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7039 Institut Polytechnique de Lorraine/Université Henri Poincaré-Nancy Université/ CNRS, Vandoeuvre les Nancy, France, 3 Unité de Biologie des Tumeurs du Centre

Alexis Vautrin, EA3452 Nancy Université, Vandoeuvre lès Nancy, France

Abstract

The Damaged DNA binding protein 2 (DDB2), is involved in nucleotide excision repair as well as in other biological
processes in normal cells, including transcription and cell cycle regulation. Loss of DDB2 function may be related to tumor
susceptibility. However, hypothesis of this study was that DDB2 could play a role in breast cancer cell growth, resulting in its
well known interaction with the proliferative marker E2F1 in breast neoplasia. DDB2 gene was overexpressed in estrogen
receptor (ER)-positive (MCF-7 and T47D), but not in ER-negative breast cancer (MDA-MB231 and SKBR3) or normal
mammary epithelial cell lines. In addition, DDB2 expression was significantly (3.0-fold) higher in ER-positive than in ER-
negative tumor samples (P = 0.0208) from 16 patients with breast carcinoma. Knockdown of DDB2 by small interfering RNA
in MCF-7 cells caused a decrease in cancer cell growth and colony formation. Inversely, introduction of the DDB2 gene into
MDA-MB231 cells stimulated growth and colony formation. Cell cycle distribution and 5 Bromodeoxyuridine incorporation
by flow cytometry analysis showed that the growth-inhibiting effect of DDB2 knockdown was the consequence of a delayed
G1/S transition and a slowed progression through the S phase of MCF-7 cells. These results were supported by a strong
decrease in the expression of S phase markers (Proliferating Cell Nuclear Antigen, cyclin E and dihydrofolate reductase).
These findings demonstrate for the first time that DDB2 can play a role as oncogene and may become a promising
candidate as a predictive marker in breast cancer.
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Introduction

Damaged DNA Binding protein 2 (DDB2) is a 48-kDa protein

originally identified as a component of the damage-specific DNA-

binding heterodimeric complex DDB, which is involved in

nucleotide excision repair of UV-induced DNA damage through

interaction with DDB1 (127- kDA protein) or CSA proteins [1]. It

works also in association with other proteins of the repair system,

including the XPC-hHR23B heterodimer, XPA and replication

protein A [2,3]. DDB2 shares homology with chromatin

reorganizing proteins [4] and interacts with the CBP/p300 histone

acetyl transferases and STAGA complex [5,6], consistent with a

function in the remodelling of chromatin to allow efficient repair

in the vicinity of DNA lesions. In addition, DDB2 participates in

global NER by recruiting ubiquitinating enzymes, such as the E3

ubiquitin ligase cullin 4A [7].

Human DDB2 is involved in other cellular processes, including

transcription and cell cycle regulation. It has been demonstrated

that DDB2 acts as a co-factor of the transcription factor E2F1 [8]

and that it is associated with the transcriptional coactivator protein

CBP/p300 and the chromatin-acetylating transcription coactiva-

tor STAGA complex [5,6]. DDB2 is a downstream target of

BRCA1 and p53, which regulate its gene expression [9–11],

suggesting that DDB2 could also be involved in cell cycle

regulation. DDB2 is a cell cycle-regulated protein in normal cells

since it is undetectable in nondividing cells but its level increases in

the mid-G1 phase and peaks at the G1/S boundary, before

dropping significantly in the S phase [12]. The cell cycle-

regulation of DDB2 levels involves ubiquitin-proteasome path-

way-mediated proteolysis, through the interaction between DDB2

and cullin 4A [7,12,13].

Loss of DDB2 function in normal cells is related to tumor

development susceptibility. Mutations in the DDB2 gene leading

to its loss of function are responsible for the phenotypic features of

xeroderma pigmentosum group E (XP-E) patients, characterized

by malignant skin tumors [14-16]. In addition, DDB2-deficient

mice not only were hypersensitive to UV-induced skin carcino-

genesis but also developed a high rate of broad spectrum

spontaneous malignant tumors in internal organs, in the absence

of UV irradiation or added carcinogen. These observations

suggested that DDB2 may play a role as a downstream mediator

in the tumor suppression pathways of p53 and BRCA1 [17,18].

This suggests a role of DDB2 as a tumor suppressor in normal

cells, through protecting against cancer by regulating the cell cycle

and by increasing apoptosis rather than by direct participation in

the repair of DNA damage [19].
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Even if DDB2 is considered as a tumor suppressor, we proposed

that this protein could play a role in breast cancer. This hypothesis

was based on a previous study showing an interaction between

DDB2 and the transcription factor E2F1, a proliferative marker in

breast carcinoma [20]. Also, the aim of this study was to examine

the expression of the DDB2 gene in various breast cancer cell lines

and in tumors from patients. The surprising results showing an

overexpression of DDB2 in ER-positive but not in ER-negative

breast cancers led us to investigate the role of this protein in breast

cancer cells. This study provides evidence for the first time that

DDB2 plays an important role in cell cycle progression of breast

cancer cells.

Results

DDB2 gene is overexpressed in ER-positive breast cancer
cell lines

The expression of DDB2 was assessed in both the ER-negative

(MDA-MB231 and SKBR3) and ER-positive (MCF-7 and T47D)

breast cancer cells and was compared to that in the normal human

mammary epithelial cells (HMEC), at both the transcriptional and

the translational levels (Figure 1). The DDB2 mRNA level

estimated by RT-PCR analysis was 9.1-fold higher for MCF-7

and 5.1-fold higher for T47D cell lines than for HMEC cells

(Figure 1A). No significant difference was observed between the

DDB2 mRNA levels of the ER-negative (MDA-MB231 and

SKBR3) cancer cells and the HMEC cells. These results

correlated with the DDB2 protein content. Western blot analysis

showed that the MCF-7 and T47D cells had similar and very high

levels of DDB2 protein, in contrast to the very low levels in MDA-

MB231, SKBR3 and HMEC cells (Figure 1B). No significant

difference was observed between the DDB1 mRNA levels of the

cell lines studied. However, the MCF-7 cells had respectively 3.7-

and 2.5-fold higher levels of DDB1 protein than the SKBR3 and

MDA-MB231 cells. No significant difference was observed

between the DDB1 protein levels of the MCF-7, T47D and

HMEC cell lines. The MCF-7 cells expressing the highest basal

DDB2 levels were submitted to in situ immunofluorescence in

order to analyse the subcellular localization of DDB1 and DDB2.

