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The enhanced information flow 
from visual cortex to frontal 
area facilitates SSVEP response: 
evidence from model-driven and 
data-driven causality analysis
Fali Li1, Yin Tian1,4, Yangsong Zhang3, Kan Qiu1, Chunyang Tian1, Wei Jing1, Tiejun Liu1,2, 
Yang Xia1,2, Daqing Guo1,2, Dezhong Yao1,2 & Peng Xu1,2

The neural mechanism of steady-state visual evoked potentials (SSVEP) is still not clearly 
understood. Especially, only certain frequency stimuli can evoke SSVEP. Our previous network 
study reveals that 8 Hz stimulus that can evoke strong SSVEP response shows the enhanced linkage 
strength between frontal and visual cortex. To further probe the directed information flow between 
the two cortex areas for various frequency stimuli, this paper develops a causality analysis based 
on the inversion of double columns model using particle swarm optimization (PSO) to characterize 
the directed information flow between visual and frontal cortices with the intracranial rat 
electroencephalograph (EEG). The estimated model parameters demonstrate that the 8 Hz stimulus 
shows the enhanced directional information flow from visual cortex to frontal lobe facilitates SSVEP 
response, which may account for the strong SSVEP response for 8 Hz stimulus. Furthermore, the 
similar finding is replicated by data-driven causality analysis. The inversion of neural mass model 
proposed in this study may be helpful to provide the new causality analysis to link the physiological 
model and the observed datasets in neuroscience and clinical researches.

When circular stimulus with frequency distributed in certain range is presented to the subject, the oscil-
latory wave responding to the stimuli frequency can be observed in the occipital area, which is called 
steady-state visual evoked potential (SSVEP)1. Various studies have revealed that only the stimulus with 
a low frequency, especially in the range below 30 Hz, can effectively evoke a strong SSVEP response1–3. 
Because SSVEP has the high signal-to-noise (SNR), it has been widely used in brain-computer interface 
(BCI), visual attention, binocular rivalry, and working memory2,4–8. The studies based on electroenceph-
alograph (EEG), magnetoencephalograph (MEG), and functional magnetic resonance imaging (fMRI) 
consistently reveal that the SSVEP response is widely distributed over the occipital and the other areas, 
including parietal, temporal, frontal, and prefrontal lobes4,9–13. Driven from the involvement of multiple 
brain areas in SSVEP, several studies have probed the information linkages among those regions in their 
network analysis using fMRI, scalp EEG, and intracranial EEG data12–16. Especially, our previous studies 
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based on intracranial EEG of rat and human scalp EEG using the undirected network analysis method 
(i.e., coherence) both demonstrate that SSVEP generation is closely correlated with strong linkages 
between frontal and occipital lobes14,17. However, because of the utilization of the undirected network 
analysis, it is impossible to reveal the directed information exchange between frontal and visual cortices, 
i.e., which directed information flow enhances the interaction between the two brain areas. Actually, 
there exists several directed network analysis methods including Granger causality (GC)18,19, partial 
directed coherence (PDC)20, and directed transfer function (DTF)15,21 that can delineate the directed 
information flow across the concerned brain areas. Keil et al. applied the GC analysis to investigate the 
re-entrant modulation of visual cortex in the affective processing. They found the enhanced influence 
from anterior cortical to visual cortical sites during the subjects’ viewing emotionally arousing content, 
and this indicated that re-entrant modulation of visual system is enhanced as a function of the emotional 
arousal of the visual scene19. However, those data-driven methods are mainly derived from the mathe-
matical aspect without specific consideration for the physiological basis22–24.

Recently, due to the biophysical derivations, the physiological models attract wide attention in neuro-
science, among which the neural mass model and its corresponding variants are mostly used in various 
studies22,25–28. The goal of neural mass model is to understand the neuronal architectures that generate 
electrophysiological data28. Neural mass model is firstly introduced by Da Silva et al.26. In these models, 
the dynamics of entire neural populations and their synapses are described using just a few state variables 
(i.e., a few differential equations) under the assumption that neurons in the same population share simi-
lar inputs and synchronize their activity. Besides a smaller computational complexity, these models offer 
a more parsimonious description of neural dynamics in terms of parameters and mechanisms involved, 
generally ascribing rhythm generation to feedback loops between excitatory and inhibitory neural pop-
ulations. Jansen et al. improved the neural mass models29 by encompassing the interaction between 
three neural populations with different synaptic kinetics (pyramidal neurons, excitatory interneurons, 
and inhibitory interneurons). In 1995, Jansen and Rit further developed the coupled double column 
model to generate visual evoked potential using single column to simulate the visual cortex and frontal 
cortex, respectively30. The simulation study revealed that those visual components like P1, N1 could be 
observed by adjusting the intercolumn connectivity coefficients. Another study by Spiegler et al. also 
proved that neural mass model was indeed able to explain frequency entrainment that was observable 
during a photic driving experiment31.

