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In eukaryotes, almost all RNA species are processed at their 30 ends and

most mRNAs are polyadenylated in the nucleus by canonical poly(A)

polymerases. In recent years, several terminal nucleotidyl transferases

(TENTs) including non-canonical poly(A) polymerases (ncPAPs) and term-

inal uridyl transferases (TUTases) have been discovered. In contrast to

canonical polymerases, TENTs’ functions are more diverse; some, especially

TUTases, induce RNA decay while others, such as cytoplasmic ncPAPs,

activate translationally dormant deadenylated mRNAs. The mammalian

genome encodes 11 different TENTs. This review summarizes the current

knowledge about the functions and mechanisms of action of these enzymes.

This article is part of the theme issue ‘50 and 30 modifications controlling

RNA degradation’.
1. Introduction
Eukaryotic gene expression pathways are very complex and regulated at

multiple levels. Essentially all RNAs are processed at their 30 ends and

most coding mRNAs, as well as some non-coding RNAs (ncRNAs), are poly-

adenylated in the nucleus by canonical poly(A) polymerases at the end of

transcription. In recent years, 11 TErminal NucleotidylTransferases (TENTs)

have been discovered (figure 1) [1–3]. TENTs contain a particular catalytic

fold that is defined by InterPro as a nucleotidyl transferase domain

(IPR005835 or PF00483) belonging to the DNA polymerase b (Pol b) super-

family that could catalyse non-templated nucleotide additions to RNA 30

ends [1,4,5]. Based on their substrate preference towards adenosine mono-

phosphate (AMP) or uridine monophosphate (UMP) incorporation, human

TENTs are divided into non-canonical poly(A) polymerases (ncPAPs) and

terminal uridyl transferases (TUTases), while phylogenetic analysis groups

them into seven families [4,5]. TENTs share a common two-metal ion catalytic

mechanism involving a highly conserved triad of aspartate residues in their

catalytic helix-turn motif [6–10]. TENTs are not restricted to the nucleus

and have specific regulatory roles also in the cytoplasm and mitochondria.

Indeed, their functions are quite diverse and range from RNA maturation

and decay to activation of translationally dormant deadenylated mRNAs.

The exploration of TENTs’ impact on the regulation of gene expression has

become a rapidly growing field of research. Recently, the nomenclature of

human TENTs and their orthologues across vertebrates has been updated

and is presented in figure 1 and used throughout the paper. In this review,

we discuss the current state of knowledge regarding mammalian TENTs.
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Figure 1. A display of mammalian TENTs. The display summarizes major facts about 11 mammalian TENTs. The enzymes fall within two major classes: poly(A)
polymerases (highlighted in green) and poly(U) polymerases (highlighted in yellow and pink). Their homologues can be further grouped into seven families based
on their phylogenetic conservation (separated by dashed lines and/or coloured background). The display states protein names according to currently recommended
terminology, the multiple aliases, protein molecular weights (in kDa) and number of amino acids within the canonical isoform (after uniprot.org), activities and
targeted RNA types. Additionally, a cartoon representation of each protein (or a consensus representation for the TENT5 proteins) is provided with indicated domains
that are colour-coded and labelled as follows (in alphabetical order): KA-1—kinase associated domain (in TENT1), MTS—mitochondria targeting signal/peptide,
NLS—nuclear localization signal, NTr—catalytic nucleotidyltransferase domain (or an inactive domain), PAP-associated domain, Pneumo G and atrophin-like
domains in TUT4, RRM—RNA recognition motif, ZNF—zinc finger domain of either C2H2 or CCHC types. snRNA, small nuclear RNA.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20180162

2

2. ncPAPs and adenylation
The best-known example of non-templated adenylation is

at 30 ends of the vast majority of protein-coding mRNAs.