Whereas DDB1 was localized in both the nucleus and the

cytoplasm, DDB2 was exclusively found in the nucleus (see

Supplemental Figure S1).

DDB2 gene is expressed in human breast tumors
As DDB2 appeared to be detected strongly in ER-positive

breast cancer cell lines, we next examined the DDB2 mRNA level

in breast cancer samples from 16 patients (eight positive and eight

negative for ER expression) using semiquantitative RT-PCR. In

concordance with the results from breast cancer cell lines, the

relative DDB2 mRNA level was significantly 3.0-fold higher in

ER-positive than in ER-negative breast tumor samples

(P = 0.0208). The mean value of relative DDB2 mRNA level

was 1.5560.82 for ER-positive breast tumors as compared to

0.5360.54 for ER-negative breast tumors. Five of the eight ER-

positive samples showed a higher relative DDB2 mRNA level than

the mean value, whereas one sample did not express DDB2

(Figure 2).

DDB2 knockdown leads to a decrease in the growth of
ER-positive breast cancer cells

To understand the role of DDB2 in breast cancer cell growth,

we applied RNA interference technology to knock down the

overexpression of DDB2 in the MCF-7 cells. Three different

duplexes of siRNA, targeting various sequences of DDB2

mRNA, were transfected individually into the MCF-7 cells at

100 nM for 24 h and the DDB2 protein level was analyzed by

immunoblotting. All the DDB2 siRNA duplexes were able to

knock down the expression of DDB2, albeit to varying degrees.

This efficiency of these siRNA duplexes in the depletion of

DDB2 expression was confirmed in COS-7 cells expressing stably

Myc-His tagged DDB2 (see Supplemental Figure S2). The

siRNA duplex 3, which exhibited the highest efficiency (about

90%) to deplete cellular DDB2 protein, was introduced into the

RNAi-ready pSIREN vector for stable DDB2 suppression in the

MCF-7 cells. Two stably DDB2 siRNA-transfected MCF-7 cell

clones (cl.2 and cl.3) were isolated, where the DDB2 expression

was strongly suppressed in contrast to that in the parent cells

(Wt) and in the stably transfected cells with a scrambled siRNA

duplex sequence (control siRNA) which were used as controls

(Figure 3A and B). The expression of DDB1 was not affected in

the transfected cells, in contrast to that in the Wt MCF-7 cells.

Growth curves were assessed by seeding cells in 24-well tissue

culture plates at 16104 cells/well and then cells were counted

daily over a 4-day period. The two DDB2 deficient MCF-7 cell

clones 2 and 3 showed an approximately similar growth rate and

grew significantly more slowly than the Wt and the control

siRNA-transfected MCF-7 cells. At day 4 after plating, the clones

2 and 3 exhibited respectively approximately 2.3- and 2.1-fold

fewer cells than the control siRNA-transfected MCF-7 cells

(Figure 3C). No significant difference was observed between the

Wt and control siRNA-transfected MCF-7 cells. Cell population

doubling times were calculated from the cell growth curves

(Figure 3D). In accordance with the growth rates, the doubling

times of the DDB2 deficient MCF-7 cell clones 2 and 3 (23.3 and

22.6 h, respectively) were longer than those observed for the Wt

and control siRNA-transfected MCF-7 cells (18.0 and 17.8 h,

respectively). As shown in Figure 3E and F, the decreases in cell

growth rates were accompanied by a strong decrease in colony

formation for the DDB2 deficient MCF-7 cell clones 2 and 3 (8.4

and 19.4%, respectively) compared to those of the Wt and

control siRNA-transfected MCF-7 cells (52.4 and 45.5%,

respectively). The decreases in cell growth rate and colony

formation were associated with a decrease in the level of mRNA

encoding specific S-phase markers, such as DHFR, cyclin E and

PCNA, in the DDB2-deficient MCF-7 cell clones 2 and 3

(Figure 3A).

DDB2 overexpression increases the growth of ER-
negative breast cancer cells

The involvement of DDB2 in breast cancer cell growth was

confirmed by introduction of the DDB2 gene into MDA-MB231

cells. These cells (MDA DDB2), control parent (MDA Wt) and

empty vector-transfected cells (MDA Neo) were seeded in 24-well

tissue culture plates at 16104 cells/well. The growth curve of the

isolated MDA-MB231 cells overexpressing DDB2 (MDA DDB2)

(Figure 4A) was assessed and compared to those of both control

cell lines (MDA Wt and MDA Neo). The cells were then counted

daily over a 9-day period. The MDA DDB2 cells grew faster, with

approximately 1.7-fold more cells than the control Wt and Neo

cell lines by day 9 after plating (Figure 4B). No significant

difference was observed between the Wt and Neo control cells. In

consequence, the cell population doubling time of the MDA

DDB2 cells (29.4 h) was shorter (Figure 4C) than those observed

for the MDA Wt and MDA Neo (37.7 and 37.9 h, respectively). In

addition, colony formation was stimulated in the MDA DDB2

cells (23.5%) compared to that in the Wt and Neo control cells (5.3

and 7.5%, respectively) (Figure 4D and E).

DDB2 and Breast Tumor Growth
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DDB2 knockdown promotes a decline in cell cycle
progression at the G1/S transition in ER-positive breast
cancer cells

To explain the finding of DDB2 knockdown causing reduced

growth and a prolonged doubling time of MCF-7 cells, cell cycle

analysis was performed by flow cytometry, after PI staining. Wt,

siRNA control and DDB2-deficient MCF-7 cells were synchro-

nized by serum starvation for 48 h and then induced to re-enter

the cell cycle by the addition of serum. The cell lines were exposed

to added serum over 0, 3, 12 or 18 h. The cell cycle distribution of

the cell lines was determined by quantifying DNA content, after PI

staining (Figure 5). After PI staining, serum depletion for 48 h was

shown to result in G1/G0 and G2/M arrests of at least 98% in

control (Wt and siRNA control) and DDB2-deficient MCF-7 cells

(cl.2 and cl.3). At 3 h after serum addition, no change in cell cycle

distribution was observed for the DDB2-deficient MCF-7 cell

lines, while the S-phase fraction increased in the Wt and siRNA

control cells (11 and 9%, respectively). With the time release from

serum addition (12 and 18 h), we observed that both DDB2-

deficient MCF-7 cell lines re-entered the cell cycle, with a loss of

G1 cells and the appearance of a high S-phase fraction, but no G2

cell presence. The high peak corresponding to the S-phase fraction

shifted slightly between 12 and 18 h after serum addition.