Though many efforts were made for both recording and analysis aspects, neural mechanisms of 
SSVEP are still unclear and need to be deeply explored. Moreover, the model based analysis is less 
involved in the SSVEP related studies, which may provide new insights to reveal SSVEP mechanism. In 
the current work, derived from the reported successful application of double columns model for visual 
evoked potential, we utilized this model to simulate the SSVEP response for different external circular 
stimuli and those model parameters were optimized using particle swarm optimization (PSO) to fit the 
actual intracranial EEG recordings of rats. Then based on the estimated model parameters from the data 
of different frequency conditions, the directed information flow between frontal and visual cortices can 
be revealed. The conducted study may find the underlying differences of information exchange for those 
frequency stimuli that can evoke SSVEP or not from the physiological model perspective.

Results
Double column model based information transfer. Based on the PSO, the parameters (C1, C2, 
K1, and K2) were optimally adjusted to fit the recorded EEGs both in occipital and frontal areas. For all 
the estimated models, the relative errors were below 0.01, and the time series were well fitted. Figure 1 

Figure 1. The power spectrum of the actual EEG signal and the simulated data for the four conditions 
of one rat. The red line indicates the double column model simulated signal and the blue line indicates the 
actual SSVEP signal.
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gives the corresponding power spectrum for control, 8 Hz, 44 Hz, and 84 Hz stimuli of one rat derived 
from the output waveform of Column 1 (i.e., visual cortex) and the actual EEG signal of V1_L electrode.

As shown in Fig. 1, the power spectrum between the simulated and actual EEG depicts the similar 
pattern, and the important aspect is that the simulated responses for 8 Hz stimulus reveal the obvious 
SSVEP response at the visual cortex, while other stimuli do not show the strong responses at the con-
cerned frequency points, which is consistent with the response reflected by the actual EEG.

The estimated model parameters (C1, C2, K1, and K2) were averaged across 10 rats for each of the 
four conditions. Figure 2(a) listed the averaged four parameters corresponding to the four states. Then, 
the one-way repeated-measure ANOVA with Frequency (8 Hz vs. 44 Hz vs. 84 Hz vs. Control) was used 
to test the properties of double column model based information transfer. Figure 2(a) showed that the 
significant main effect of frequency occurs in K1 [F(3, 27) =  7.417, p =  0.009, Greenhouse-Geisser cor-
rection]. Post-hoc test (paired t-test) showed that K1 of 8 Hz stimulus were statistically larger than that 
of the other three conditions (For 44 Hz: p =  0.000, 84 Hz: p =  0.008, and control: p =  0.010, Bonferroni 
correction) While, no statistical differences were found for C1, C2, and K2 across the four conditions. 
Based on the estimated four parameters, the directed information exchanges between the two columns 
were summarized as below in Fig. 2(b). Figure 2(b) clearly showed that the main difference among the 
four conditions was that 8 Hz stimulus revealed the strong information flow from occipital to frontal area 
compared to other three conditions. At the same time, 8 Hz stimulus also exhibited the largest overall 
information exchange (calculated as K1 +  K2) between the two columns.

PDC based information transfer pattern. For each rat, PDC analysis was applied to generate the 
corresponding directed flow linkage strengths. The directed flow linkage strengths were then averaged 
across ten rats for each of the four conditions. One-way repeated-measure ANOVA with Frequency (8 Hz 
vs. 44 Hz vs. 84 Hz vs. Control) was also used to investigate the difference of flow strength existing in 
the four conditions. PDC analysis revealed the similar directed information flow as that demonstrated 
by double column model. Specifically, the significant main effects of frequency were observed in the 
information flows from visual cortex to frontal area [F(3, 27) =  11.976, p =  0.000, Greenhouse-Geisser 
correction], Then, post-hoc test (paired t-test) showed that 8 Hz stimulus had the statistically larger 
information flow from visual cortex to frontal area than that of the other three conditions (For 44 Hz: 
p =  0.003, 84 Hz: p =  0.005, and control: p =  0.041, Bonferroni correction). No statistical differences were 
observed for the feedback flow from frontal area to visual cortex, the internal linkages within visual 

