
INVESTIGATION

How Well Do Molecular and Pedigree Relatedness
Correspond, in Populations with Diverse Mating
Systems, and Various Types and Quantities of
Molecular and Demographic Data?
Anna M. Kopps,*,†,1 Jungkoo Kang,*,‡ William B. Sherwin,†,§ and Per J. Palsbøll*
*Marine Evolution and Conservation, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG
Groningen, The Netherlands, †Evolution & Ecology Research Centre, School of Biological, Earth and Environmental
Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia, ‡IceLab, Umeå University, 901 87,
Umeå, Sweden, and §Murdoch University Cetacean Research Unit, Centre for Fish, Fisheries and Aquatic Ecosystems
Research, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia

ABSTRACT Kinship analyses are important pillars of ecological and conservation genetic studies with
potentially far-reaching implications. There is a need for power analyses that address a range of possible
relationships. Nevertheless, such analyses are rarely applied, and studies that use genetic-data-based-
kinship inference often ignore the influence of intrinsic population characteristics. We investigated 11
questions regarding the correct classification rate of dyads to relatedness categories (relatedness category
assignments; RCA) using an individual-based model with realistic life history parameters. We investigated
the effects of the number of genetic markers; marker type (microsatellite, single nucleotide polymorphism
SNP, or both); minor allele frequency; typing error; mating system; and the number of overlapping
generations under different demographic conditions. We found that (i) an increasing number of genetic
markers increased the correct classification rate of the RCA so that up to.80% first cousins can be correctly
assigned; (ii) the minimum number of genetic markers required for assignments with 80 and 95% correct
classifications differed between relatedness categories, mating systems, and the number of overlapping
generations; (iii) the correct classification rate was improved by adding additional relatedness categories
and age and mitochondrial DNA data; and (iv) a combination of microsatellite and single-nucleotide poly-
morphism data increased the correct classification rate if ,800 SNP loci were available. This study shows
how intrinsic population characteristics, such as mating system and the number of overlapping generations,
life history traits, and genetic marker characteristics, can influence the correct classification rate of an RCA
study. Therefore, species-specific power analyses are essential for empirical studies.
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Knowledge about kinship (pedigree and relatedness) is central to our
understanding of ecological and evolutionary processes and an integral
part of the management and conservation of endangered populations,
such as trend and distribution of abundance as well as dispersal rates
and individual fitness (Avise 1992; Coltman et al. 2003; Palsbøll et al.
2010; Wang 2014). In the past, inferring relatedness from molecular
genetic data was regarded as an approximation to the true pedigree
relatedness. However, as molecular techniques improve, the pedigree
is being regarded as only an approximation to the true relatedness or
identity by descent (IBD, rather than IBS, or identity by state) that can
be found in each part of the genome (Benjamin et al. 2012; Speed and
Balding 2015). Of course, cases remain in which insights into the
pedigree is important, such as niche inheritance, cultural inheritance,
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as well as epigenetic inheritance (Bonduriansky 2012; Danchin 2013;
Kopps et al. 2014). Therefore, it is possible to justify both recon-
structed pedigrees and the approximation to true relatedness, and it
is important to assess how well molecular and pedigree assessments of
relatedness correspond to one another.

Pedigrees can be estimated on the basis of genetic similarity among
individuals of a population (Blouin 2003). The equations used to
assess genetic relatedness compare the observed genetic similarity
between dyads to the population average (e.g., Queller and Goodnight
1989) or provide likelihoods that a dyad belongs to several potential
relationships based on Mendelian allele segregation (Thompson
1975). The “correct classification rate” of these likelihood equations
is defined as the frequency of dyads that are assigned to a category and
that are true members of that category (Thomas and Hill 2000; Wang
2004; Wang and Santure 2009). Most software used to assess genetic
relationships based on genetic markers can deal with genotyping error
(e.g., Marshall et al. 1998; Jones and Wang 2010). However, except for
parentage, there has been limited effort devoted to assessing the effects
of intrinsic population characteristics and other aspects of the quality
and quantity of data necessary to attain high correct classification rates
in the estimation of relatedness among individuals (e.g., Anderson and
Garza 2006; Aykanat et al. 2014).

Intrinsic population characteristics such as mating system and
number of overlapping generations, which is determined by the
relationship between generation time and life span, are expected to
affect a population’s “kinship composition,” that is, the distribution of
the different relatedness categories in a population (Wang 2004). For
example, full sibs are unexpected in a population with a promiscuous
mating system. Also, dyads related as parent and offspring cannot be
observed at the same time in species with nonoverlapping generations.
The equations used for relatedness analyses are solely based on Men-
delian probabilities and therefore do not take such life history param-
eters into account. Therefore the correct classification rate of these
equations may depend on intrinsic population characteristics due to
different kinship compositions. In this paper, we assessed the correct
classification rate in one commonly used estimation of pairwise cat-
egories of relatedness in three different mating systems (monogamy,
polygyny, and promiscuity) and one or three overlapping generations
(Table 1) as a function of the number (and kind) of loci.

There are two main types of relatedness estimators (Blouin 2003).
The first one, method of moments relatedness estimation (e.g., Queller
and Goodnight 1989), assigns a value to each dyad based on IBD allele
sharing. Typically, these values range from 21 (no similarity) to +1
(perfect match). Relatedness estimates and pedigree relatedness (mean
expectations, i.e., 0.5 for parent-offspring, 0.25 for half sibs, etc.) are
highly correlated; however, the variance of relatedness estimates is
usually high and in many cases the estimated relatedness does not
agree with the actual pedigree (Santure et al. 2010). This means that
relatedness estimates are more suitable for assessing the relatedness
for a group of individuals rather than dyadic relatedness. Even though
the variance of the relatedness of a group of individuals declines with
increasing number of loci (Queller and Goodnight 1989) the correla-
tion between pedigree relatedness and pairwise relatedness estimates
did not exceed 0.86 even when relatedness estimates were based on
771 single-nucleotide polymorphisms (SNPs; Santure et al. 2010).

