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Abstract: Falling is a major cause of personal injury and accidental death worldwide, in particular
for the elderly. For aged care, a falling alarm system is highly demanded so that medical aid can
be obtained immediately when the fall accidents happen. Previous studies on fall detection lacked
practical considerations to deal with real-world situations, including the camera’s mounting angle,
lighting differences between day and night, and the privacy protection for users. In our experiments,
IR-depth images and thermal images were used as the input source for fall detection; as a result,
detailed facial information is not captured by the system for privacy reasons, and it is invariant
to the lighting conditions. Due to the different occurrence rates between fall accidents and other
normal activities, supervised learning approaches may suffer from the problem of data imbalance in
the training phase. Accordingly, in this study, anomaly detection is performed using unsupervised
learning approaches so that the models were trained only with the normal cases while the fall
accident was defined as an anomaly event. The proposed system takes sequential frames as the
inputs to predict future frames based on a GAN structure, and it provides (1) multi-subject detection,
(2) real-time fall detection triggered by motion, (3) a solution to the situation that subjects were
occluded after falling, and (4) a denoising scheme for depth images. The experimental results show
that the proposed system achieves the state-of-the-art performance and copes with the real-world
cases successfully.

Keywords: fall detection; unsupervised learning; denoised GAN

1. Introduction

According to the reports from the World Health Organization (WHO), approximately
28–35% of the elderly fall each year, and it increases to 32–42% for those over 70 years
of age [1]. Globally, accidents involving falls are the second leading cause of accidental
deaths and are considered to be one of the most dangerous events for the elderly. Even if it
did not cause personal injury, 47% of the elderly could not stand up by themselves after
falling [2]. Based on the above reasons, a fall detection system that provides continuous
monitoring is highly demanded so that medical aid can be applied immediately for the
elderly after falling.

The studies about fall detection systems are mainly divided into two categories: fall
detection based on wearable devices and situational awareness devices [3]. Accelerometers
are commonly used in wearable devices, and a simple threshold can be set or derived by
machine learning algorithms to define fall accidents [4]. The drawbacks of the approaches
using wearable devices mainly came from the battery capacity of the device, and it is very
likely that the user may forget to wear the device due to weak memory [5]. In addition, it is
not suitable and comfortable for the elderly to wear electronic instruments [5–7]. On the

Sensors 2022, 22, 4194. https://doi.org/10.3390/s22114194 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22114194
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8554-1265
https://orcid.org/0000-0002-8041-6326
https://doi.org/10.3390/s22114194
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22114194?type=check_update&version=2


Sensors 2022, 22, 4194 2 of 16

other hand, for fall detection systems based on situational awareness devices, sensors, such
as vibration sensors, microphones, cameras, etc., are deployed in the environment to detect
falls. Yet, the sound or vibration signal may cause frequent false alarms due to the fall of
objects. Consequently, the use of cameras with computer vision techniques have become
the mainstream method for fall detection systems.

In previous studies, RGB cameras were frequently used as the input sensors for fall
detection. Since RGB cameras are highly affected by the lighting conditions, the detection
accuracy of the system is highly affected by the scene where the system is operated. In
addition, fall accidents happen during the night very often when the elderly gets up from
bed to use the restroom. Fall detection using an RGB camera fails to function without
illumination. In addition, the elderly may frequently fall when using the restroom or
taking a bath due to the slippery floor and using RGB images can lead to privacy violations.
Accordingly, to tackle the problems mentioned above, the depth cameras have become a
better choice of sensors for fall detection. The depth cameras obtain the depth information
and achieve lighting independence through infrared structured light emission. As opposed
to the RGB images, users’ detailed facial information is not recorded in the depth images
and thus ensures users’ privacy. However, even though the depth images can be adopted to
overcome the limitations of RGB images, it can be observed that the depth images are noisy
and provide weak local gradient information of objects compared with RGB images [8],
making it challenging for the deep learning models to detect objects in the depth images.