Figure 2. The double column model parameter (K1, K2, C1, and C2) differences among the four 
conditions. (a) Statistical difference; (b) The corresponding information exchange between the Column 
1 (occipital lobe) and Column 2 (frontal cortex). K1 indicates the information exchange from Column 
1 to Column 2, K2 indicates the information exchange from Column 2 to Column 1, C1 represents the 
information exchange inside Column 1, and C2 represents the information exchange inside Column 2.
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cortex and frontal area (Fig. 3(a)). Based on the PDC flow strengths, the information exchanges between 
the two brain areas were given in Fig.  3(b). Figure  3(b) also showed that 8 Hz stimulus exhibits the 
strongest overall information between frontal area and visual cortex.

Discussion
Occipital and frontal areas play important roles for the SSVEP generation. Our previous studies based 
on both intracranial and scalp EEG recording consistently revealed that the frequency stimulus that can 
evoke strong SSVEP response will correspond to a denser brain network especially with much stronger 
linkages between frontal and occipital areas14,16. Because our previous studies are based on the undi-
rected network analysis, it cannot uncover the directed information flow, i.e., which direction of flow 
dominately contributes to the linkage enhancement. To quantitatively discover the information exchange 
between the two areas, in current work, we adopted two different causality analysis methods. One is 
based on the double column model, and another is based on PDC analysis.

As shown in Fig. 1, similar to the actual EEG recordings, only the output of double column model 
for 8 Hz stimulus has the related strong SSVEP response. K1 and K2 delineate the information exchange 
between visual cortex and frontal area, while C1 and C2 represent the internal linkage for visual cortex 
and frontal area. The detailed parameters in Fig. 2(a) show that K1 of 8 Hz stimulus is statistically larger 
than the other three conditions (p <  0.05), while K2, C1, and C2 do not exhibit the obvious difference 
for the four conditions, which indicates that the generation of SSVEP is mainly due to the strong infor-
mation transfer from visual cortex to frontal area. Consistent with the information flow revealed by the 
double column model, PDC analysis also proves that the strongest information flow from visual cortex 
to frontal area is observed for 8 Hz stimulus (p <  0.05) among the four conditions, and other three con-
cerned flow linkages are not of obvious difference for the four conditions.

In essence, double column model is derived from the anatomical information, and it may reflect the 
more actual physiological basis. While PDC is essentially derived from the mathematical assumption 
without referring to the physiological information20. Though the differences of working mechanism for 
the two analysis approaches do exist, the results achieved from them are still consistent. They both 
indicate that when different stimuli are applied, the information exchange within the corresponding 
sub-networks (i.e., visual cortex and frontal area) has no obvious difference, and the information feed-
back from frontal area to visual cortex is also kept relatively stable for the four conditions. After visual 

Figure 3. The directed information flow differences among the four conditions revealed by PDC 
analysis. (a) Statistical difference; (b) The corresponding information exchange between the visual cortex 
and frontal area. Visual cortex (VC) contains the four electrodes V1_L, V1_R, V2_L, and V2_R; frontal 
area (FA) contains the two electrodes FrA_L and FrA_R. And VC to FA indicates the directed information 
exchange from visual cortex to frontal area, FA to VC indicates the directed information exchange from 
frontal area to visual cortex, Visual Cortex represents internal information flows of visual cortex, Frontal 
area represents the internal information flows of frontal area.
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cortex receive visual information input, visual information will be delivered to frontal area for further 
processing. As SSVEP response can be regarded as the signal enhancement or transfer of the exter-
nal stimuli in brain, it is reasonable to assume that if a stimulus can evoke the corresponding SSVEP 
response, the corresponding response network should have powerful processing and stable transferring 
ability to keep the information of the flickering stimuli as intact as possible. Various studies from fMRI, 
EEG, and MEG have revealed that frontal lobe is highly involved in SSVEP processing4,32,33. Therefore, 
we assume that the strong information flow from visual cortex to frontal area for 8 Hz stimulus may 
guarantee the stimulus information is intactly delivered to frontal area for further processing, which 
may account for the finding that the 8 Hz response is observed to be distributed over the whole brain 
including occipital and frontal areas when intracranial EEG recording is used.