However, the control MCF-7 cells were distributed in all phases of

the cell cycle, with a lower S-phase fraction and a significant peak

corresponding to about 19% and 14% G2 cells after 12 and 18 h

addition of serum, respectively, compared to the DDB2-deficient

MCF-7 cell lines. These results suggest that the DDB2 deficient

MCF-7 cells advanced in the cell cycle more slowly than the

control cells. These results were confirmed by 5 BrdU incorpo-

ration into cells growing synchronously after serum starvation.

The cell fractions in G1/S and S-phases were estimated by flow

cytometry analysis (Figure 6). A lack of labeling index (LI)

corresponding to a lack of 5 BrdU incorporation was observed,

indicating no cells were in the S-phase after 48 h of serum

starvation. An alteration of cell cycle progression was observed in

Figure 1. DDB2 is overexpressed in human ER-positive breast cancer cell lines. (A) Total RNA was extracted from cells, then subjected to
semiquantitative RT-PCR analysis. The relative levels of DDB1 and DDB2 mRNAs were normalized to those of b-actin mRNA. (B) DDB1 and DDB2
proteins were analysed in the total protein (50 mg) extracted from cells by Western blotting, using polyclonal anti-DDB1 and anti-DDB2 antibodies.
Coomassie blue membrane staining was used as the protein loading control. Results are representative of three independent experiments. Relative
band intensities for RT-PCR and Western blot analysis were quantified by densitometry. Data from RT-PCR analysis are expressed as the ratio for DDB1
or DDB2 mRNA levels/ b-actin mRNA levels. Data from Western blot analysis are expressed as relative densitometric units. Statistically significant
differences from the HMEC values for DDB1 and DDB2 are indicated as ** and *P,0.05, respectively.
doi:10.1371/journal.pone.0002002.g001
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the DDB2 deficient MCF-7 cells 3 h after the addition of serum.

Similar to the finding by cell cycle analysis after PI staining, no 5

BrdU incorporation was quantified for both DDB2-deficient

MCF-7 cell lines, whereas the LI for the Wt and siRNA control

MCF-7 cells (6.6% and 9.3%, respectively) revealed important S-

phase fractions in these lines. Then, % 5 BrdU-positive cells

corresponding to the LI for DDB2 deficient cells was strongly

increased and was similar to the control MCF-7 cells at 12 and 18

h after release from serum depletion. Compared to that of the

control cells, this LI indicated an important pool of DDB2-

deficient cells which started to re-enter the cell cycle and which

corresponded to an essentially G1/S subpopulation. The DDB2-

deficient MCF-7 cell clones 2 and 3 showed S-phase fractions

respectively 6.8- and 4.2-fold less than that of the control MCF-7

cells, at 12 and 18 h after release from serum depletion. In

addition, no G2 fraction was detected for both DDB2-deficient

MCF-7 cell clones. These results demonstrate that DDB2

knockdown led to a delayed G1/S transition phase entry and a

slowed MCF-7 cell progression through the S phase. These results

were confirmed by an investigation of the PCNA protein level.

Regardless of the time from release of serum depletion, the PCNA

protein level was greatly reduced in both DDB2-deficient MCF-7

cell lines, compared to that of tubulin, used as a loading control

(Figure 7).

Discussion

In addition to its role in DNA repair, DDB2 could play an

important role in cell cycle regulation in normal cells, when

associated with proteins regulating the cell cycle [7,8]. Previous

studies showed that mutations in the DDB2 gene, which lead to a

deficiency in the NER system, increased susceptibility to develop

cancer [21] and a DDB2 deficiency promoted spontaneous

malignant tumors in mice [17,22]. Taken together, these results

provided evidence that DDB2 could play a role as a tumor

suppressor in normal cells. However, strong evidence for the

functional interaction between DDB2 and E2F1, a proliferative

marker in many cancers led us to speculate that DDB2 could be

involved also in cancer cell growth [8,20].

The present study reports for the first time that DDB2 is

overexpressed in ER-positive breast cancer cell lines, compared to

the constitutive DDB1 expression. As described already in other

cell types, DDB2 was localized strictly in the nucleus, as

demonstrated by the presence of several nuclear localization

signals in its amino acid sequence [23], whereas DDB1 protein,

which is expressed constitutively in cells, was found to be localized

also in the cytoplasm and nucleus [24]. DDB2 was detected as two

bands by Western blot analysis in MCF-7 and T47D cells, but only

the one with the higher molecular weight was found in the nuclear

extract: the second was suspected to be non-specific and the result

of cross-reaction with anti-DDB2. The basal DDB2 level was very

low or undetectable in ER-negative breast cancer cells and in the

nontumorigenic epithelial mammary HMEC cell line. In addition,

a correlation between DDB2 expression and ER status was

observed also in breast tumor samples from patients. Taken

together, we postulate that a high DDB2 content is associated with

the oestrogen receptor (ER) status in breast cancer.

Expression of the DDB2 gene has been detected also in some

tumor cell lines such as colon carcinoma cell lines and HeLa cells

[11,25]. It is known that the DDB2 gene is expressed at a low

baseline level in many human normal cells and is induced

following UV irradiation to participate in the repair of DNA

lesions [15,23]. Regulation of DDB2 expression is not well known.