For fall detection systems, compared with the normal activities of daily living (ADLs),
the occurrence rate of fall accidents is relatively low. From the perspective of machine
learning, data imbalance between positive samples (video clips with fall accidents) and
negative samples (video clips with ADLs) is not conducive to the approaches of supervised
learning classification in fall detection. In addition, the fall detection systems are expected
to work in the real-world scenarios that the subjects are occluded after falling since the
subjects are usually surrounded by beds, chairs, tables, and other furniture in the nursing
home, as shown in Figure 1. According to the abovementioned reasons, in this study, we
propose a framework using an unsupervised learning approach that is only trained with
samples from normal activities of daily living and defined the fall accident as an abnormal
event. The sequence-to-sequence Generative Adversarial Network (GAN) structure with
the denoising scheme is designed to predict the future frames and learn the spatiotemporal
changes in motion, instead of body postures. The main contributions of this study are
summarized as follows.

(1) A sequence-to-sequence denoised GAN structure is proposed for fall detection, which
achieves state-of-the-art performance.

(2) Our approach can perform multi-person fall detection.
(3) A denoising scheme is designed for depth image inputs.
(4) The proposed system can perform real-time fall detection in the real-world situation

that subjects were occluded by the furniture after falling.
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2. Related Work

With the recent advances in convolutional neural networks, several deep learning-
based frameworks have been proposed for fall detection. Núñez-Marcos et al. [9] presented
a framework that uses the optical-flow methods for action sequences analysis. However,
their proposed framework is very sensitive to the lighting conditions, which also has a
great influence on the optical flow field due to the RGB images they used as the inputs.
Abobakr et al. [8] adopted ResNet to perform feature extraction on colorized depth frames.
Subsequently, the extracted feature vector from ResNet became the input of two LSTM [10]
layers to learn the changing characteristics among T consecutive frames. Finally, fully
connected layers took the outputs from LSTM to classify if the subject was falling or not.
Even though the depth images were used as the inputs to achieve lighting independence,
the detection performance of their method is still greatly affected by the noises in the depth
images. In addition, the problem of uneven collection of positive and negative samples still
exists with their approach.

Tsai et al. [11] proposed a method that uses Kinect v2 to obtain the foreground depth
image, and each pixel in the image represents the closest depth value. For subject detection,
seven skeleton points were extracted through the operations of connecting components,
morphology, and thinning. Subsequently, they trained a fall detection model based on
the AlexNet [12] with five convolutional layers and two fully connected layers but took a
1-D feature vector from the flattened skeleton points, performing 1-D convolution. Even
though the authors presented a lightweight model that can be embedded into the devices
easily, their proposed framework can hardly be applied practically. Since their system can
only detect people within 0.6 m from the camera, which is mounted horizontally, such
approach is not sufficient to work on the practical scenarios for fall detection applications,
not to mention the situations when the subjects are occluded by the furniture after falling
or the scenario of multi-person fall detection.

Nogas et al. [13] proposed a method which defines the fall accident as an anomalous
event and uses an autoencoder [14] to reconstruct the continuous depth frames. As a
result, if the abnormal frames that involve fall accidents are fed into the autoencoder
model for reconstruction, the fall alarm is triggered when the autoencoder model fails to
reconstruct those anomalous frames back to their corresponding input frames precisely
since the characteristics of the motion from those frames were not learned by the trained
model in the training process. Accordingly, their proposed system is lighting invariant
that can perform continuous monitoring, and the problem of imbalanced class training
data can be avoided with the unsupervised learning approach. However, their denoising
scheme is merely adequate for the inputs of depth images, so that the post-processing and
the statistical information are needed for their approach to boost the detection performance,
becoming inadequate to perform real-time fall detection.

3. Proposed Methods

In this study, IR-depth images and thermal images are used as the input source for fall
detection to reduce the influence of lighting conditions and avoid privacy violations. In
addition, only the frame sequences with normal ADLs are collected in the training dataset
for frame reconstruction, so that the frame sequences with fall accidents will lead to bad
reconstruction by the trained model and trigger the anomaly alarm. To achieve that, a
model with generative adversarial network (GAN) structure that takes frame sequences to
capture the properties of spatiotemporal changes in motion and produces the corresponding
reconstruction for future frame predictions is proposed. Figure 2 illustrates the overall
architecture. It is composed of the generator network, discriminator network, FlowNet [15],
and the proposed denoising scheme for anomalous scoring. In the training phase, sequences
of N consecutive frames are fed into the generator with the corresponding N consecutive
frames as the ground truth, of which half of the frames come from the inputs, and another
half of the frames are obtained from the following frames after input frames to learn the
spatiotemporal features and perform future frame predictions in the inference phase.
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Figure 2. Overall architecture. The model takes the sequences of N consecutive frames and perform
N/2 future frame predictions. If the trained model fails to reconstruct the future frames well, it means
an anomalous event just happened, and the system will trigger the alarm. In our experiments, N was
set at eight, considering the execution time for real-time detection and the limitation of GPU memory.