This phenomenon, first realized in the early 1970s, is rep-

resented by the activity of two nuclear ‘canonical’ poly(A)

polymerases—PAPa and PAPg, and a great number of other

auxiliary, structural and enzymatic factors as reviewed in

detail elsewhere [11–13]. The primary role of the poly(A) tail

is to protect an mRNA’s 30 end from degradation, thus contri-

buting to its stability and increased translation rate [14]. The

existence of ncPAPs came with the discovery of cytoplasmic
polyadenylation regulating the timing of mRNA translation

and stability in developing Caenorhabditis elegans and Xenopus
laevis embryos by TENT2 protein (GLD2) [15,16]. In this part of

the review, we describe the eight mammalian ncPAPs, includ-

ing some crucial findings about their homologues in other

organisms.

(a) TENT2, also known as FLJ38499, GLD2, PAPD4, TUT2
The bulk of the data on TENT2 came from studies in non-

mammalian species, including C. elegans, X. laevis and Droso-
phila melanogaster. In these organisms, TENT2 was first

http://dx.doi.org/uniprot.org
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described as a ncPAP with a key role in translatio-

nal activation of a subset of cytoplasmic mRNAs through

elongation of their poly(A) tails [15–17]. The functional regu-

lation of mRNA translation in gametes and early embryos

in these organisms is accomplished by highly regulated

polyadenylation–deadenylation cycles that, besides TENT2,

involve several other factors [16–27]. There are comprehen-

sive reviews on the role of TENT2 in gametogenesis and

early development in non-mammalian species [28–30].

On the basis of the discoveries in C. elegans and X. laevis it

seemed likely that TENT2 is involved in gametogenesis and

early embryo development in mammals. This was further

supported by the heterologous translation activator activity

of human TENT2 tethered to a reporter mRNA and injected

into X. laevis oocytes [31]. In line with this hypothesis, knock-

down or overexpression of TENT2 in mice oocytes results in a

delay of their maturation and frequent arrest in metaphase I

[32]. Surprisingly, TENT2-deficient mice of both sexes are

fertile and do not demonstrate any gross phenotype. The

maturation of oocytes is normal and the length of poly(A)

tails of the reporter mRNA is altered neither in germline

nor in somatic cells [33]. This raises a possibility that in mam-

malian early embryos other yet unidentified TENT protein(s)

might be involved in poly(A) length regulation [34] or that

other processes like regulation of mRNA decay by uridyla-

tion-mediated mechanisms (see §3b on TUTases) play

decisive roles [35].

On an organismal level, besides a possible auxiliary role in

early embryo development, TENT2 may also be necessary for

long-term memory formation in mice as it is expressed in the

hippocampus and co-localizes with proteins involved in

synaptic plasticity, such as Pumilio and CPEB1 [17]. TENT2

was shown to polyadenylate GluN2A mRNA encoding a sub-

unit of the postsynaptic N-methyl-D-aspartate receptor, crucial

for synaptic plasticity in rat hippocampal neurons [36]. Fur-

thermore, TENT2 polyadenylates hnRNPA1, p27kip1 and

b-catenin mRNAs in human 293T cells [37], which might

play some role in cell cycle regulation in agreement with

some earlier findings in X. laevis [38]. The latter mRNAs are

specifically targeted for polyadenylation by QKI-7 protein,

which first binds the mRNAs and then recruits TENT2 to exe-

cute polyadenylation. Polyadenylation by TENT2 stabilizes

mRNA and augments their translation.

Some further confirmed roles of TENT2 in mammals are

in miRNA regulation. TENT2 is responsible for monoadeny-

lation of certain mature miRNAs like a liver-specific miRNA-
122, involved in the regulation of fatty acid homeostasis. The

miRNA was found to be 30 monoadenylated both in human

hepatocytes and in mice livers [39]. Since in TENT2 knock-

out mice the miRNA-122 level is significantly lower than in

wild-type mice, it has been suggested that monoadenylation

of miRNA by TENT2 enhances its stability [39]. In line with

these findings is the observation that TENT2 depletion in

human fibroblast cell line causes a significant reduction of a

fraction of monoadenylated miRNAs [40]. Furthermore, the

stabilizing effect of monoadenylation on miRNA depends

on the nucleotide composition within the miRNA 30 region

[40]. TENT2 also acts as a poly(A) polymerase on miRNAs

in mouse hippocampal neurons, but its deletion has no

detectable effect on mice behaviour [41].