The second type of relatedness estimator is the assignment of
likelihood ratios to dyads belonging to certain relatedness catego-
ries {i.e., parent-offspring [PO], full sibs [FS], relationships sharing
on average a quarter of their genome IBD [R = 0.25: half sibs,
grandparent2grandchild, avuncular (any of the four combinations:
aunt/uncle-niece/nephew)], relationships sharing on average one eighth

of their genome IBD [R = 0.125: first cousins], and unrelated}. The
assignment of dyads to relatedness categories is based on the likelihood
that a pair of individuals shares zero (D0), one (D1) or two (D2) alleles
that are IBD (Thompson 1975; Thompson 1991). This likelihood is
calculated by multiplying probabilities across unlinked loci and it is
different for each relatedness category. A dyad is assigned to the relat-
edness category for which it has the highest likelihood. We will focus on
the relatedness category assignment (RCA) method in this paper because
knowledge about relatedness categories provides essential information for
niche inheritance, cultural inheritance, and epigenetic inheritance studies.

To date, studies assessing the power to assign dyads to relatedness
categories are based on a null hypothesis category vs. an alternative
category (e.g., full sib vs. half sib) (e.g., Brookfield and Parkin 1993;
Wang 2006; Wang and Santure 2009; Santure et al. 2010). This
method is valid if previous knowledge is available, e.g., are chicks in
a nest full or half sibs? However, in a natural population and in the
absence of any previous knowledge this kind of power analysis may be
misleading in terms of underestimating the number of required loci
for reliable RCAs. In addition to the relatedness category restrictions,
the influence of intrinsic population characteristics on the correct
classification rate of relationship assignments is often limited. For
example, Wang and Santure (2009) focused only on parentage and
sibship inference in a polygamous population (here referred to as
promiscuous) for studying the power of relationship assignments.
We assessed the correct classification rate of RCA, including related-
ness categories with relatively high IBD, and with a realistic degree of
background relatedness in the study population.

The advances in new massive parallel sequencing methods
facilitate the genotyping of an increased number of genetic loci per
individual (Gardner et al. 2011; Peterson et al. 2012), which may
increase the correct classification rate of RCAs. In studies estimating
pairwise categories of relatedness, the class of loci most commonly
used have been short tandem repeats (STRs), but the use of SNPs has
been increasing (Weir et al. 2006). Each class of loci has its specific
advantages and disadvantages. STRs are more informative per locus
because they are usually more polymorphic than the often biallelic
SNPs (Morin et al. 2004). On the other hand, SNPs are more abun-
dant and more suitable for automated data analyses than STRs
(Vignal et al. 2002; Morin et al. 2004).

In this study, we assessed the correct classification rate for
assignment of dyads to relatedness categories, and how the correct
classification rate is influenced by number and type of genetic
markers, minor allele frequency (MAF), genotyping error, mating
system, and including or excluding overlap of generations by looking
at 11 questions outlined in Table 1.

MATERIALS AND METHODS
Eleven questions (Table 1) were investigated in this study using an
individual-based model in which pedigree relatedness was tracked and
compared with the most likely relatedness category, which was
assigned based on genetic markers. Individual-based models provide
a means to investigate characteristics influenced by stochastic pro-
cesses such as Mendelian segregation of alleles. We developed a model
capable of simulating different natural systems, modified from a sim-
ilar model originally designed by Kopps and Sherwin (2012), which was
aimed at the Shark Bay bottlenose dolphin population (Tursiops sp.).
For this study, the modifications to the original model include the
implementation of additional mating systems, variable number of over-
lapping generations, an increase in the maximum number of (unlinked)
genetic markers, and the tracking of pedigree relatedness. For
each individual in a simulation (except at the start of the simulation)
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n Table 1 Questions, reasoning and results

No. Questions Reasoning Results

1 How much does the correct
classification rate of an RCA
increase with an increasing
number of used loci?

It is hypothesized that an
increased number of loci (or alleles)
increases informativeness and thus
the larger the number of loci the
higher the correct classification
rate of the assignment
(Kalinowski 2002).

Increasing the number of SNP and
STR loci (see heights of bars with correct
color in Figure S1, Figure S2, Figure S3,
Figure S7, and Figure 1) increased the
RCA correct classification rate. However,
the relationship between number of loci
and correct classification rate seems to
follow a sigmoid curve. This means that
the correct classification rate increases
more rapidly when loci are added to
few compared with many loci. It also
means that there was a limit to which
relatedness categories could be
estimated with .95% (80%) correct
classification rate (see question 4).

2 How do correct classification
rates differ between
categories with different
degrees of relatedness?

With decreasing relatedness,
average allele sharing is expected
to decrease, while variance increases.
On average PO and FS share half, R = 0.25
one quarter, and R = 0.125 one eighth of
their genome IBD. Thus, actual differences
in mean expected allele sharing decrease
with increasing category of relatedness
and are more prone to be misdiagnosed.
PO dyads may be prone to being
misdiagnosed as FS dyads, or vice versa,
because both categories share on
average half their genome IBD.
However PO dyads should have little
variance of relatedness, whereas all
other categories have increasing variance
with decreasing relatedness.