3.1. Materials and Data Preprocessing

The proposed fall detection system takes IR-depth images and thermal images as
inputs for the purpose of achieving lighting-invariant and privacy protection. For per-
formance evaluation, two public datasets were used in the experiments: Thermal Fall
Dataset [16] and UR Fall Detection Dataset [17]. The details of these two datasets are
introduced as follows.

Thermal Fall Dataset:
Thermal Fall Dataset [16] consists of several videos recorded by a FLIR ONE camera

mounted on an Android phone that was installed parallell to the floor with the maxima
measuring distance of 3 m. The frame rates of these videos are either 25 or 15 fps. There
are 44 video clips, of which 35 clips include fall accidents and daily activities, and the
remaining nine clips only contain daily activities. Additionally, the recorded video clips
of falling and daily living activities were performed by 17 volunteer subjects. The spatial
resolution of the thermal images is 640 × 480. Figure 3 shows some thermal image samples
from the dataset.
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UR Fall Detection Dataset:
The UR Fall Detection Dataset [17] contains 70 depth videos captured by the Microsoft

Kinect cameras that were mounted horizontally to the floor with the maxima distance
of 3 m to the subjects. The frame rate is 30 fps, and the spatial resolution of each depth
frame is 640 × 480. In total 30 videos are in the dataset with fall accidents and other daily
activities, such as walking, sitting, squatting, and lying on beds. Those videos with fall
accidents were recorded by five subjects who simulated two types of falling scenarios,
including direct falls and falls from a chair. However, some missing pixels exist in depth
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images, caused by occlusion or scattering, multiple reflections, and transparent objects
from the structured light sensors [18]. Those undefined pixels become noise that interfere
with the deep learning models in feature extraction. Consequently, the preprocessing of the
hole filling algorithm [19] is applied to reduce the noise. The comparison of input frames
before and after applying the hole filling algorithm is demonstrated in Figure 4.
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3.2. Network

In the proposed framework, the continuous motion features are extracted, and then
used for future frame reconstruction by the generator. Meanwhile, the discriminator net-
work is used to distinguish the reconstructed frames from the authentic frames. Moreover,
to further reduce the influence of the noises from depth images, the reconstructed frames
are sent back to the generator network to obtain the encoded features for comparison with
the corresponding authentic frames, checking if any anomaly occurs in the testing phase.
The design details are elaborated as follows.

3.2.1. Generator

The generator network is based on an encoder–decoder structure [20] that takes frame
sequences as the inputs to learn the spatiotemporal correlation of subjects’ motion in the
training phase. In our experiments, sequences of eight consecutive frames are fed into
the generator as the inputs. That is, the network takes the information from the previous
4 frames to predict future 4 frames. If the number of frames in an input sequence is less
than 8, the information from the previous frames may not be sufficient to predict the future
frames well. However, if we have more frames in the input sequence, the computing
burden will increase, which is unfavorable to the system for performing real-time detection.
The ground truth frames to learn are the corresponding eight consecutive frames with four
frames shifted over the timeline to perform future frame predictions. In the testing phase,
as is shown in Figure 5, a sequence of eight consecutive frames of depth images is fed into
the trained model that produces the reconstructed sequence with four predicted future
frames, which are F̂t+1, F̂t+2, F̂t+3, and F̂t+4.
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3.2.2. Discriminator

For the discriminator network, we followed the structure and settings of Patch-
GAN [21–23]. Since the problem of noises may still exist after hole filling, the concept
of PatchGAN is adopted to divide the input depth image into N by N patches for judg-
ments. (N = 70 in our experiments). After each block is judged, the ensemble scheme is
applied to average the prediction results for classification. For the generated images, the
high-frequency parts were frequently checked by the discriminator. As a result, it further
reduces the influence of the noises in each small patch from the depth images.