A recent study identified Sp1, NF1 and E2F response elements in

the promoter of the DDB2 gene, and showed that mutations of

these response elements reduced strongly the basal transcription of

the DDB2 gene [24,26]. In addition, it has been found that p53

and BRCA1 were able to activate the DDB2 gene [9,10]. In the

present study, we observed that the DDB2 gene was upregulated

in ER-positive breast cancer cells, compared to the very low

expression of DDB2 in the nontumorigenic epithelial mammary

HMEC cell line. The mechanism by which DDB2 expression is

dysregulated in ER-breast cancer cells is not known. Moreover,

the molecular mechanism involved in the loss of DDB2 gene

expression in ER-negative breast cancer cells will need to be

defined in the future. One hypothesis would suggest the

involvement of BRCA1. The ER-positive breast cancer cells, such

as MCF-7 and T47D cells, express BRCA1, whereas the ER-

negative tumor cells, such as SKBR3 and MDA-MB231 cells are

BRCA1 negative [27]. Involvement of ER and other transcription

factors or other molecular mechanisms are not excluded and

future investigations will need to elucidate the regulation of DDB2

expression during breast tumor progression.

The surprising evidence that the high DDB2 content correlated

with the high proliferation rate of MCF-7 and T47D cells

compared to MDA-MB231 and SKBR3 cells, along with a

number of studies reporting a role of DDB2 in the cell cycle

regulation of normal cells, led us to investigate the role of this

protein in tumor growth. The result of the inhibition of DDB2

Figure 2. DDB2 is expressed in human breast tumors from
patients. Total RNA was extracted from eight ER-positive and eight ER-
negative breast cancer samples, then subjected to semiquantitative RT-
PCR analysis. The relative levels of DDB1 and DDB2 mRNAs were
normalized to those of b-actin mRNA. Statistically significant differences
between ER-positive and ER-negative samples are indicated as P,0.05.
The mean values are indicated by a bar in the graph for each group of
tumors and DDB1 or DDB2 mRNA levels.
doi:10.1371/journal.pone.0002002.g002
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expression, through the strategy of small interfering RNA (siRNA),

gave a significant reduction of the growth rate and clonogenicity of

the MCF-7 cells and an increased cell doubling time. Inversely,

introduction of the DDB2 gene into MDA-MB231 cells increased

their growth rate and clonogenicity and decreased their cell

doubling time. We demonstrated that the increase in the doubling

time of DDB2-deficient MCF-7 cells resulted in a slowing of their

entry into G1/S transition and of their progression through the S

phase of cell cycle. Moreover, no G2 fraction was detected 18h

after release from serum depletion for both DDB2-deficient MCF-

7 cell clones compared to control cells. These data suggest that

DDB2 may play a role as an activator of breast tumor cell

proliferation at the G1/S transition and during the S-phase

progression of the cell cycle. The involvement of DDB2 at this

checkpoint of the cell cycle correlates with the fact that it is well

expressed in dividing and undamaged normal cells in the mid-G1

phase and peaks at the G1/S boundary, before dropping

significantly in the S phase [12].

A strong decrease in the expression of DHFR, cyclin E and

PCNA genes, which are required for DNA synthesis and more

generally for proliferation, was observed in DDB2-deficient MCF-

7 cells. These results suggest that DDB2 deficiency, by promoting

a down-regulation of the replication genes during tumor cell

growth, leads to the slowed entry into the G1/S transition and the

S phase of the cell cycle. Expression of these genes is controlled by

E2F1, a transcription factor which stimulates cell cycle progression

at G1 to S phase [28]. This role is well documented in tumor cells,

and particularly in breast cancer cells where E2F1 and its E2F1-

target genes, including DHFR, PCNA and cyclin E, are

overexpressed [20,29]. Also, one mechanism by which DDB2

plays a role in tumor cell proliferation could be related to its

interaction with E2F1. Indeed, in association with DDB1, DDB2

has a functional interaction with E2F1, leading to the stimulation

of the E2F1-target gene expression [8]. However, no significant

correlation between E2F1-target genes and DDB2 was observed in

our breast tumor samples (see Supplemental Figure S3). This

preliminary clinical study was probably limited by the small

number of samples. Also, further investigation with larger breast

tumor samples will be necessary.

The present study provides new insights showing that DDB2 plays

a novel biological function. DDB2 functions as a tumor suppressor in

normal cells, at least in part by regulating cell proliferation and

controlling p53-mediated apoptosis. Deletion of DDB2 in normal

cells promotes spontaneous tumor growth in the absense of UV- or

carcinogen-induced DNA lesions, probably due to an accumulation

of unrepaired DNA lesions, leading to cell transformation [17]. In

this study, DDB2 exhibited in vitro oncogenic properties in ER-

positive breast cancer cells, through the stimulation of cell

proliferation. These results suggest that the overexpression of

DDB2 imparts a growth advantage for ER-positive breast cancer

cells. We can consider that DDB2 exhibits ying and yang activity, as

does E2F1. Under normal circumstances, E2F1 plays a role in

stimulating growth through its regulation of the expression of genes

required for cell cycle progression in breast cancer cells [20,30]. On

the other hand, E2F1 can also play a role in cell cycle arrest and

apoptosis, in response to DNA damage [31].

Our results describe an association between DDB2 and ER

status in breast cancer as well as in preclinical models and in

Figure 3. DDB2 knockdown affects the growth and colony
formation of MCF-7 cells. (A) Generation of MCF-7 cell clones stably
expressing DDB2 siRNA. Total RNA was extracted from parental MCF-7
cells (Wt) and from cells stably transfected with either the DDB2-siRNA
vector (clones cl.2 and cl.3) or the scrambled siRNA vector (control
siRNA), then subjected to RT-PCR analysis. The relative levels of DDB1,
DDB2, DHFR, cyclin E and PCNA mRNAs were normalized to those of b-
actin mRNA. DDB1 and DDB2 protein levels were analysed in the total
protein (50 mg) extracted from MCF-7 cell clones stably expressing
DDB2 siRNA and from control cells, by Western blotting using
polyclonal anti-DDB1 and anti-DDB2 antibodies. Coomassie blue
membrane staining was used as the protein loading control for
Western blot analysis. (B) Parent cells (Wt), control siRNA-transfected
MCF-7 cells and the two DDB2 siRNA-transfected cell clones (DDB2
siRNA cl.2 and cl.3) were plated in 24-well dishes (16104 per well) in
complete medium and cell numbers were counted for 4 days. Means
are shown for three experiments. Cell population doubling time was
calculated from the cell growth curve during the exponential growth
phase. (C) Wt cells, control siRNA and DDB2 siRNA transfected cells
were seeded (500 cells) in 100-mm dishes and grown for 12 days.
Colonies with more than 50 cells were counted and data from three