Another aspect revealed the two analyses is that when the overall information between frontal and 
occipital cortices is considered, 8 Hz stimulus shows the strongest information exchange between these 
two concerned brain regions, which is consistent with the previous finding based on both scalp EEG 
of human and intracranial EEG of rats14,16. In other words, the information increase of 8 Hz stimulus 
is mainly attributed to the enhanced information transfer from visual cortex to frontal area, that is, the 
information transfer strength from visual cortex to frontal area determines whether the stimulus could 
evoke the corresponding SSVEP response or not. However, it needs to point out that PDC based anal-
ysis only considers the direct connections between the frontal area and visual cortex, and information 
exchange may be indirectly transferred through other nodes like Pt_A, M1. Therefore, the PDC based 
analysis may miss some information flow.

As revealed in our previous studies, the individual differences existed among the subjects14,16. In cur-
rent study, our analyses mainly focused on the averaged group level. It is worthy to explore the individual 
differences with the method presented here. We will further to explore these phenomena in the future 
studies. As summarized in previous studies9,13,34, there are multiple brain areas involved for SSVEP gener-
ation. The current work mainly focuses on the information exchange between frontal area and occipital. 
In the future, we will construct the bigger neural mass network model to include more sources, such as 
medial occipital and mid-temporal regions to explore the mechanism of SSVEP. A possible limitation 
of current study is that the unipolar electrodes are used to record LFP based on the common reference 
placed at Cerebrum. Just as proved in Bollimunta et al.35, unipolar recording may provide the susceptible 
linkages for causality analysis and other more reliable neural signal types like biopolar recording and 
multiunit activity (MUA) need to be considered in the future work. Furthermore, we will also resort to 
the multimodalities (EEG and fMRI) to replicate the results on the human subject, and add the cognitive 
tasks in the experiments to explore the related brain mechanisms, such as the visual attention using the 
SSVEP as the frequency tags.

Methods
All experimental protocols were performed in accordance with the Ethical Committee on Animal 
Experimentation of University of Electronic Science and Technology of China (UESTC). And the per-
formed methods were also in accordance with the guidelines approved by the institutional review board 
of the Key Laboratory of NeuroInformation of Ministry of Education at UESTC.

Materials. Ten male Wistar rats (body weight 290–320 g) were included in the study. Electrode 
implantation was performed under general anesthesia (sodium pentobarbital 60 mg/kg bodyweight, 
i.p.), complemented with 0.6 ml atropine sulfate (0.5 mg/ml, s.c.) to prevent excessive secretion. During 
stereotactic surgery, wounds were infiltrated with lignocaine (2%). Additional pentobarbital (15 mg/kg) 
was given intraperitoneally when required. All stereotactic coordinates were relative to bregma with the 
skull surface flat, according to Paxinos and Watson36. Thirteen small holes were drilled in the skull over 
the frontal area, primary motor area, primary somatosensory cortex, parietal cortex, and primary (sec-
ondary) visual cortex (regions potentially involved in SSVEP generation), and the temporal muscle was 
incised and drilled vertically to skull surface flat. Stainless-steel screw electrodes (diameter, 200 μ m) were 
implanted in the drill holes, with the reference position at cerebrum (Cb), which exhibits lower activity 
compared to other brain sites37,38. The 13-electrode montage is shown in Fig. 4.

After the surgeries, all the rats recovered for one week in individual cages with a 12:12 h light: dark 
cycle (lights on at 8:00 A.M daily). For each rat, after the one week recovery period, the SSVEP experi-
ment was carried out. During the experiments, the head of each rat was fixed using a specially designed 
box with a small hole through which the head can protrude but not move freely. Rats were injected 
with sodium pentobarbital (60 mg/kg body weight) for general anesthesia to further reduce unexpected 
artifacts induced by body movement, to exclude the effect of other higher level cognitive activity, and to 
provide a more stable stimulus during the whole experiment. SSVEP has been shown to be able to be 
evoked under such anesthesia state3,14.