Categories of more closely related
dyads were assigned with higher
correct classification rate or .95%
(80%) correct classification rate was
reached with fewer loci, respectively
(Figure S1, Figure S2, Table S2,
Figure 1, and Table 2), with the
exception of FS in a scenario with a
promiscuous mating system (never
reached a .80% correct classification
rate; see yellow bars in 2nd column
in Figure 1)

3 Does the mean MAF of SNPs
influence the correct
classification rate of the RCA?

Loci with greater MAF are considered
more informative than loci with lower
MAF (Anderson and Garza 2006).
Therefore, a set of loci with a high
mean MAF may lead to RCAs with a
greater correct classification rate
compared with a set of loci with a
low mean MAF. However, loci with
low MAF give better insurance against
IBS being confused with IBD, and thus
better diagnosis. Therefore the effect
of MAF is not certain, and needs
to be investigated.

The lower the MAF the more loci
were required for an RCA to reach
.95% (80%) correct classification
rate. The effect seemed larger
between MAF = 0.05/0.25 than
between MAF = 0.25/0.5
(Table 2, Table S2).

4 Which relatedness categories
can be assigned with acceptable
correct classification rate,
defined as .80% or 95% of
dyads that are assigned to a
category are true members
of that category?

Natural variance in allele sharing is
expected to increase with decreasing
relatedness. Therefore the correct
classification rate is expected to
decreases with decreasing category
of relatedness (question 2).

PO, FS (except promiscuous) and
R = 0.25 could be assigned with
.95% correct classification rate
when the informativeness of genetic
markers was sufficient (i.e., enough
loci or alleles and/or high MAF for
SNPs). The minimum numbers of loci
necessary for an RCA with .95%
correct classification rate are depicted
in Figure S1, Figure S2, Figure 1, and
Table 2. In the promiscuous scenario,
when the informativeness of genetic
markers was high (e.g., 3200 STRs /MAF
0.05 or $400 STRs/MAF $ 0.25) the
number of dyads assigned to FS was
small (,10), however, when the
informativeness was low (i.e., 50

(continued)
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n Table 1, continued

No. Questions Reasoning Results

SNPs/MAF 0.05) on average 4010.3
dyads (SD 1249) were assigned as FS.

In a single simulation using 50,000 SNPs
and six relatedness categories, R = 0.125
could be assigned with 81.72% correct
classification rate in a monogamous
scenario with MAF 0.5 (8th blue bar in
subplot (5,4) in Figure S3).

R = 0.125 was assigned with a .80%
correct classification rate for some
scenarios when the category
R = 0.0625 was included in the
analyses (Table S4; Figure S7; question 7).

Note that with the population size and
parameters used, more than $95% of
individuals are unrelated, so even if all
dyads were assigned to the category
“unrelated” the correct classification
rate might be .95% [average proportion
of unrelated individuals in simulated
population with/without R = 0.0625
considered as related: 0.95/0.98
(monogamy), 0.95/0.98 (polygyny),
0.96/0.98 (promiscuity)].

5 Does a population’s mating system
influence the correct
classification rate of the RCA?

The kinship composition (proportion of
dyads/relatedness category) differs
between mating systems. Dyads of
some categories are expected to
occur less frequently in certain mating
systems (e.g., FS in a promiscuous
system). If it is true that the ability to
distinguish between two categories of
relatedness depends upon the pair of
categories being considered (question
4) then the performance of the RCA might
differ depending on the mating system
and so might the minimal number of
loci required for an RCA with 80/95%
correct classification rate.

The minimum number of loci required
for an RCA with .95% (80%) correct
classification rate differed between
mating systems (Table S4 and Table 2).
Categories which were not expected to
occur frequently had large proportions
of false positives and therefore should
be ignored in subsequent analyses
(e.g., FS in a promiscuous system;
Table 2, 2nd column of subplots in
Figure 1). The ranges of correct
classification rates between single
simulations with the same input
parameters are presented in Table S2.

6 Does the proportion of the
population sampled affect
the correct classification
rate of the RCA?

This requires investigation because
two opposing processes can be
envisaged. First, allele sharing between
individuals does not change with
increasing proportion of the population
sampled. However, the assignment of
relatedness categories is based on
allele frequencies and thus the
correct classification rate of the
assignment may depend on accurate
allele frequency estimates. The power
of allele frequency estimates is
expected to increase with an increasing
proportion of the population
sampled (Figure S6).

For RCAs with 3200 SNPs, it appears that,
independent of mating system and MAF,
the proportion of the population
sampled did not influence the correct
classification rate of the RCA for PO,
FS, and R = 0.25 (data not shown).
However, for R = 0.125 and the same
number of SNPs, RCA correct
classification rate seemed to increase
with decreasing proportion of the
population sampled (data not shown).
A similar observation was made with
400 available SNP loci for categories
R = 0.25 and R = 0.125 (third and
fourth columns of subplots in Figure S4).
Because R = 0.125 rarely reached a
.80% correct classification rate (nor did
R = 0.25 with 400 SNP loci, question 4)
the apparent increase of correct
classification rate with decreasing
proportion of the population
sampled did not influence the
conclusions of questions 1 to 4.

Second, the number of dyads in a
sample increases exponentially
with increasing sample size, with the
number of unrelated dyads increasing
much faster than that of related dyads
(Figure S5). Therefore the proportion
of falsely classified unrelated individuals

(continued)
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n Table 1, continued

No. Questions Reasoning Results

may increase faster than that of correctly
assigned related individuals in categories.

7 Does excluding or adding certain
relatedness categories from
consideration alter the correct
classification rate of the RCA?