independent experiments were expressed as the % of colony
formation = (colonies formed/cells seeded)6100%. Statistically signifi-
cant differences from the parental (Wt) cell value are indicated as *
P,0.05.
doi:10.1371/journal.pone.0002002.g003
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clinical specimens. It is known that the absence of ER in breast

tumor cells is associated with a poor prognosis and an aggressive

phenotype. The ER-negative breast cancer cell models used in this

study, such as MDA-MB231 and SKBR3 cells are aggressive and

highly metastatic estrogen-independent breast cancer cells because

of high invasive ability, despite a slow growth rate. The increase in

MDA-MB231 cell proliferation, which was observed after

introduction of the DDB2 gene, suggests that DDB2 protein is a

candidate oncogene when it is overexpressed, whatever the breast

cancer cell phenotype. Also, the down-regulation of the DDB2

gene observed in these cells may reflect tumor progression to a

metastatic phenotype. It is not excluded that the decrease in

DDB2 expression is associated with a decrease in the NER system

and an accumulation of unrepaired DNA damage, leading to an

invasive cancer phenotype [32]. In addition to causing impairment

in the DNA repair function, the loss of DDB2 gene expression,

leading to a slowed growth of aggressive breast cancer cells, may

be proposed as an important step in mammary carcinogenesis in

ER-negative cells. Also, DDB2 may represent an important

clinical interest as a prognostic/predictive marker of breast cancer

progression towards an aggressive phenotype. A larger clinical

investigation is needed to support this hypothesis.

Figure 4. DDB2 overexpression increases the growth and colony formation of MDA-MB231 cells. (A) MDA-MB231 cells were stably
transfected with the pcDNA 3(+) expression vector containing either DDB2 cDNA (MDA DDB2) or no insert (MDA Neo). The DDB2 protein level was
assessed by Western blot analysis, using equal amounts of protein (50 mg) extracted from parent cells (MDA Wt), empty vector-transfected cells (MDA
Neo) and DDB2-overexpressing cells (MDA DDB2), and using DDB2 polyclonal antibody. Coomassie blue membrane staining was used as the protein
loading control. (B) Parent cells (MDA Wt), empty vector-transfected cells (MDA Neo) and DDB2-transfected cell clone (MDA DDB2) were plated in 24-
well dishes (16104 per well) and cultured in complete medium. Cell numbers were counted on days 1, 3, 5, 7 and 9. Means are shown for three
experiments. Cell population doubling times were calculated from the cell growth curves during the exponential growth phase. (C) MDA Wt, MDA
Neo and MDA DDB2 cells were seeded (500 cells) in 100-mm dishes and grown for 12 days. Colonies with more than 50 cells were counted and data
from three independent experiments were expressed as the % of colony formation = (colonies formed/cells seeded)6100%. Statistically significant
differences from the MDA Wt cell value are indicated as * P,0.05.
doi:10.1371/journal.pone.0002002.g004

DDB2 and Breast Tumor Growth
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The present study provides for the first time strong evidence that

DDB2 is a candidate for oncogene action in breast cancer. It may

contribute to a better understanding of breast tumor progression and

to provide a valuable tool in the clinical investigation of breast

cancer. This conclusion is based on several lines of evidence that

DDB2 is highly expressed in the human ER-positive breast tumor

samples and in the cell lines we examined, compared to ER-negative

status, and plays a significant role as an activator of growth,

favouring G1/S transition entry of ER-positive breast cancer cells

during their cell cycle. These findings support the assessment of

DDB2 status as a prognostic factor for tumor progression and

chemosensitivity in breast cancer and, possibly, other cancers.

Elevated levels of DDB2, through its ability to activate cancer cell

growth, may influence the effectiveness of anticancer drugs. Also, the

molecular mechanism by which the factors and the signaling

pathway influencing DDB2 expression in ER-positive breast cancer

cells will need to be defined.

Materials and Methods

Cell Lines
Human ER-expressing (MCF-7 and T47D), ER-negative

(MDA-MB231 and SKBR3) breast cancer cell lines and normal

human mammary epithelial cells (HMEC) from Clonetics

(Cambrex) were cultured as described previously [33].

Tumor material
Sixteen anonymous (eight estrogen receptor positive, eight

negative), 20-30 mg breast tumor samples were from surgical

pieces of infiltrating breast carcinomas from patients in intend to

Figure 5. DDB2 knockdown affects cell cycle distribution of MCF-7 cells. Parent cells (Wt), control siRNA-transfected MCF-7 cells and the two
DDB2 siRNA-transfected cell clones (DDB2 siRNA cl.2 and cl.3) were synchronized by serum starvation for 48h, and induced to re-enter the cell cycle
by the addition of serum for 0, 3, 12 or 18h. MCF-7 cells were harvested for propidium iodide staining and analysed by FACS to determine the cell
cycle fraction. FACS plots and data are representative of at least three separate experiments.
doi:10.1371/journal.pone.0002002.g005
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make diagnosis before an appropriate treatment. According to the

French bioethical law of august 6, 2004 (number 2004-800), which

has been then completed by the law of august 10, 2007 (number

2007-1220, NOR: ESRR 0757 103D), samples used for this

retrospective study did not required written consent from patients.

These samples were kept in liquid nitrogen frozen specimens and

then were certified as tumor material by morphological charac-

terization by a senior pathologist. Estrogen receptor expression

was analyzed at diagnosis using routine immunohistochemistry

with 6F11 monoclonal antibody determination kit (Novocastra)

and revealed using I-View DAB kit (Ventana). Estrogen receptor

expression was considered as positive when more than 10% of the

nuclei were stained. Semi-quantitative expression values were

calculated as % labeled nuclei6staining intensity (0–3).