Experiments were performed in a well-lit and shielded dark room. Before the circular stimulus, the 
data of a 5 min long control period was recorded for each rat. Next, rats were sequentially exposed to 
the 8 Hz low frequency stimulus, the 44 Hz middle frequency stimulus, and the 84 Hz high frequency 
stimulus provided by a LED with tunable frequencies (the duration time for each stimuli frequency was 
2 min, and a 2 min rest was set before each frequency stimulus). The LED was fixed approximately 6 cm 
over the nose of the rat, with a 7 voltage fed to the LED for all the stimuli. EEG was recorded with a 
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UEA-FZ amplifier (SYMPTO Company, Beijing, China) using compatible software developed by our 
lab (1000 Hz sampling rate), and was filtered using a 50 Hz notch filter and 0.1–120 Hz band pass filter. 
All recordings were stored on a hard disk (Lenovo Company, NewYork, USA) for further analysis. The 
samples with obvious artifacts were visually checked and abandoned. Five 3s-long data segments, that 
are free of artifacts, are selected from each of the four conditions for each rat to perform the following 
causality analysis. Details of data recording could be referred to the literature14.

Double column model for SSVEP response. The mechanisms of oscillation generation in the brain 
have been proven to be nonlinear39. Hence, nonlinear models should be used to describe cortical activity. 
The cortical column model, which is modeled by a population of ‘feedforward’ pyramidal cells, receiving 
inhibitory and excitatory feedback from local interneurons and excitatory input from the neighboring 
or more distant columns, is a kind of such nonlinear model22,28–30. The cortical column model has been 
used to simulate the oscillation of EEG waveforms. SSVEP is due to an interaction between two or more 
cortical areas12–14. Therefore, the more complex model is needed to more accurately simulate the actual 
brain mechanism of SSVEP. According to the introduction from Jansen and Rit, the double column 
model extended from the cortical column model was used to simulated the visual evoked potentials by 
describing the interactions between occipital and frontal regions30. As occipital and frontal areas are the 
two important cortical sources of the SSVEP, in current work, we used this double column model to 
simulate SSVEP waveforms, aiming to reveal the SSVEP mechanism based on this cortical model. The 
simplified double column model is depicted in Fig. 5.

Following Jansen and Rit, Column 1 and 2 represent the occipital and frontal area, respectively. C1 
and C2 account for the total number of synapses established by interneurons onto the axons and 

Figure 4. The spatial distribution of 13 intracranial electrodes that were used for recording the 
intracranial SSVEP signal. During the data recording, the cerebrum (Cb) serves as the reference.

Figure 5. Double column model for SSVEP simulation. Column 1 represents the occipital lobe and 
Column 2 represents the frontal cortex.
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dendrites of the neurons constituting the cortical column. C1 and C2 characterize the interaction between 
the pyramidal cells and the excitatory and inhibitory interneurons within the corresponding column. 
, , ∈ ,A B i {1 2}i i  determine the maximum amplitude of the excitatory and inhibitory postsynaptic 

potential (EPSP and IPSP), respectively. , ∈ ,v i {1 2}i  accounts for the firing thresholds of PSP. ad is the 
constant for the information transfer delay between the two columns. , ∈ ,u i {1 2}i  is the simulated 
waveform output at occipital and frontal area. p(t) and p’(t) are the external input for model at the two 
columns, where the white noise with amplitude distributed within 120–320 is usually fed to generate the 
spontaneous EEG activity. In current work, we used this double column model to simulate the SSVEP 
response by additionally introducing the circular pulse stimuli in the white noise series p(t). K1 and K2 
are to delineate the coupling strength between the two columns, i.e., the information exchange. Besides 
those parameters in double column model, other parameters in the single double column were omitted 
and the detailed information of them could refer to the studies by Jansen et al.29,30. , , ∈ ,A B i {1 2}i i , 
, ∈ ,v i {1 2}i  and ad are the fundamental physiological parameters, and their values are physiologically 

determined and less influenced by outside stimuli. Therefore, in current work, we used the proposed 
values in Jansen and Rit for them, while mainly focused on the possible effect of coupling strength (i.e., 
C1, C2, K1, and K2) for the SSVEP stimulation. Generally, the coupling strength is directly correlated with 
the number of synapses established by interneurons onto the axons and dendrites of the neurons26,29,30,40. 
However, though the physical linkages are physiologically determined for the cortical column, it may 
assume that not all the synapses participate in the cognitive tasks28–30,41. That is to say, the different cog-
nition task may have different number of synapses involved, reflecting the different information exchange 
within the single column (C1, C2) and between the double columns (K1, K2) as well. Especially, K1 and 
K2 may quantitatively reflect the directed information exchange between the two columns30.