Inevitably, some categories of very distant
relatives will not be investigated in every
study, so decisions must be made about
what categories to assess. Compared to
this study, fewer genetic markers are
recommended to be used by studies
in which only two relatedness categories
are considered (Wang 2006). For the
choice of categories included in the
RCA calculations, researchers can
consider whether certain categories should
be excluded. (i) Particular categories
might have low correct classification rates
in many studies; for example, the
proportion of false positives in R = 0.125
is high and thus the correct classification
rate low, so it could be beneficial not
to assess this category. (ii) Particular
categories may not be expected to
occur frequently in the study population.
For example, in a population with a
promiscuous mating system it might
be reasonable not to consider the FS
category because FS are expected
to occur infrequently.

By excluding certain categories (i.e.,
R = 0.125) from consideration, correct
classification rate of the RCA decreased
(Table S3). For example, the correct
classification rate of R = 0.25
decreased to ,80% in all simulated
mating systems. Adding an additional
category to be considered (i.e.,
R = 0.0625) appeared to improve the
correct classification rate of R = 0.125
marginally to .90% in some scenarios
(compare Table S4 and Table 2, and
the 4th columns of subplots in
Figure 1 and Figure S7).

An alternative way to increase the
correct classification rate may be to
leave all categories in the assignment
and even add more for the calculations
but then not use the results of certain
categories for inferences. Assessing
additional categories may help
exclude many false positives.

8 Does a combination of SNP and
STR markers improve the
correct classification
rate of an RCA?

Many research groups are in transition
from STR to SNP markers.
More markers (if unlinked) are
likely more informative and
thus provide higher correct
classification rates in RCAs; this
should also be true for a
combination of SNP and STR markers.

A combination of SNP and 20 STR
markers improved the results of an
RCA when few markers were available
or it decreased the required number
of SNPs to achieve .95% (or .80%)
correct classification rate, respectively
(Table 2, Table S3, Table S4, Table S5,
Table S6; compare 1st and 2nd, 3rd and
4th, 5th and 6th subplot rows in Figure 1,
Figure S1, Figure S2, Figure S4,
Figure S7, Figure S8, Figure S9, Figure S10).

9 How large is the effect of typing
error (due to mutations,
allelic dropout, erroneous
scoring) on the correct
classification rate of an RCA?

Typing errors decrease the chance that
a dyads is assigned to the correct
category because the dyad’s expected
and observed allele sharing for the
correct category may differ (e.g., no
shared allele for PO).

A 2% typing error decreased the correct
classification rate of an RCA thus
increasing the number of loci required
for 95% correct classification rate for
most categories (Table S5) compared
with typing error free data (Table 2).
With typing error, some categories
could not achieve a 95% correct
classification rate anymore under the
tested conditions (PO monogamous/
MAF0.05, FS polygynous/MAF0.05).
The correct classifications rate of
categories PO and FS was affected
more by typing error than that of more
distantly related categories.

(continued)
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the parents, grandparents and great-grandparents were known.
Pedigree-based unrelated individuals were individuals that did not
share any common ancestors in the three previous generations. All
simulations were run in Matlab R2012a (MathWorks, Natick, MA).

The RCAs based on genetic markers were performed using the
likelihood equations outlined in Epstein et al. (2000). Each dyad was
assigned to the relatedness category for which it had the highest likeli-
hood. Unless otherwise stated, we assessed six relatedness categories:
monozygotic twins, PO; FS; R = 0.25; R = 0.125; and unrelated.

All simulations were initiated with a population size of 600
individuals as in Kopps and Sherwin (2012) and run for 100 time
steps before assessing the correct classification rate of the relatedness
estimation. One hundred time steps was considered a good compro-
mise between being able to track three generations of ancestors and
not losing much genetic variation due to genetic drift. Individuals in
the simulation could lived for a maximum of 12 time steps (age class
12) and became sexually mature at age class 4. Unless otherwise stated,
results shown were averaged over 10 independent simulations. Ten

simulations proved sufficient because repeated sets of 10 simulations
gave identical answers for the number of loci necessary to achieve
a correct classification rate of 80 or 95% for assigning dyads to re-
latedness categories.

Mating system and generational overlap
Mating systems influence the genetic make-up of a population
including the kinship composition, and thus may influence the
performance of RCAs. We therefore simulated three different, general
mating systems: monogamy, polygyny, and promiscuity. Based on the
life history values used in all three scenarios (Supporting Information,
Table S1), the maximum number of overlapping generations during
each time step was three, unless otherwise stated. In the case of the
monogamy scenario, males and females were paired for life. In the
event that a paired individual died, the surviving individual in the pair
would be paired with an available, sexually mature individual of the
opposite sex. In the polygynous scenario (Table S1), 60 territories were
available and each was occupied by a single mature male. When

n Table 1, continued

No. Questions Reasoning Results

10 In populations with non-overlapping
generations, which relatedness
categories can be assigned
with .95% correct
classification rate?

Trans-generational dyads do not coexist
in populations with non-overlapping
generations. This changes the expected
proportions of observed pedigree dyads
and may thus impact on the correct
classification rates of an RCA, by
changing the proportion of false
positives/true positives.

If generations do not overlap, sampling
during a single time-period could not
include certain relatedness categories.
This leads to fewer pedigree categories
being assessed correctly, i.e., only
two (unrelated and FS) or three
(unrelated, FS and R = 0.25)
(Table S6; Figure S8, Figure S9,
Figure S10). The average proportions
of unrelated individuals were: 0.98
(monogamy), 0.97 (polygyny), 0.99
(promiscuous). Interestingly, the
assignment for the FS category
had 95% correct classification rate
even in promiscuous scenarios (with
high enough marker informativeness,
Table S6, 2nd subplot column Figure S10).