3.2.3. The Scoring Scheme Using Encoded Feature Comparison

Other than the hole-filling algorithm and PatchGAN architecture, the encoded feature
comparison is also designed for denoising when using depth images as the inputs. Since
only the main components from the dataset are encoded as features when training the
generator model, the jittering noises in the depth images are not the stable components to
be encoded and would be ignored. As is shown in Figure 6, the future frame predictions

are fed back to the generator to obtain the encoded feature,
⇀
V1, and compared with the

encoded feature of the corresponding authentic frame sequence,
⇀
V2. Consequently, it

reduces the influence of jittering noises in the depth images. Accordingly, the discrepancy
between two sequences can be measured by computing the included angle θ between their
corresponding encoded feature vectors through Equation (1).

θ = cos−1

 ⇀
V1·

⇀
V2

‖
⇀
V1‖ × ‖

⇀
V2‖

 (1)
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As a result, if the input sequence contains the continuous frames with the motions of
normal activities, the trained generator can reconstruct the corresponding future frames
more precisely because the motions of normal activities have been learned from the training

dataset and are predictable. Subsequently, the encoded feature vector
⇀
V1 from the recon-

structed sequence and the encoded feature vector
⇀
V2 from the correspondingly authentic

sequence are similar so that the included angle θ between them is small. Conversely, when
the input sequence includes the continuous frames with the motions of fall accidents that
are excluded in the training dataset, the generator will fail to predict the future motion
based on the previous motion in the input sequence. Consequently, the included angle

between the encoded feature vectors
⇀
V1 and

⇀
V2 becomes larger because the reconstructed

frames are very different from the correspondingly authentic frames. Thus, the proposed
scheme can be adopted to determine if a fall accident occurs in the input sequence.
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3.3. Training Loss Functions

The proposed framework based on the generative adversarial network (GAN) struc-
ture comprises the generator network, the discriminator network, and the FlowNet. In
training, the hybrid loss function that takes L2 loss, gradient loss, optical-flow loss, and
adversarial training loss into consideration is designed for network optimization, as is
shown in Figure 7.
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3.3.1. L2 Loss

For most of the image reconstruction tasks, L2 loss is one of the most frequently
adopted loss functions that directly computes the mean square error between the input and
output images. The L2 loss function is expressed as

L2(P) =
1
N ∑pεP

(
yp − pred(p)

)2, (2)

where p represents the pixel in the image P, and N is the total number of pixels in the image.
In Equation (2), yp stands for the pixel value of p from the target image, and pred(p) is the
predicted pixel value of p from the reconstructed image.

However, compared with the frames in the input sequence, many high-frequency
details are missing in the reconstructed frames. To tackle this problem, the loss function
that considers the image gradient differences is needed in the optimization to enhance the
detailed contours in the reconstructed results.

3.3.2. Gradient Loss

To enhance the high-frequency details in the reconstructed frames, the gradient differ-
ences between the reconstructed results and the corresponding ground truth are taken into
consideration in training. The mathematical expression of the gradient loss is as

Lgd
(
Ŷ , Y

)
= ∑i,j(

∣∣|Yi,j −Yi−1,j| − |Ŷi,j − Ŷi−1,j|
∣∣+ ∣∣|Yi,j−1 −Yi,j| − |Ŷi,j−1 − Ŷi,j|

∣∣) (3)

where i and j stand for the spatial position of a pixel in the depth image. The variable Ŷ
represents the predicted frame, and Y is its corresponding ground truth. Herein, only the
gradient intensity differences between two adjacent pixels are considered in the gradient
loss. The adoption of gradient loss is expected to retain more high-frequency details so that
the information of subjects in the depth image can be well captured.
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3.3.3. Optical-Flow Loss

The L2 loss and gradient loss mainly focus on the spatial characteristics of the dif-
ferences in pixel intensity between the predicted frames and their corresponding ground
truth. To capture the temporal features of frame-to-frame motion changes for future frame
prediction, the FlowNet [15] is embedded into the framework to compute the changes in
the optical-flow field from the reconstructed frames and the actual frames. The optical-flow
loss is expressed as Equation (4), where FlowNet is denoted as F, Î represents the predicted
frame, and I is the corresponding ground truth.