There is a certain controversy regarding the involvement

of TENT2 in the monouridylation and oligouridylation of pre-

miRNA, especially of the so-called group II miRNA family
including most of the let-7 miRNAs. Essentially, TENT2 was

suggested to participate in this process redundantly with two

other confirmed human terminal uridyltransferases: TUT4

and TUT7 [42,43]. While TENT2 purified from human cells

uridylated pre-let-7 pre-miRNA [42,43], a recombinant protein

purified from Escherichia coli showed superior specificity

towards ATP in comparison to UTP with an enzymatic effi-

ciency (kcat/Km) roughly two orders of magnitude higher for

ATP than for UTP [44]. Interestingly, a single histidine insertion

at position 440 of human TENT2 results in a switch from an

ATP to a UTP preference of the protein [44]. These data,

together with a lack of solid evidence for an in vivo uridylating

activity of TENT2, suggest that TENT2 is a bona fide ncPAP and

not a TUTase.
(b) TENT4A, also known as LAK-1, PAPD7, POLK, POLS,
TRF4 and TRF4-1

TENT4A is a human orthologue of the yeast Trf4p protein.

Trf4p is a key subunit of the so-called TRAMP complex,

within which it specifies mRNAs for surveillance and turnover

by the nuclear exosome 30 –50 ribonuclease complex [45,46],

reviewed in [47,48]. However, TENT4A has not been identified

as a component of the human TRAMP complex [49].

TENT4A was shown to exist in two isoforms: TENT4A

short (S) and TENT4A long (L). The latter possesses a longer

N-terminal region and seems to be the predominant isoform

in the cell [50]. Although both isoforms contain a nucleotidyl-

transferase domain, only TENT4A L is able to add poly(A)

tails when tethered to an RNA. TENT4A L is mainly localized

in the nucleus but is excluded from the nucleolus. Interestingly,

TENT4A S is evenly distributed throughout the cell, whereas

only a small fraction of TENT4A L could be found in the cyto-

plasm. Further analysis revealed that the N-terminal region is

crucial not only for nucleotidyltransferase activity but also for

the nuclear localization of TENT4A L [50]. In fact, on the

basis of ribosome profiling [51] and recent experimental work

by Lim et al. [52] it has been ascertained that TENT4A L pos-

sesses 20 amino acids more on its N-terminus than previously

annotated [50]. These, and an additional 10 N-terminal AAs

show strong conservation with the N-terminus of another

human Trf4p homologue—TENT4B [52]. There are some

suggestions that TENT4A may be involved in pre-mRNA

maturation in the nucleoplasm, as TENT4A S was shown to

interact with a non-nucleolar protein PRPF31, which is necess-

ary for U4/U6-U5 tri-snRNP formation [53]. Interestingly,

TENT4B has also been reported to interact with a subset of spli-

cing factors, among others with PRPF31 [49]. Nevertheless,

such a possibility would require further dedicated testing.

Moreover, neither TENT4A nor TENT4B were pulled down

with the purified, catalytic human spliceosomes [54].

A recent report using a mammalian cell-free system based on

HEK293F cell extracts suggests involvement of TENT4A in

miRNP-mediated translational activation of non-adenylated

mRNAs [55]. Surprisingly, solely the presence of TENT4A,

rather than its poly(A) polymerase activity, seems necessary

for this activation. Also, overexpression of TENT4A in this

system represses translation of polyadenylated mRNAs. This

suggests that TENT4A may also function in a polyadenylation-

independent manner. However, the TENT4A clone used by

these authors lacked 10 of the 30 N-terminal amino acids

reported as highly conserved [52].
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(c) TENT4B, also known as GLD4, PAPD5, TUT3
and TRF4-2