11 What effect does incorporating
additional data, such as
individual sex, age or
mitochondrial DNA (mtDNA)
haplotype, have on the
correct classification
rate of an RCA?

Some false-positive results (e.g., FS not
sharing mtDNA haplotype or PO
differing in age less than the age at
sexual maturity) are expected to be
excluded when additional information
is available which should lead to an
increase in RCA correct
classification rates.

Age and mtDNA haplotype data
increased RCA correct classification
rates. For example, the mean correct
classification rate in a monogamous
system increased from 0.729 (genetic
data only) to 0.899 (genetic, age,
and mtDNA data) for PO and from
0.414 to 0.699 for FS based on 20
STRs (Figure 2). Based on 100 SNPs
(MAF 0.5) and in the same scenario,
the correct classification rate increased
from 0.973 to 0.997 (PO) and from
0.830 to 0.907 (FS; Figure S11).

Age data had a more positive effect on
RCA correct classification rates than
mtDNA data for the category PO,
and mtDNA had a more positive
effect than age for the category
FS (Figure 2, Figure S11). The
correct classification rate of the
category R = 0.25 did not seem
to change with additional data.

RCA, relatedness category assignment; SNP, single-nucleotide polymorphism; STR, single-tandem repeat; PO, parent2offspring; FS, full sibs; R = 0.25 half sibs,
grandparent-grandchild, avuncular; R = 0.125 first cousins; IBD, identity by descent; MAF, minor allele frequency; R = 0.0625 half first cousins, first cousins once
removed, double second cousins.
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a territory-holding male died he was replaced by a mature, nonterri-
tory holding male, if possible from age classes 7 to 9. Females initially
were assigned randomly to a male’s territory, where they remained for
life. In the promiscuous scenario, males and females were mated
randomly.

With a small number of exceptions, monogamous, polygynous and
promiscuous scenarios were modeled with identical life history
parameter values (Table S1). The exceptions were required because
of stochastic model constraints and included the alteration of the
average number of offspring per female between simulations with
different mating systems. We are aware that there is some artificiality
in using the same life history data in scenarios with different mating
systems. However, to investigate the effect of mating system on the
correct classification rate of RCAs, it was essential to use the same life
history data for each mating system scenario, in order to avoid con-
founding factors when drawing conclusions about the effect of the
scenarios.

Overlap of generations during the sampled time-period affects the
kinship composition; for example, in populations with nonoverlapping
generations there can be no detection of trans-generational kin such as
parent-offspring, grandparent–grand offspring, avuncular. To test
whether the absence of certain pedigree relationships in the population
influences the correct classification rate of an RCA we also adapted
each mating scenario so that generations would not overlap during
a sampled time-period. All simulation parameters were the same as in
simulations with overlapping generations, except for age at maturity,
life expectancy and average number of offspring per female (Table S1).
The population size was kept constant by letting 550-650 offspring
survive each generation to produce the next generation.

Number of loci
We estimated the correct classification rates of RCAs from data sets
with 10, 20, 40, and 80 STRs, or 50, 100, 200, 400, 800, 1600, or 3200
SNPs. Additionally we performed single simulations with 50,000
SNPs. Because many laboratories are in transition from STR to SNP
genotyping, we also considered whether the use of a combination of
the two marker types may increase the correct classification rate of an
RCA compared with the use of a single marker type. For that purpose,
we combined the relatedness category probabilities of 20 STR loci with
50, 100, 200, 400, 800, 1600, or 3200 SNPs. To allow for direct
comparisons, we used the same conditions for the combined marker
types as for the SNPs only analyses. For the STRs-only analyses we
used the same simulations as for the SNPs MAF 0.5 scenarios.

Note that, at least for population structure studies based on STRs,
the number of alleles has been found to be more informative than the
number of loci (Kalinowski 2002). All SNP loci were biallelic and the
80 STR loci implemented in the simulation consisted of eight identical
(but independent) sets of 10 STRs (Kopps and Sherwin 2012) so that

the number of alleles doubled with every duplication of the number of
markers used. At the start of the simulations, these sets of 10 STRs had
an average of 5.6 alleles/locus. This number is similar to that found in
many empirical studies but in our simulations the loci had signifi-
cantly higher expected heterozygosity (e.g., Kopps and Sherwin 2012;
Kopps et al. 2013; Brown et al. 2014; Crean et al. 2014).

Proportion of population sampled, MAF, and
typing error
In most field studies, it is not feasible to sample the entire population.
Accordingly, we ran scenarios in which 50, 25, 12.5, and 6.25% of the
population were sampled to assess how the sampled fraction impacted
the correct classification rate of the RCA relative to sampling the
entire population (i.e., perfect allele frequency estimates). This assess-
ment was conducted with data from 400 and 3200 SNP loci, as well as
400 and 3200 SNP loci combined with 20 STR loci, and 80 STR loci.

We also investigated the influence of genotyping errors and MAF
upon the correct classification rate of RCAs. MAF was defined as the
mean allele frequency of the rarer SNP allele at the start of the
simulations, ranging from 0 to 0.5. We assessed the effect on correct
classification rate of varying the mean MAF across loci at three
different mean MAFs: 0.05; 0.25; 0.5. For some simulations, we
implemented a typing error to assess any reduction in correct
classification rate of RCAs. Each allele at each locus had the same
probability of being mistyped (1%), leading to a 2% locus specific
typing error rate, which is the error rate used in Wang (2006).