Lop = ‖F
(

Ît+1, It
)
− F(It+1, It)‖ (4)

3.3.4. Adversarial Training Loss

The proposed framework is designed based on a GAN structure, containing a discrim-
inator network and a generator network. The purpose of training discriminator networks
is to distinguish the predicted 2k-frame sequence (F̂t− k+1, . . . , F̂t, . . . , F̂t+k) from its cor-
respondingly authentic sequence, i.e., (Ft− k+1, . . . , Ft, . . . , Ft+k). The label 1 represents
the real depth images from the dataset, while the label 0 represents the reconstructed
frames from the generator. For training a discriminator, the parameters of the network are
optimized by minimizing the loss function, as expressed in Equation (5).

LD
adv
(

F̂, F
)
= ∑t+k

f=t−k+1 ∑i,j
1
2

LMSE

(
D
(

Ff

)
i,j

, 1
)
+ ∑t+k

f=t−k+1 ∑i,j
1
2

LMSE

(
D
(

F̂f

)
i,j

, 0
)

(5)

On the other hand, the purpose of training generator networks is to reconstruct the
frame sequence F̂f [f = t − k + 1:t + k] that confuses the discriminator network to classify
the reconstructed sequence F̂f as 1. Subsequently, for training a generator, the parameters
of the network are optimized by minimizing the loss function, as expressed in Equation (6).

LG
adv
(

F̂
)
= ∑t+k

f=t−k+1 ∑i,j
1
2

LMSE

(
D
(

F̂f

)
i,j

, 1
)

(6)

3.4. Training Details

All experiments were run on a GTX2080 Ti GPU and programmed with TensorFlow.
For training and testing data, the size of the images was fixed at 256 × 256, and all pixels
were rescaled to [–1, 1]. In the training phase, the batch size was set to 7 sequences (8 frames
in a sequence) for an iteration due to the limitation of memory capacity from GPU, and
Adam [24] was chosen as the optimizer. By our empirical settings, the initial learning
rate was set at 0.0001, and it decays to one tenth every 70,000 iterations till it converges
or terminates.

4. Experimental Results and Discussion

In this section, the public datasets, the thermal dataset [16] and the URFD dataset [17],
were used for performance evaluation and the comparison with the previously proposed
fall detection methods. In the experiments, the evaluation metrics of the Area Under the
ROC Curve (AUC) and overall accuracy were computed for the assessment.

4.1. The Effect of the Combinations of the Loss Functions

For network optimization, our goal is to search for the optimal loss function com-
bination to boost the performance. In the beginning, L2 loss was applied to minimize
the differences between the predicted frame and the corresponding authentic frame for
optimization. However, many high-frequency details in the reconstructed images were
missing when using the L2 loss only. Thus, the gradient loss was added to further enhance
the reconstruction results. The reconstructed frames with a standing subject by “L2 loss”
and “L2 + Gradient loss” are demonstrated in Figures 8a and 8b, respectively. Compared
with the reconstructed results by L2 loss only, the contours of the foreground subject are
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more precise and clearer as can be observed for the parts near the hand and ankle in
Figure 8b when the model was trained with “L2 + Gradient loss” for the cases of normal
activities. Conversely, for the reconstruction of frames in which fall accidents happen,
the model trained with “L2 + Gradient loss” may fail to reconstruct those frames well, as
shown in Figure 8d, compared with the results of the model trained with the L2 loss only,
as shown in Figure 8c. That is because the cases with fall motion in testing were unseen by
the models, and it is more sensitive to the edge contours for the model with the gradient
loss involved, compared to the model trained with L2 loss only. It is favorable for the
anomaly detection system because the better reconstruction on the normal cases leads to
low false alarms while the poorer reconstruction on the anomalous cases can trigger the
alarm more sensitively.
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In addition, the unpredictable noises after hole filling lead to the jittering effect among
frames, affecting the prediction results with respect to the inputs/outputs of frame se-
quences. In Figure 9, the subplot Figure 9a shows the influence of the jittering effect by the
model trained with “L2 + gradient loss”, and the subplot Figure 9b is the scenario with
the adversarial training loss involved, i.e., “L2 + gradient loss + adversarial training loss”.
From observations, the PatchGAN structure in the proposed framework can smoothen
the waves of the angular scores and reduce the influence of the jittering effect among
frames. For a fall detection system, it can be adopted to reduce the number of false alarms
effectively and make the system more robust in prediction.
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4.2. Comparison with the Framework of DeepFall