Inversing double column model based on PSO. Inspired from our previous work that different 
stimuli will have different evoked networks14,16, we evaluated if the related parameters of double column 
model (C1, C2, K1, and K2) could reflect the similar network linkages. In our recordings, the intracranial 
electrodes covered both frontal and occipital lobes. We selected the recordings at electrodes FrA_L and 
V1_L to serve as the reference signals at the two cortical areas. Based on the two reference signals, the 
concerned parameters (C1, C2, K1, and K2) were adjusted by PSO to generate the corresponding output 
u1 and u2, until the reference signals were well fitted by the two model outputs.

Compared to the traditional Newton based approaches, PSO is one of the evolutionary optimizations 
that are not necessary to know the expression between object function and concerned variables. PSO 
has been proved to be powerful to search for the global optima42–45. The standard PSO can be referred 
to the introduction from Shi et al.44. Aiming to find the suitable parameters to fit the recorded EEGs, the 
fitness object function for PSO is defined as,

( , , , ) =
−

+
−

( )
f C C K K

U u
U

U u
U 11 2 1 2

1 1

1

2 2

2

where U1 and U2 are the actual recorded EEGs at occipital (electrode V1_L) and frontal areas (electrode 
FrA_L), and u1 and u2 are the outputs of the two columns. According to the different frequency stimuli, 
the occipital input p(t) is generated by mixing the corresponding pulse signal into the white noise, and 
the frontal area input p’(t) is fed with the pure white noise. Except for C1, C2, K1, and K2, the model 
parameters like , , ∈ ,A B i {1 2}i i , , ∈ ,v i {1 2}i  and ad are set as the proposed values by Jansen and Rit30.

When PSO was used to find the corresponding C1, C2, K1, and K2 for certain stimulus, the particles 
encoded the four parameters as = ( , , , )E C C K Ki 1 2 1 2  with i referring to the ith particle. Suppose the 
swarm consists of Q particles, the maximum generation number is Gmax, the termination error is δ, and 
the toleration iteration step number is D, The detailed values of these variables will be listed in the cor-
responding study. Following the proposed parameter ranges in Jansen and Rit30, the varying boundaries 
for K1, K2, C1, and C2 were 1500–3000, 100–600, 60–120, and 60–120, respectively. The PSO based model 
inversion for SSVEP response can be denoted as below flow chart,

The detailed procedure in Fig. 6 is depicted as follows:
Step 1. Particle initialization: Initialize each particle in swarm , , ....... ,E E E{ }Q1 2  with 4 random val-

ues, where first component defines C1 within 60–120, the second component represents C2 distributed 
within 60–120, the third one is the information flow K1 within 1500–3000, and the fourth one is feedback 
flow K2 within 100–600. Initialize the velocity of the Q particles, , , ...... ,V V V{ }Q1 2 , by setting the veloc-
ity of each particle, Vi, with 4 random values having similar range as particle component. The p(t) is 
generated by adding 3 s long pulse waveform with 7.0 V amplitude to the white noise distributed within 
120–320, and the pulse frequency is corresponding to the 3 frequency stimulus, while no pulse is added 
for the resting control state. p’(t) is the 3 s long white noise with amplitude distributed within 120–320. 
Let Pi be the ith particle position corresponding to the best fitness value of ith particle, and Pg represent 
the position of the best global fitness value ever achieved by all the particles.

Step 2. Evaluation of particle fitness: For the ith particle = ( ), ( ), ( ), ( )E e e e e[ 1 2 3 4 ]i i i i i , the current 
model parameters are defined by ( )e 1i , ( )e 2i , ( )e 3i , and ( )e 4i . Based on the current model parameters, 
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the corresponding outputs of double models are simulated, and the fitness fi for ith particle is calculated 
following equation (1).

Step 3. Update the best position of each particle: Compare the fitness value Ui of the ith particle at 
current position (Ei) with the ever achieved best fitness value by this particle at the position Pi, if Ui is 
better, Pi will be replaced by the current position Ei, else Pi will be remained. Here, 1 ≤  i ≤  Q.

Step 4. Update Pg, the best position ever achieved by all the particles: Compare the renewed best 
fitness value of the ith particle at position Pi with the global optimal fitness value at Pg, if the value at Pi 
is better, Pg will be replaced by Pi, else Pg will be remained. Where 1 ≤  i ≤  Q.