Exclusion and inclusion of relatedness categories
for assessment
The correct classification rate of an RCA might be influenced by what
categories of relatedness are chosen for assessment. We assessed
whether the correct classification rate changed when the RCA did not
attempt to identify certain categories of relatedness. For example, the
proportion of false positives in the R = 0.125 category was high even
when the estimation of relatedness was based upon data from 50,000
SNP loci. Therefore we tested whether not assessing the R = 0.125
category would increase the correct classification rate of the other
relatedness categories.

On the other hand, it is also possible that assessment of an
additional relatedness category would allow dyads that were previously
wrongly classified to some other category to be more appropriately
classified to the new category. This would improve the correct
classification rate to assign dyads to other categories. To test this, some
simulations included the assessment of the category R = 0.0625 (half
first cousins [sharing one grandparent], first cousins once removed,
double second cousins). The probability of identity states for sharing
zero, one and two alleles/locus used in the algorithm were: D0 = 0.875,
D1 = 0.125, and D2 = 0.

Figure 1 Promiscuity: correct classification rate of relatedness category assignment (RCA) in a promiscuous population (average over 10
simulations). Three different minor allele frequencies (MAF) for single-nucleotide polymorphisms (SNPs), seven different numbers of SNP loci
(individual bars from left to right: 50, 100, 200, 400, 800, 1600, 3200), four different numbers of STR loci (from left to right: 10, 20, 40, 80), and
a combination of SNP with 20 STR loci were simulated. On the left vertical axes, the proportion of the correct pedigree relatedness color in each
category (PO: parent-offspring; FS: full sibs; unrel: unrelated) indicates the correct classification rate of the category-assignment based on the
genetic loci. Other colors indicate source of erroneously assigned categories. The right vertical axes, and the lines in the subplots, indicate the
number (No) of dyads that were assigned to each category (the true number of dyads can be inferred where almost 100% correct classification
rates were achieved). The orders of magnitude at the top of the No dyads/category scale of the first row apply to all No dyads/category scales
below it. Figure S1 and Figure S2 show the same plots for other mating systems. The variability between the 10 independent simulations is
presented in Table S2.
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Incorporating demographic and mitochondrial
data (mtDNA)
Incorporating demographic and mtDNA data might improve the
correct classification rate of an RCA by reducing the number of false
positives (Riester et al. 2009; Cope et al. 2014). We ran three scenarios
in which sex, age (in age classes) and/or mitochondrial DNA haplo-
type mtDNA (five equifrequent haplotypes at the start of the simula-
tion) were known. This led to the exclusion of particular relationships
for certain dyads even if they had the highest likelihood, in which case
that dyad was then assigned to the relatedness category with the
second highest likelihood, according to the following criteria:

1. mtDNA haplotype known. Individuals not sharing their mtDNA
haplotypes could not be assigned to the category FS. Female-female

dyads not sharing their mtDNA haplotypes could not be assigned to
the category PO.

2. Age known. Individuals whose age difference was less than the
age at sexual maturity could not be assigned to PO.

3. Age and mtDNA haplotype known. The same dyads were ex-
cluded as in (1) and (2). Additionally, dyads in which the older
individual was female and which did not share their mtDNA
haplotype could not be assigned to PO.

Although dyads could be excluded from being grandparent2grand
offspring using age data, there were no age or mtDNA haplotype
restrictions for R = 0.25 because this category included other relation-
ships without age restrictions.

Figure 2 Effect of additional data on correct
classification rate of relatedness category as-
signment in a monogamous population using
20 STRs. In addition to age and/or mtDNA
haplotype, the sex of the individuals was known.
Plotted are mean and range of the correct
classification rate based on 10 independent
simulations.

n Table 2 Minimum number of SNP and/or STR loci required per category for a relatedness category assignment with >95% (>80%)
correct classification rates

Mating System Marker MAF PO FS R = 0.25 R = 0.125a Unrelb

Monogamy SNP 0.05 3200 (800) 1600 (800) 3200 (1600) 2 (2) 50 (50)
0.25 200 (100) 200 (200) 1600 (800) 2 (2) 50 (50)
0.5 100 (100) 200 (100) 1600 (400) 2 (2) 50 (50)

STR n/a 80 (40) 80 (40) 2 (–) 2 (2) 10 (10)
SNP and STRc 0.05 800 (100) 800 (100) 3200 (800) 2 (2) 50 (50)

0.25 100 (50) 200 (50) 1600 (400) 2 (2) 50 (50)
0.5 100 (50) 200 (50) 1600 (400) 2 (2) 50 (50)

Polygyny SNP 0.05 1600 (800) 3200 (1600) 3200 (800) 2 (2) 50 (50)
0.25 200 (100) 800 (400) 800 (400) 2 (2) 50 (50)
0.5 100 (100) 400 (200) 800 (400) 2 (2) 50 (50)

STR n/a 40 (40) 2 (80) 2 (–) 2 (2) 10 (10)
SNP and STR 0.05 400 (100) 1600 (800) 1600 (800) 2 (2) 50 (50)

0.25 100 (50) 800 (200) 800 (400) 2 (2) 50 (50)
0.5 50 (50) 400 (200) 800 (400) 2 (2) 50 (50)

Promiscuity SNP 0.05 800 (400) 2 (2) 3200 (800) 2 (2) 50 (50)
0.25 200 (100) 2 (2) 1600 (400) 2 (2) 50 (50)
0.5 100 (100) 2 (2) 1600 (400) 2 (2) 50 (50)

STR n/a 40 (40) 2 (2) 2 (–) 2 (2) 10 (10)
SNP and STR 0.05 200 (50) 2 (2) 3200 (800) 2 (2) 50 (50)