Figure 6. DDB2 knockdown decreases the ability of MCF-7 cells to re-enter the S phase of the cell cycle. Parent cells (Wt), control siRNA-
transfected MCF-7 cells and the two DDB2 siRNA-transfected cell clones (DDB2 siRNA cl.2 and cl.3) were synchronized by serum starvation for 48h,
and induced to re-enter cell cycle by the addition of serum for 0, 3, 12 or 18h. At the end of each of these periods after serum addition, MCF-7 cells
were exposed to 5 BrdU for 20 min and were harvested for propidium iodide staining before being analysed by FACS for determination of the G1/S
subpopulation and the S-phase fraction. FACS plots and data are representative of at least three separate experiments.
doi:10.1371/journal.pone.0002002.g006
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Reverse Transcription-Polymerase Chain Reaction (RT-
PCR) Analysis

Total RNA from breast cancer cell lines and from 16 frozen

human tissues samples was isolated with TrizolH (Invitrogen).

RNA quality from human breast cancers was controlled using

RNA nanoLab ChipH (2100 Bioanalyzer, Agilent Technologies)

and used for RT-PCR. One microgram of total RNA was reverse-

transcribed for 50 min at 42uC in 20 ml of PCR buffer with 2.5

mM dNTPs, 5 mM random hexamer primers, 1.5 mM MgCl2 and

200 units SuperScript II reverse transcriptase. The primers used

(Invitrogen) were selected from published nucleotide sequences in

the open reading frames of the human genes encoding DDB1 and

DDB2 [34]. The primer sequences used were as follows: DDB1

forward, 59-GACCTGCCCTACGACTAC-39; DDB1 reverse,

59-GACCACCACCATTGAACTTC-39; DDB2 forward, 59-

GCGACGAAGGCCGTGTGCGTGC-39; DDB2 reverse, 59-

ACTTTCTTCATTTCCACCTTTGCC-39; dihydrofolate re-

ductase (DHFR) forward, 59-TGGCTCACACCTGTAATCC-

39; DHFR reverse, 59- TAATTCTTCCATCTCAGCTTCC-39;

Proliferating Cell Nuclear Antigen (PCNA) forward, 59-TGC-

GGCCGGGGTTCAGGAGTCA-39; PCNA reverse, 59-CAGG-

CAGGCGGGAAGGAGGAAAGT-39; cyclin E forward, 59-

TATTGCAGCCAAACTTGAGG-39; cyclin E reverse, 59-TTA-

GATATGCAACCTGCATGTATAC-39; b-actin forward, 59-

GGCTCCGGCATGTGCAAGG-39; b-actin reverse, 59-AGAT-

TTTCTCCATGTCGTCC-39. Each primer was added at a final

concentration of 0.5 mM to 50 ml reaction mixture in PCR buffer,

containing 1 ml cDNA, 0.25 mM of each dNTP, 1.5 mM MgCl2,

and 2.5 units Taq polymerase. An initial denaturation was carried

out for 2 min at 94uC and 30 cycles were performed with the

following PCR program : denaturing 94uC-45 s, annealing 50uC
for DDB1 and DBB2 or 46uC for DHFR or 56uC for PCNA or

45uC for cyclin E and b-actin-45 s, elongation 72uC-45 s. This

program was completed with a final extension of 5 min at 72uC.

Preliminary assays have shown that the 30 cycle amplification was

in the exponential phase. Ethidium bromide-stained bands were

visualized by UV transillumination and the fluorescence intensity

was quantified using a Gel Doc 2000 system (Biorad). The data

from PCR reactions were expressed as the relative DDB2 or

DDB1 mRNA level, corresponding to the ratio of the quantified

fluorescence intensity of DDB1 or DDB2 band/b-actin band from

three independent experiments6standard deviations (SD). DNA

fragments (with expected sizes of 300 bp for DDB1 and DDB2,

172 bp for DHFR, 348 bp for PCNA, 198 bp for cyclin E and 220

bp for b-actin) were purified with the Prep A gene DNA

purification matrix kit (Biorad), and their sequences were

determined according to the dideoxy chain-termination method

[35] and were found identical to those published previously.

Preparation of Total, Nuclear and Cytoplasmic Extracts
Human breast cancer cell lines were harvested and lysed in a

10 mM Tris/HCl buffer, pH 7.4, containing 5 mM EDTA, 1%

Triton X100 and protease inhibitor cocktail, at 4uC for 20 min.

After centrifugation at 17,000 g for 20 min at 4uC, the

supernatant was collected as total protein extract. Nuclear and

cytoplasmic extracts were prepared as described previously [36].

The cells were rinsed twice with PBS and were scraped with a

rubber policeman in PBS. After a brief centrifugation at 100 g for

5 min at 4uC, the cells were resuspended in 10 mM Hepes, pH

7.9, containing 10 mM KCl, 0.1 mM EDTA and EGTA, 1 mM

dithiotreitol, and 0.5 mM phenylmethylsulfonyl fluoride and

incubated for 15 min on ice. The cells were gently lysed by the

addition of 0.6% (v/v) Nonidet P-40 and centrifuged at 200 g and

4uC for 5 min. The supernatant was collected as the cytoplasmic

extract. Pelleted nuclei were resuspended and lysed in 20 mM

Hepes, pH 7.9, containing 400 mM NaCl, 1 mM EDTA and

EGTA, 1 mM dithiotreitol, 0.5 mM phenylmethylsulfonyl fluo-

ride and 0.25% (v/v) Nonidet P-40. After centrifugation at

12,000 g for 10 min and at 4uC, the supernatant was collected as

nuclear extract. Protein concentrations were determined in the

total, nuclear and cytoplasmic extracts according to Lowry et al.,

[37], using bovine serum albumin as a standard (Biorad).

Western Blot Analysis
Total proteins (50 mg), nuclear proteins (20 mg) and cytoplasmic

proteins (30 mg) were run on SDS-polyacrylamide gels (12%),

according to Laemmli [38], and transferred onto a PVDF

membrane as described previously [39]. Immunoblot analysis

was then carried out using specific polyclonal anti-DDB1, anti-

DDB2, anti-Histone H1 (Santa Cruz Biotechnology) and anti-

catalase [40] at the optimized dilutions. Bands were detected using

an anti-IgG polyclonal antibody conjugated to peroxidase (Sigma),

after exposition to a chemiluminescent substrate. Band intensities

were quantified by densitometry with a Gel Doc 2000 system

(Biorad). The results from Western blots were expressed as relative

densitometric units from three independent experiments6SD.