In our proposed framework, the reconstruction error increases when an anomalous fall
event occurs since the model cannot correctly reconstruct the abnormal frames and triggers
the alarm for fall detection. However, frame-by-frame analysis for determining whether
the reconstruction error becomes higher may cause false alarms easily [13]. Consequently,
the statistical approaches as the post-processing were adopted in [13] for further false
alarm reduction, yet cannot be performed in real-time detection. In contrast, the denoising
scheme of encoded feature comparison proposed in this paper reduces the influence of
jittering noises on the reconstruction results successfully and maintains the system running
in real-time. Table 1 lists the performance of different approaches with the metric of AUC
for comparison.

Table 1. Performance comparison between DeepFall [13] and our proposed S2SdGAN using the
metric of AUC on two public datasets.

Method Thermal UR-Filled

DAE [13] 0.65 0.75
CAE-UpSampling [13] 0.73 0.67

CAE-Deconv [13] 0.75 0.76
DSTCAE-C3D:Cσ [13] 0.97 0.80
DSTCAE-C3D:Cµ [13] 0.93 0.86

S2SdGAN (our proposed) 0.952 0.872
S2SdGAN-normalized (our proposed off-line version) 0.975 0.953

In Table 1, DAE and CAE stand for the implementations of fall detection systems using
the structures of Deep AutoEncoder and Convolutional AutoEncoder, respectively. The
DSTCAE-C3D Cσ and Cµ are the approaches with their proposed anomaly scoring scheme
in [13] that incorporates the statistical information from the past and future as the post-
preprocessing. As it can be observed in Table 1, without the post-processing, our proposed
structure, i.e., S2SdGAN (Sequence-to-Sequence denoised GAN), significantly outperforms
the models of DAE, CAE-UpSampling, and CAE-Deconv in [13]. Our proposed method
without post-processing achieves the same level of detection performance as the scenarios
of DSTCAE-C3D Cσ and Cµ in [13] that need post-processing. If we rescale our anomaly
scores to the range of 0–1 as the post-processing to perform the off-line version of our
proposed system, namely S2SdGAN-normalized, in Table 1, the performance surpasses all
the compared methods. In our experiment, the threshold of the angular score that triggers
the anomaly alarm was determined by grid search for the value that achieved the overall
best performance in the training dataset. However, the best thresholds for the anomalous
score are different case-by-case due to the different subjects and their motions. Therefore,
the off-line version that performs the normalization of the anomalous scores for each video
clip in [13] can strike better performance and robust fall predictions.

In addition, the score gaps ∆s were computed to validate if the two classes (falls and
normal ADLs) are well-separated in the systems. The larger score gap indicates the greater
difference between two classes, i.e., “fall” and “non-fall”, that can be well-distinguished by
the systems. As a result, the system with a larger score gap can achieve better accuracy in
detection, leading to a lower false alarm rate. The score gap ∆s is computed, followed by
Equation (7).

∆s =
1

N1 ∑ Score
(

F̂, 1
)
− 1

N0 ∑ Score
(

F̂, 0
)

(7)

In Equation (7), F̂ represents the reconstructed frame from the network, and Score
(F̂, 1) are the anomalous scores derived by the fall alarm system for those frames labeled as
“fall/1” in the ground truth. N1 and N0 are the total number of frames defined as “fall/1”
and “non-fall/0”, respectively. The comparison of performance with score gap ∆s and AUC
between DeepFall-DSTCAE-C3D [13] and our proposed method (S2SdGAN-normalized) is
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listed in Table 2. The score gaps by our proposed method are higher than the score gaps
by the approach in [13] on both datasets, and it implies that a higher detection rate and a
lower false alarm rate can be obtained, leading to a higher AUC.

Table 2. Performance comparison using the metrics of Score Gap (∆s) and AUC on the datasets of
THERMAL and UR-Filled.

