent trigger within Perforin-2.
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It is also not yet known if Perforin-2 can breach bacterial
membranes by itself or if it requires the assistance of other host
proteins. Our review and evaluation of the in vitro systems
reported to date raises significant doubts that Perforin-2
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dependent killing was actually observed with recombinant
protein (27, 29–31, 33, 34, 38, 39, 43). Our first major
concern is that some researchers opted to purify the MACPF
domain in the absence of the P2 domain (29, 31, 43). However,
we now know that the P2 domain forms the outer ring of
Perforin-2 polymers with extensive surface area packed between
the two domains and neighboring subunits (Figure 3) (20, 21).
Thus, it seems improbable that the MACPF domain of Perforin-
2 would polymerize in the absence of the P2 domain. In
addition, there is evidence that the extended b-hairpin of the
P2 domain mediates the initial interactions with target
membranes (Figure 2) (20). Therefore, even if the MACPF
domain does polymerize it is unclear how it would target
bacterial membranes. We also note that all studies with
recombinant Perforin-2 did not convincingly demonstrate
bacterial killing (27, 29, 31, 34, 43). Rather, most simply
reported changes in the optical absorbance of bacterial
cultures. As discussed below there is also the possibility that
glycosylation is essential for Perforin-2 folding, polymerization,
or pore formation/stabilization. These post-translational
modifications would be absent in the studies that produced
recombinant Perforin-2 or its MACPF in E. coli (27, 29, 31, 34,
43). Although claims of recombinant Perforin-2’s bactericidal
activity are to date unconvincing, the development of a technically
sound in vitro bactericidal assay would be a substantial advance that
would facilitate further mechanistic investigations.
FIGURE 9 | Y. pseudotuberculosis and EPEC deploy Cifs to block the delivery of Perforin-2 to phagosomes. (A) The cytosolic tail of Perforin-2 is ubiquitinated in
response to PAMPs such as LPS. (B) Ubiquitinated Perforin-2 is rapidly delivered to phagosomes where it oligomerizes and (C) phagosome acidification induces the
pre-pore to pore transition. (D) The ligase responsible for conjugating ubiquitin to Perforin-2 is a multi-component cullin-RING E3 ubiquitin ligase (CRL) whose activity
is itself dependent upon cullin neddylation. (E) Pathogenic Y. pseudotuberculosis and EPEC use Type III secretion systems to inject Cifs into the cytosol of host cells
where they deamidate Gln40 of NEDD8. The enzymatic conversion of Gln to Glu inactivates the CRL and thus prevents ubiquitin dependent intracellular trafficking of
Perforin-2. N8, NEDD8; Ub, ubiquitin; CUL1, cullin 1.
FIGURE 10 | Bacteria lacking the anti-Perforin-2 effector Cif are attenuated in
vivo. Survival curves of C57BL/6 mice were orogastrically inoculated with 108

CFU wild-type Y. pseudotuberculosis or an isogenic cif mutant. Significance
was calculated by log-rank (Mantel–Cox) test. This figure was adapted from
work previously published under the CC BY 4.0 license (19).
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Among other outstanding questions is the necessity of post-
translational modifications; specifically, glycosylation. Two
independent structural studies observed glycosylation of
Asn185 and Asn269 (20, 21). These residues are conserved and
glycosylated in both human and mouse Perforin-2. Despite their
conservation it is not known if the glycans are required for
protein stability/folding, oligomerization, or pore formation/
stabilization. Elucidating the functional and mechanistic
consequences of Perforin-2 glycosylation may have clinical
implications because missense mutations of both Asn185 and
Ans269 are present within the human population (gnomAD,
https://gnomad.broadinstitute.org/).