Equal loading of protein in all experiments was confirmed by

Coomassie blue staining of blots.

In Situ Immunofluorescence
The cells were seeded at 16104cells/well in a 4 chamber slide

(NUNC Lab-Tek II, Euromedex) and incubated at 37uC for 5

days before confluence. The cells were rinsed twice with PBS and

fixed in 3% formaldehyde in PBS for 10 min and permeabilized in

methanol for 20 min at 4uC. After blocking with 0.1% fish

gelatin/0.8% bovine serum albumin/0.002% Tween-80, the cells

were then exposed to the primary polyclonal antibodies anti-

DDB1, anti-DDB2 and anti-proliferating cell nuclear antigen

(PCNA) (Santa Cruz Biotechnology), diluted at 1:100, for 30 min

Figure 7. Analysis of PCNA expression in DDB2-deficient MCF-
7 cells. Parent cells (Wt), control siRNA-transfected MCF-7 cells and the
two DDB2 siRNA-transfected cell clones (DDB2 siRNA cl.2 and cl.3) were
synchronized by serum starvation for 48h, and induced to re-enter the
cell cycle by the addition of serum for 3, 12 or 18h. PCNA protein levels
were analysed in the total protein (50 mg) extracted from different cells
by Western blotting, using specific polyclonal antibodies. Membranes
were then probed with specific polyclonal antibodies against tubulin or
stained with Coomassie blue as the protein loading control for Western
blot analysis.
doi:10.1371/journal.pone.0002002.g007
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at 37uC. After two washes in PBS, the cells were incubated with

FITC-conjugated bovine anti-rabbit immunoglobulins, diluted at

1:100 (Santa Cruz Biotechnology), in PBS for 20 min at 37uC. A

negative control was performed without the primary antibody.

The cells were then mounted in anti-fading medium (Citifluor,

Link Analytical). Images of cellular immunofluorescence were

acquired using an epifluorescence microscope Eclipse 80i with

40X objective (488 nm excitation and 518 emission) and captured

with a coupled digital camera (Nikon) (See Supplemental data).

DDB2 Expression Vector and Transfection
The full-length human DDB2 cDNA containing the entire open

reading frame (1300 bp) was isolated from MCF-7 cells by RT-

PCR using the Hi-fidelity Extensor PCR kit (AB Gene), and the

forward (59-GGACTGGGTACCACACGGAGGACGCGATG-

GCTC-39) and the reverse primers (59-CTGAGCTCTAGAT-

CACTTCCGTGTCCTGGCTTCC-39), with Kpn I and Xba I

ends, respectively, according to the manufacturer’s instructions.

The resulting DDB2 cDNA was inserted between the KpnI and

XbaI sites into a pcDNA3.1(+) mammalian expression vector

(Invitrogen), driven by a cytomegalovirus promoter. The complete

sequence of the cDNA was verified by DNA sequence analysis.

The DDB2 cDNA was also subcloned into a pEF1/Myc-HisB

vector (Invitrogen) between the KpnI and XbaI sites, to produce a

Myc-polyhistidine-tagged DDB2 protein (See Supplemental data).

The expression vectors included a Neo resistance gene driven by

the SV40 promoter for clone selection. The size of the

recombinant protein was verified by using the wheat germ lysate

transcription-translation TNT kit (Promega) according to the

manufacturer’s instructions. Four mg of pcDNA3(+) or pEF1/

Myc-HisB plasmid containing either DDB2 cDNA or no insert

were used for stable transfection of MDA-MB231 or COS-7 cells,

with TransPEI reagent (Eurogentec), according to the manufac-

turer’s instructions. The clones were selected with 800 mg/ml of

G418 for 4 weeks. Single colonies were isolated and then screened

for levels of the expression of DDB2 protein by Western blot

analysis. Five days before these experiments, the cells were placed

into complete medium without G418 supplement.

DDB2-siRNA Vector and Transfection
SiRNA oligonucleotides were obtained from Eurogentec in a

purified and annealed duplex form. The sequences targeting the

human DDB2 gene are: target 1 for DDB2, 59-AGAGCGA-

GAUCCGAGUUUAA-39 (sense) and 59-UAAACUCGGAUCU-

CGCUCUU-39 (antisense); target 2 for DDB2, 59-UCAGUUCG-

CUUAAUGAAUUU-39 (sense) and 59-AAUUCAUUAAGC-

GAACUGAA-39 (antisense); target 3 for DDB2, 59-UCACUG-

GGCUGAAGUUUAA-39 (sense) and 59-UUAAACUUCAGCC-

CAGUGAA-39 (antisense). Scrambled siRNA with the following

sequence: 59-UUAAACUUCAGCCCAGUGA-39 (sense) and 59-

CAGUAAACGCCGUCUUAUA-39 (antisense) was used as the

control. SiRNA transfection experiments were carried out using

jetSi-ENDO transfection reagent with 100 nM siRNA, according

to the manufacturer’s instructions (Eurogentec). Twenty-four

hours following siRNA transfection, the cells were used to analyze

the expression of DDB2 protein (see Supplemental data). Double

strand DNA oligonucleotide encoding the effective siRNA in the

knockdown of DDB2 was synthesized with a loop sequence

TTCAAGAGA and a RNA pol III terminator sequence consisting

of a 6 poly T. This double strand DNA oligonucleotide was cloned

into the RNAi-ready pSIREN vector (BD Biosciences Clontech)

between the BamHI and EcoRI restriction sites with the U6

promoter. This vector contains a puromycin resistance gene for

the selection of stable transfectants. A unique Xba I restriction site

was placed downstream of the terminator sequence for restriction

digest analysis to confirm the presence of the cloned insert. Four

mg of pSIREN/U6/DDB2-siRNA vector or pSIREN/U6 empty

vector were used for stable transfection of MCF-7 cells with

TransPEI transfection reagent, according to the manufacturer’s

instructions (Eurogentec). The MCF-7 clones were selected with

0.5 mg/ml of puromycin for 3 weeks. Single colonies were isolated

and then screened for levels of the expression of DDB2 protein by

RT-PCR and Western blot analyses. Five days before the

experiments, the cells were placed into complete medium without

puromycin supplement.