Thermal UR-Filled

∆s AUC ∆s AUC

DeepFall-DSTCAE-C3D [13] 0.416 97% 0.395 86%
S2SdGAN-normalized 0.670 97.5% 0.474 95.3%

The better detection performance achieved by our proposed framework should con-
tribute to our denoising schemes of applying the PatchGAN-like structure and the encoded
feature comparison. Without a proper denoising scheme to tackle the noise problem in
the depth images, the anomaly detection system cannot distinguish whether the poor
reconstruction is caused by the abnormal motion from the foreground subject or just the
unpredictable noise from the background, arousing higher false-positive rates in detection.
Figure 10 shows the anomalous scores corresponding to the frames of “fall” and “non-fall”
using different approaches on a sample from the UR Fall Detection dataset. As it can
be observed in Figure 10, our proposed method can keep most of the anomalous scores
below the threshold value of 0.3 for the non-fall frames, leading to the lowest number of
false-positive frames among others.
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Figure 10. Comparison of the normalized anomalous scores corresponding to the frames of “fall”
and “non-fall” among different approaches.

The experimental results show better and more robust performance on both the UR
Fall Detection dataset and the thermal dataset. Some examples of the fall detection results
are shown in Figure 11, and it can be observed that the anomalous scores rise and drop
following the subjects’ motion changes during falls. The results have proven that the
proposed anomalous scoring scheme works successfully in fall detection.
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4.3. Performance Comparison on the UR Fall Detection Dataset

The performance comparison among the previously proposed methods that conducted
their experiments on the UR Fall Detection dataset is presented in Table 3. All experiments
were performed through 5-fold cross-validation, and the metric of overall accuracy is
used for evaluation. Even though our performance did not win the best overall accuracy
among all, the proposed framework achieves the same detection level or even surpasses
those approaches taking RGB images as inputs. Obviously, compared with using RGB
images or RGB + depth images (RGB-D), it is much more challenging for the fall detection
systems to take depth maps as inputs only since the blurry shape of subjects and noisy
background interfere with the prediction results severely. Most importantly, our proposed
fall detection system achieves users’ privacy protection and lighting-invariant, which can
work on real-world situations.

Table 3. Performance comparison among fall detection approaches on the UR Fall Detection dataset.

Method Classifier Input Overall
Accuracy

Kwolek et al. [17] SVM Depth maps only 90.00%
Goudelis et al. [25] SVM RGB-D 87.76%
Zerrouki et al. [26] SVM + HMM RGB 96.88%

Marcos et al. [9] CNN RGB 95.00%
S2SdGAN-normalized (the proposed) GAN Depth maps only 95.42%

4.4. Performance Assessment for the Real-World Situations

Except for the above two public datasets used for performance comparison with the
previously proposed frameworks, our designed fall detection system was further assessed
to determine whether it can work on the real-world situations. For the practical fall
detection systems, the cameras are usually mounted on the ceiling or walls with a certain
angle to the subjects. Therefore, here we had our sensor of Time-of-Flight (ToF) mounted
at 2.2 m height with a certain angle toward to the subjects and the maxima measuring
distance of 4.5 m to simulate the real-world situations. The model trained on the UR Fall
Dataset was used for inference since the sensor of ToF also generates the depth images as
the inputs. Figure 12 shows the detection results with the scenarios of occlusion of subjects
after falling and multi-person scenes to simulate the real-world situations. The results
suggest that the proposed anomaly detection scheme is robust and transferable to tackle
real-world problems.

In addition, in the inference phase, the model and the input sequence take about 3.7 GB
in the GPU memory, and the execution frames-per-second is 12, tested under NVIDIA RTX
2080 Ti. Accordingly, to achieve real-time detection for the real-world applications, the
input frame sequences are collected by sampling every 3rd frame, so the proposed fall
detection system will check whether the subjects are falling every second.
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5. Conclusions

In this study, a GAN-like network that inspects the reconstruction quality of future
frame sequences based on the subject’s motion was proposed for fall detection. The
proposed framework can cope with the extreme scenario when the subjects were blocked or
unseen after falling. In addition, to ensure users’ privacy, the depth images or the thermal
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images are used as the inputs, and several denoising schemes are proposed to prevent the
noises in the input images from interfering with the prediction results. Accordingly, the
unsupervised learning approach is adopted that considers fall accidents as an anomalous
event to tackle the problem of an imbalanced dataset from data acquisition. Except for
the advantages mentioned above, the experimental results on two public datasets show
that our proposed framework for fall detection achieves the state-of-the-art performance.
For future work, a scheme to derive the adaptive threshold that performs device-invariant
features for the system can be developed. In that case, the framework can work for various
sensor devices without having separate threshold settings for each device.
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