0.25 50 (50) 2 (2) 1600 (400) 2 (2) 50 (50)
0.5 50 (50) 2 (2) 800 (400) 2 (2) 50 (50)

Dashes indicate that the category could not be assigned with a .95% (80%) correct classification rate with the simulated number of loci. SNP, single-nucleotide
polymorphism; STR, short-tandem repeat; MAF, minor allele frequency; PO, parent-offspring; FS, full sibs; R = 0.25, avuncular, half sibs, grand-parent-grand offspring;
R = 0.125, full cousins, half avuncular.
a

Even though no number of tested loci led to a 95% (80%) correct classification rate for the R = 0.125 category under the simulated population conditions, R = 0.125
is part of this table because it is important to include it in the relatedness category assignment for the correct classification rates of R = 0.25.

b
Note that with the population size and parameters used, more than .95% of individuals are unrelated (Unrel), so even if all dyads were assigned to the category
‘unrelated’ the correct classification rates might be .95%.

c
Number of SNP loci required when combined with 20 STR loci.
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Data availability
The simulation code is available on DRYAD (http:/dx.doi.org/10.5061/
dryad.sr61r).

RESULTS
For a clear arrangement of our results, they were summarized together
with the questions and reasoning in Table 1. The correct classification
rate of an RCA was affected by the number of loci, MAF, typing error
rate, availability of additional data as well as intrinsic population charac-
teristics (Table S2, Table S3, Table S4, Table S5, Table S6, Figure S1,
Figure S2, Figure S3, Figure S7, Figure S8, Figure S9, Figure S10, Figure
S11, Figure 1, Figure 2, and Table 2). Note that the formula for the
likelihood for monozygotic twins was used in the simulations but we do
not show the correct classification rate of assigning dyads to this category
in the results section. However, we observed that a few dyads were assigned
to this category when the MAF was low and 50 or 100 SNPs were used.

Population size averaged 598.67 individuals, with range of 4822703
individuals; note that these numbers of individuals are equal to 115,921
to 246,753 dyads. Within this large number of dyads, there were a few
dyads that were assigned to more than one relatedness category based
on pedigree (monogamy: mean = 0.63 dyads, range = 026; polygyny:
4.27, 0213; promiscuity: 4.53, 0213). This was possible because we
assigned the dyads to the same categories based on pedigree as for
the RCA. The most common categories that were shared were R = 0.25
and R = 0.125, e.g., dyads shared one parent and two grandparents that
were not the shared parent’s parent. Because of genetic drift, during the
100 simulated time steps of MAF 0.05 scenarios, a number of the 3200
SNP loci lost variation (became fixed for one allele): 25.8 (0.8%) in
monogamy, 60.6 (1.9%) in polygyny, and 37.0 (1.2%) in promiscuity.
No loci became fixed in scenarios with MAF = 0.25 or 0.5.

DISCUSSION
Several relatedness categories can be assigned with 80 or 95% correct
classification rates if certain pitfalls are avoided by considering life
history parameters, number of loci used, mean MAF, and typing error
rate. As expected, there is always a positive correlation between correct
classification rate of the RCA and the number of loci loci. Note that
when using a realistic number of 800 SNPs or 20 STRs, more categories
could be assigned at a given correct classification rate level by SNPs than
by STRs (Table 2). This favors SNPs (or a combination of SNPs and
STRs) over STRs. The assignment of more distantly related dyads than
R = 0.25 (rarely R = 0.125) appears to be impossible using RCAs, even
when 10,000s of SNP loci are available (Figure S3), possibly because of
stochasticity in allele segregation or deeper roots of coancestry.

Even though few (around 100 SNPs or 10 STRs) loci are sufficient to
correctly assign most real (pedigree-based) parent-offspring and full sib
pairs to the correct relatedness categories, the high rate of false positives
(SNPs MAF 0.05 and 0.25: PO: 0.8120.85 and 0.1120.19, FS
0.7520.99 and 0.2320.98; STRs: PO 0.8520.89, FS 0.9220.99 across
all three mating systems) at these relatedness categories makes the use of
this small number of loci problematic, as previously reported for par-
entage inference (Anderson and Garza 2006). A combined data set of
SNP and STR loci may increase the correct classification rate of RCAs,
especially for parent-offspring pairs when SNP data with low informa-
tiveness are available (Table S4, Table S5, Table S6, and Table 2).

For our estimation we did not consider any prior knowledge of
possible relationships. This approach seems realistic for many ecolog-
ical studies in natural populations. Because of the absence of
assumptions about the potential relationships, the numbers of loci
suggested here ($ 40 STRs, 10023200 SNPs) are much higher than

the number of loci considered sufficient for the assignment of re-
latedness categories by Brookfield and Parkin (1993; 229+ STRs),
Wang (2006; 2213 STRs, 11-92 SNPs 2006), or forensic studies
(10215 STRs, 51 SNPs, Amorim and Pereira 2005; Sanchez et al.
2006). This is because these studies’ estimates were based on only
two hypothetical relationships: null relatedness vs. a single alterna-
tive relatedness category. Statistical significance for the support of
the assignment of individual dyads to any relatedness category [by
calculating LOD score (Kalinowski et al. 2007) or FDR (Skaug et al.
2010)] was not inferred in our study, and, therefore, we might have
underestimated the correct classification rate of the RCA. However,
by assigning all dyads to the relatedness category with the greatest
likelihood, all dyads were assigned to a relationship category.

Some false-positive results may be identified through additional
knowledge (Figure 2) such as mtDNA haplotype or age, which can be
estimated from genetic samples (Polanowski et al. 2014). Besides in-
creasing the correct classification rate of the category PO, age data also
provide directionality to PO pairs, i.e., identify who is the parent and
who the offspring.