Step 5. Update the velocity and position of each particle as,








( ) = ( ) + (( ( ) − ( )) + (( ( ) − ( ))

( ) = ( ) + ( )

v n wv n t r p n e n t r p n e n

e n e n v n
i i i i g i

i i i

1 1 2 2

where 1 ≤  n ≤  4, 1 ≤  i ≤  Q. ( )e ni  and ( )v ni  are the nth element and the nth velocity element of the ith 
particle, respectively; w, t1, and t2 are the same as those in the standard PSO.

Step 6. Judge the stopping criteria: If the number of generation is larger than the predefined number 
Gmax or the decreasing of Pg has been less than the termination error δ in the continuous D iterations, 
the iterations will be stopped and the solution corresponding to the global optimal position (code chain) 
Pg is the final solution for the underdetermined system, else return to Step 2 and go on.

In the current study, the relative error (RE) is applied to evaluate the performance of model simula-
tion, and the relative error is defined as,

=
−

( )

X Y
X

RE
2

where X is the actual EEG signal and Y is the object signal simulated by PSO, .  denotes the norm cal-
culation for vector.

In the current work, the parameters of PSO were initialized as: The swarm size (population size) Q was 
60; the number of generation Gmax was 100; the inertia weight was updated as ( ) = . − ×.w u u0 9

G
0 4

max
, 

where u was the current generation number; the velocity constants, t1 and t2 are both 2.0; the tolerance error 
δ is 10−6 and D is 20. After the estimation of model parameters for 5 segments of one rat, the corresponding 
C1, C2, K1, and K2 are then averaged across the 5 segments to achieve the model parameters for individual 
rat.

Partial directed coherence. There are several causality analysis methods, i.e., GC, PDC, and DTF, 
etc., that can delineate the directed information flow for time series21,23. In current work, we adopted 

Figure 6. The flow chart for double column model based causality analysis. 
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PDC to construct the directed network, aiming to reveal the information flow between visual cortex and 
frontal area for different frequency stimuli.

For each time series, the model coefficient can be calculated with the following equation,
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where x indicates the data vector, w indicates the multivariate independent white noise, Ar is the matrix 
of model coefficient which is estimated by the multivariate autoregressive (MVAR) model, aij(r) repre-
sents the linear interaction effect of xj(n − r) onto xi(n). p represents the model order, which is estimated 
with Akaike Information Criterion (AIC)46,47 within range 5 to 20.

Then, PDC is the full multivariate spectral measure, which is recruited to assess the directed influ-
ences between any given pair of signals in a multivariate data set. PDC can be calculated as,
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Figure 7. The flow chart for PDC based analysis. 
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The detailed scheme flow for the PDC based data-driven analysis is depicted in Fig. 7. The steps are 
listed as following:

Step 1. The 3 s long EEG segment is used to calculate PDC strength for the four conditions of each rat.
Step 2. Construction of directed networks. The directed flow strength between two electrodes is the 

average of PDC strength within frequency band 6–92 Hz. Based on the edge strengths for 12 electrodes, 
the directed network is constructed for the four conditions of each rat.

Step 3. Construction of sub-network between frontal area and visual cortex. Considering the positions 
of implanted electrodes, FrA_L and FrA_R are located in frontal area, while visual cortex covers V1_L, 
V1_R, V2_L, and V2_R. To build the information exchange between the concerned two areas, we select 
the corresponding directed information strengths among the six electrodes for further analysis.

Step 4. Calculation of overall information flow. The directed information from visual cortex to frontal 
area is the sum of directed PDC strength from electrodes in visual cortex (i.e., V1_L, V1_R, V2_L, and 
V2_R) to electrodes in the frontal area (i.e., FrA_L and FrA_R). On the contrary, the directed informa-
tion from frontal area to visual cortex is the sum of directed PDC strength from electrodes in the visual 
cortex (i.e., V1_L, V1_R, V2_L, and V2_R) to electrodes in the frontal area (i.e., FrA_L and FrA_R). 
The information exchange within the frontal area is the sum of directed strengths between FrA_L and 
FrA_R, and the corresponding information exchange within visual area is the sum of directed strengths 
among the four electrodes (i.e., V1_L, V1_R, V2_L, and V2_R).

For each 3 s long segment of one rat under certain experiment condition, the corresponding infor-
mation flow can be estimated with PDC. Then the PDC information flow of individual rat under certain 
condition is achieved by averaging linkages across the 5 segments.
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