TENT4B is another human orthologue of the yeast Trf4p

protein. Initially, TENT4B had been suggested to be involved

in uridylation-mediated turnover of replication-dependent his-

tone mRNAs in the cytoplasm [56]. However, this result is

controversial and has been challenged by other studies

[57,58]. Essentially, human TENT4B has a strong preference

for ATP incorporation (in the apparent preference order

ATP� GTP . CTP � UTP) with a variety of RNA substrates

tested in vitro, ranging from oligo(A) and oligo(U) to different

tRNAs as well as the 30 UTR of histone mRNAs [57]. Addition-

ally, examination of TENT4B-EGFP-expressing cells, as well as

immunofluorescence analysis, demonstrated its nuclear local-

ization with nucleolar accumulation [49,57]. These findings

suggest that TENT4B function in the mammalian nucleus

may be similar to that of the TRAMP complex in yeast [59].

Furthermore, and in contrast to yeast Trf4p which requires

the Air2p zinc knuckle protein [45,60], human TENT4B does

not require a protein cofactor for its polyadenylation activity,

thus demonstrating its mechanistical distinction from its

yeast counterpart [57].

The analysis of RNAs UV cross-linked to TENT4B in vivo
revealed that rRNAs are other potential substrates for

TENT4B [57]. In mice, TENT4B (but not TENT4A) is involved

in the adenylation of aberrant precursor rRNA (pre-rRNA)

fragments, leading to their degradation by the nuclear exosome

[61]. In line with this finding, TENT4B, ZCCHC7 (hAIR2) and

SKIV2L2 (hMTR4) have been identified as components of the

human TRAMP complex which, together with the nucleolar

exosome possessing EXOSC10 (hRRP6) as a catalytic subunit,

are involved in the turnover of pre-rRNA fragments in HeLa

cells [49,62–64]. Furthermore, proteomic analysis of TENT4B

and ZCCHC7 revealed their interactions with components of

the small subunit (SSU) processome, which is the first precur-

sor of the small ribosomal subunit in Eukaryotes involved in

the early steps of pre-rRNA processing in the nucleolus

[49,50,65], reviewed in [66]. TENT4B, however, is also able to

polyadenylate mature rRNAs. In mice, daily oscillations in

liver mass arise from regulated changes in the number of ribo-

somes and their translational activity [67]. Ribosomal protein

synthesis is regulated in the phase opposite to the transcription

of rRNAs. During daily rest/activity cycles, rRNAs syn-

thesized in excess and not packaged into complete ribosomal

subunits are polyadenylated by TENT4B and degraded by

the nuclear exosome [67].

TENT4B participates in the maturation of the H/ACA box

snoRNAs (small nucleolar RNAs) by adding oligo(A) tails to

the last nucleotides remaining after exonucleolytic degradation

of the 30 flanking intron. The oligo(A) tails, together with

remaining intron nucleotides, are then removed by poly(A)

specific ribonuclease (PARN) resulting in mature and stable

snoRNAs [68]. This effect is consistent with a proteomic analy-

sis that detected both C/D box- and H/ACA box-specific

proteins in a TENT4B immunoprecipitate [49].

Previous studies have suggested that TENT4B (but not

TENT4A) can mediate non-templated 30 adenylation of some

miRNAs in humans [57,69]. In particular, TENT4B-mediated

adenylation of the 30 end of miR-21-5p marks it for degradation

by PARN. This degradation pathway is disrupted in a wide

range of cancers and other proliferative diseases [70]. The onco-

genic role of miR-21-5p is owing to downregulation of various
tumour suppressors. Interestingly, in HER2-amplified

tumours miR-21-5p trimming is controlled by miR-4728-3p-

mediated downregulation of TENT4B, leading to high

steady-state levels of active miR-21-5p [71]. These results

suggest that TENT4B itself may be a tumour suppressor.