Some false-positive results may be identified also by genetic data
only: a polyadic approach, i.e., comparing the compatibility of dyadic
relationships by simultaneously assigning parentage and sibship,
might filter out some incorrectly assigned dyads by identifying in-
compatible polyads. Borrowing the example from Wang and Santure
(2009), if individuals A and B, and A and C, were assigned to the
category full sibs the assignment of B and C to R = 0.25 is incompat-
ible. A polyadic approach for sibship and parentage reconstruction
was implemented in COLONY2 (Wang and Santure 2009; Jones and
Wang 2010; Wang 2013). Another approach which uses a third individ-
ual as reference when assigning a dyad to a relatedness category seems to
perform better than a purely dyadic approach (Wang 2007) and could
change the number of required loci for an RCA presented here.

The exclusion from consideration of a single category (e.g., R =
0.125, Table S3) in simulations decreased the correct classification rate
of an adjacent category (e.g., R = 0.25) and is therefore not recom-
mended. However, the addition of an extra category (i.e., R = 0.0625)
may be beneficial (Table S4 and Figure S7). To our knowledge, the
category R = 0.0625 has not been used in previous studies (Thompson
1975; Epstein et al. 2000; Blouin 2003; Wang 2006; Wang and Santure
2009) even though the expected proportion of shared genetic information
is higher than for second cousins (R = 0.03125, described in Wang 2006).

The categories R = 0.25 and R = 0.125 contain several relationships
(half sibs/grand-parent-grand-child/avuncular and full cousins/half-
avuncular, quadruple second cousins, respectively). Methods to separate
pedigree relationships sharing the same relationship coefficient have
been proposed. They are based on the relationship between the number
of chromosomal segments (approximately 2 Mb, as opposed to
individual loci) shared IBD by two individuals and the number of
meioses on the path relating these individuals (Huff et al. 2011; Brown-
ing and Browning 2012; Hill andWhite 2013; Li et al. 2014). With these
methods, dyads may be assigned with reasonable confidence also to
relatedness categories more distant than R = 0.25 (Henn et al. 2012).
These methods sound promising and feasible for non-model species if
long scaffolds of their genomes are available for each individual. How-
ever, even with next-generation genotyping, most studies on nonmodel
organisms do not have adequate mapping information to assign the
IBD blocks upon which Browning and Browning (2012) rely.

The simulation data sets are unrealistically ideal in terms of
completeness of sampling (or extent of random sampling), missing
data (none), and typing error (none for most simulations). Genotyping
error rates of current next-generation sequencing platforms are still
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substantial and the power of the conversion of the raw sequencing reads
into genotypes depends on sequencing depth and SNP calling
algorithms (Nielsen et al. 2011). But even if three SNP calling algo-
rithms agree on an individual genotype, the assigned genotype may
be incorrect in 3.5% of individuals, as a recent study has shown
(Greminger et al. 2014). Typing error should be taken into account
because it can have profound effects on the power of kinship analyses.
For most categories, with a 2% typing error rate, the number of loci
required for any given correct classification rate of RCA is two to four
times greater compared with error-free data (question 9 in Table S5,
Table 1, and Table 2). PO and FS dyads are logically more susceptible to
error than dyads of more distantly related categories; our data corrob-
orate this (Table S5 and Table 2). Taking the ideal data sets generated
by simulations into account, the number of loci we recommend to be
used for RCAs are the minimum for best case data sets, meaning that
researchers should estimate the error rate of their data and its impact on
analyses. Also, it is important to bear in mind (and this is one aim of
this study) that the necessary number of loci for an RCA to be able to
have an adequate correct classification rate might differ for populations
with other characteristics not present in the simulated populations.

The decline in correct classification rate with increasing proportion
of individuals sampled in the population (question 6 in Figure S4 and
Table 1) may be puzzling at first. Here it is important to note that the
number of dyads increases as the square of the number of individuals
sampled, with a faster increase of the number of unrelated dyads com-
pared to related dyads (Figure S5, Skaug et al. 2010). It seems that the
influence of misclassifying unrelated individuals outweighs any correct
classification rate gain due to improved estimates of allele frequencies
(Figure S6) due to more complete sampling.

Census population size is a parameter space that we did not explore,
even though it might influence the correct classification rate of an RCA.
Some effects may be inferred from the subsampling simulations: the
correct classification rate of the RCA decreased with increasing number
of pedigree-based unrelated dyads. This finding suggests that in
comparison with small populations, relationship assignments of samples
originating from large populations potentially may require more loci for
similar correct classification rate and/or certain categories may not
reach satisfactory correct classification rates.

We would like to emphasize that, especially with the facilitated
development of genetic markers, (i) the effect of intrinsic population
characteristics on correct classification rate should be taken into account
for RCAs, and (ii) 95% correct classification rate can be achieved and
should be favored over the 80% threshold that is widely used in
paternity studies (Marshall et al. 1998). Also, the correct classification
rate of a set of loci should be evaluated at the beginning of a project and
considered in downstream analyses and interpretation. Unfortunately,
sorely-needed software simulating populations that have realistic pop-
ulation parameters and track pedigrees through time are very rare,
making RCA power analyses difficult. Instead, available simulation soft-
ware uses simple demographic and life history models (Hoban 2014) or
researchers use custom-made simulations (this study, Taylor et al.
2015). Until software that simulates populations with realistic parame-
ters are available, the relationship between correct classification rate,
population characteristics, and genetic marker characteristics suggested
in this study could be used as a rough guideline for power estimates.
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