There are also significant gaps in our understanding of the
intracellular trafficking of Perforin-2. Although it has been
shown that ubiquitination of Perforin-2’s cytosolic tail drives
trafficking (19), the mechanism(s) of intracellular trafficking and
delivery to the phagosome is largely unknown. Likewise, the
linkage between PAMP/TLR signaling and ubiquitination is
unclear. This may involve the activation of a kinase that
phosphorylates the cytosolic tail of Perforin-2 prior to CRL-
dependent ubiquitination. However, this upstream pathway
remains in the realm of the hypothetical.

Perforin-2 may also require proteolytic processing to release it
from its transmembrane domain and facilitate subsequent
polymerization. Indeed Perforin-2 fragments have been
observed after cellular infection (15). Perhaps the cleavage
products are relevant to polymerization and pore formation.
Alternatively, they may be mechanistically insignificant
degradation products. Although it is not yet known which of
these two scenarios is correct, we and others suspect that
tethering to a vacuolar membrane is inhibitory; preventing
polymerization (20, 104, 105). In our “safety tether” hypothesis
Perforin-2 is maintained as a monomer as long as it exists as a
Type I transmembrane protein. However we also note that there
is evidence for Perforin-2 dependent autolysis under certain
circumstances. For example, Eckhard Podack used negative
stain transmission electron microscopy to image apparent
Perforin-2 polymers with membrane preparations of HEK-293
cells engineered to overexpress Perforin-2-GFP (15). Of potential
relevance to our safety tether hypothesis, Perforin-2 polymers
were only observed after partial trypsin digest. Polymers were not
observed with undigested preparations. More recently Hung
et al. have shown that Perforin-2 is required for the release of
IL-33 from dendritic cells (106). Because IL-33 lacks a signal
peptide, the authors propose that Perforin-2 forms pores in the
plasma membrane to release cytosolic IL-33. Although the
supporting data is quite convincing, the study raises many
mechanistic questions. For example, does Perforin-2 attack the
plasma membrane from the exterior or interior of the cell? In
either case does pore formation involve proteolytic cleavage and/
or low pH? In addition there is no known mechanism for the
selective gating of Perforin-2 pores. Therefore, it seems likely that
IL-33 secreting dendritic cells would also release a plethora of
cytosolic molecules. Is Perforin-2 autolysis ultimately lethal or is
autolysis somehow mitigated to prevent lethality? Addressing
these and other questions will provide greater understanding of
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Perforin-2 functionality and may also identify novel clinical
avenues that could be used to treat diseases associated with
Perforin-2 deficiencies.

Although Perforin-2 research has made considerable progress
from the perspective of the host, less is known about pathogen
strategies to survive Perforin-2. To date, Cifs are the only class of
anti-Perforin-2 effectors to be discovered. Given the persistence
of Perforin-2 throughout diverse organisms, it is reasonable to
expect that many other pathogenic countermeasures remain
undiscovered. With sufficient interest progress in this area is
possible and particularly suited to unbiased screens such as Tn-
Seq. Once a candidate anti-Perforin-2 effector is identified, it can
be thought of as a molecular probe that can elucidate the cellular
and molecular mechanisms of Perforin-2 dependent killing. Of
course, more passive survival strategies — such as alteration of
the bacterial envelope or cell wall — are also possible. Despite
numerous unknowns, it is clear that this field is poised for
expansion and discovery.
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et al. Innate immune defense of the sponge Suberites domuncula against
bacteria involves a MyD88-dependent signaling pathway: Induction of a
perforin-like molecule. J Biol Chem (2005) 280:27949–59. doi: 10.1074/
jbc.M504049200

28. Walters BM, Connelly MT, Young B, Traylor-Knowles N. The Complicated
Evolutionary Diversification of the Mpeg-1/Perforin-2 Family in Cnidarians.
Front Immunol (2020) 11:1690. doi: 10.3389/fimmu.2020.01690

29. Choi KM, Cho DH, Joo MS, Choi HS, Kim MS, Han HJ, et al. Functional
characterization and gene expression profile of perforin-2 in starry flounder
(Platichthys stellatus). Fish Shellfish Immunol (2020) 107:511–8.
doi: 10.1016/j.fsi.2020.11.011
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