Cell Growth
Cells (16104) were plated in 24-well dishes. The cell growth rate

was determined by counting the number of cells with a

hemocytometer as a function of time. Cell population doubling

time (Td) was calculated from the growth rate during the

exponential growth using the following formula: Td = 0.693t/

ln(Nt/N0), where t is time in days, Nt is the cell number at time, and

N0 is the cell number at the initial time. The data from cell growth

were expressed as means6SD from at least three independent

experiments, each being performed in triplicate.

Colony Formation
Cells (56102) were plated in 100-mm culture dishes and

incubated for 12 days to allow colony formation. The colonies

were then fixed in ethanol, stained with 0.1% crystal violet and

scored when they contained more than 50 cells. Results were

expressed as follows: colony formation (%) = (colonies formed/cells

seeded)6100%. The data from colony formation were expressed

as means6SD from at least three independent experiments, each

being performed in triplicate.

Flow Cytometry Analysis
Cells (26104/ml) were plated in 75 cm2 culture dishes and

grown in complete RPMI 1640 culture medium. After a 3-day

culture, the cells were washed three times with PBS and then

synchronized by serum starvation for 48h. The cells were then

induced to re-enter the cell cycle by the addition of serum for 0, 3,

12 or 18h and were harvested by trypsinization. The pellet of cells

was resuspended in 0.1% sodium citrate, 0.1% Triton X100 and

50 mg/ml propidium iodide (PI), and then stored for 24h at 4uC.

After centrifugation at 300 g for 5 min, the cells were resuspended

in PBS containing 50 mg/ml of RNAse, and the DNA content was

determined by Fluorescence-activated cell sorting (FACS) analysis

using an Orthocyte flow cytometer (Ortho Diagnostic Systems).

To aid in the determination of the ability of the serum-starved cells

to re-enter the S phase of the cell cycle, 100 mM of 5

Bromodeoxyuridine (BrdU) were added to the culture medium

for 20 min at the end of each incubation with serum (0, 3, 12 or

18h). Cells suspensions were prepared as described previously [41],

using the FITC-coupled anti-BrdU monoclonal antibody provided

by Dako and were then analyzed by FACS. The data were

analyzed using Cell Quest sofware (BD Biosciences Clontech). The

Labeling Index (LI) corresponded to the percentage of BrdU-

positive cells. The G1/S subpopulation, corresponding to BrdU-

positive cells containing G1 DNA and S fractions, was calculated

from the LI and expressed as the percentage of 5 BrdU-positive

cells.

Statistical Analysis
Evaluation of statistical significance for data from RT-PCR,

Western blots, cell growth and colony formation was assessed
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using analyses of variance (ANOVA) and the Fisher protected least

significant difference test. Statistical significance was indicated as

*P,0.05. Statistical analysis for breast cancer samples from

patients was performed using the Mann Whitney test. Correlation

between different gene expressions was performed with Pearson

correlation coefficient method. Differences were considered to be

statistically significant at a value of P,0.05.

Supporting Information

Figure S1 Localization of DDB1 and DDB2 in MCF-7 cells by

immunocytochemistry. (A) DDB1 and DDB2 were detected by

indirect immunofluorescence using the respective polyclonal

antibodies. PCNA corresponding to the positive control was also

detected by a specific polyclonal antibody. Negative control was

performed without the primary antibody. (B) The presence of

DDB1 and DDB2 were detected by Western blotting in total

(50 mg), nuclear (20 mg) and cytoplasmic proteins (30 mg), using

specific polyclonal antibodies. Positive controls corresponding to

the cytoplasmic catalase and the nuclear histone H1 were detected

by Western blotting with the respective polyclonal antibodies.

Found at: doi:10.1371/journal.pone.0002002.s001 (0.11 MB TIF)

Figure S2 Identification of DDB2-specific siRNA suppressing

DDB2 protein level in MCF-7 cells and Poly His tagged DDB2-

overexpressing COS-7 cells. (A) MCF-7 cells were transfected with

100 nM of three different DDB2-specific siRNA for 24h.

Suppression of DDB2 protein level was assessed by Western blot

analysis using equal amounts of protein (50 mg) and the anti-

DDB2 polyclonal antibody. Results were compared to the non-

transfected cells (-) and to the scrambled siRNA-transfected cells

(C). (B) COS-7 cells were stably transfected either with empty

vector-transfected cells (Neo) or with His-Myc tagged DDB2

expression vector. Myc-His tagged DDB2 overexpression was

verified by Western blot analysis and is indicated by an arrow. (C)

Myc-His tagged DDB2 overexpressing-COS-7 cells were trans-

fected with 100 nM of the three different DDB2-specific siRNA

for 24h. Suppression of Myc-His tagged DDB2 protein level was

assessed by Western blot analysis using equal amounts of protein

(50 mg) and results were compared to those from Myc-His tagged

DDB2 overexpressing-COS-7 cells without siRNA (-) or trans-

fected with the scrambled siRNA (C).

Found at: doi:10.1371/journal.pone.0002002.s002 (0.06 MB TIF)

Figure S3 PCNA, cyclin E and DHFR expression in human

breast tumors from patients. Total RNA was extracted from eight

ER-positive and eight ER-negative breast cancer samples, then

subjected to semiquantitative RT-PCR analysis. (A) The relative

levels of PCNA, cyclin E and DHFR mRNAs were normalized to

those of b-actin mRNA. Statistically significant differences

between ER-positive and ER-negative samples are indicated as

P,0.05. The mean values are indicated by a bar in graph for each

group of tumors and PCNA, cyclin E or DHFR mRNA levels. (B)

Correlation between relative PCNA, cyclin E or DHFR and

DDB2 mRNA levels was performed with Pearson correlation

coefficient method. Differences were considered to be statistically

significant at a value of P,0.05.

Found at: doi:10.1371/journal.pone.0002002.s003 (0.04 MB TIF)
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