TENT4B plays an important role in the quality control path-

way of human telomerase RNA (hTR) [72]. Mutations in

the hTR, the telomerase RNP component dyskerin (DKC1),

and PARN can lead to insufficient telomerase activity leading

to the dyskeratosis congenital (DC) disease. Compromised

biding of dyskerin to hTR results in its adenylation by

TENT4B, followed by EXOSC10-mediated 30 to 50 degradation,

as well as decapping by DCP2 and 50 to 30 degradation by

XRN1. On the other hand, under normal conditions PARN

deadenylase competes with TENT4B and by removing

oligo(A) tails prevents hTR degradation, maintaining its

physiological concentration in equilibrium [72].

A similar model of TENT4B–PARN competition and

cooperation has been proposed for Y RNA maturation and

degradation [73]. Human Y RNAs are abundant small RNA

polymerase III (Pol III)-transcribed RNAs with a role in

RNA quality control, histone mRNA processing, DNA repli-

cation and damage response [74]. Y RNAs mature in a

process involving their adenylation by TENT4B and trim-

ming by PARN and EXOSC10. In the absence of PARN or

EXOSC10, the Y RNA possessing oligo(A) tails is degraded

by cytoplasmic DIS3L or nuclear TOE1 30 –50 exoribonu-

cleases [73,75]. Low levels of Y RNAs intensify the effect of

PARN depletion on telomere maintenance, leading to the

severe phenotype of DC observed in patients carrying

PARN mutations [73].

Finally, TENT4B has been reported to act in a pathway

affecting the tumour suppressor TP53 (also known as p53)

[76]. In this pathway, CPEB binds to the 30 UTR of TP53
mRNA and recruits TENT4B, which in a polyadenylation-

dependent manner increases TP53 mRNA stability and thus

modulates its translational competence. In turn, the expression

of CPEB is regulated by miR-122, whose supply depends on its

stabilization by TENT2. This may be another piece of evidence

of TENT4B acting as a tumour suppressor in human cells. In a

recent report from the same laboratory hundreds of other

mRNAs whose polyadenylation is regulated by TENT4B

have been identified in a genome-wide screen [77]. Several of

these mRNAs are involved in carbohydrate metabolism.

Depletion of TENT4B reduces GLUT1 mRNA poly(A) tail

length and the level of GLUT1 protein—a major glucose trans-

porter. Similarly, as with TP53, TENT4B-mediated stabilization

of GLUT1 mRNA is dependent on CPEB. In addition to this,

TENT4B regulates the poly(A) tails of several other mRNAs

that are involved in carbohydrate metabolism, including

G6PD, PFKFB3, PFK-1, GK, TALDO1 and ENO1.

(d) TENT4A and TENT4B in mixed A/G tailing
Based on similarity, it was expected that TENT4A and TENT4B

would at least partially functionally overlap, although their

functions have mostly been studied separately so far

(figure 1). A recent report proposed an interesting not pre-

viously described role of both TENT4A and TENT4B [52].

These enzymes were implicated in polyadenylation of

protein-coding mRNAs. However, owing to their slightly pro-

miscuous nucleotide specificity, the enzymes occasionally

incorporate GMP within the extended poly(A) tails [52].
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Figure 2. Mixed A/G tailing by TENT4A/B. RNA polymerase II transcribed
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CNOT7 deadenylases fall off their substrates once they encounter a G
(a non-A) residue. Ultimately all mRNAs are degraded from both 50 and
30 ends following deadenylation and decapping.
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Figure 2 depicts the process whereby following TENT4A/B

activity, deadenylation of the poly(A) tails is executed by

CNOT6 L and CNOT7 within the CNOT deadenylating com-

plex. Deadenylation stops on guanine residues owing to the

A-preference of CNOT6 L/7, which ultimately results in an

increased frequency of guanine residues on the 30 ends of

mRNA with long poly(A) tails [52]. The process is likely

more complex owing to the involvement of other factors

including poly(A) binding proteins (PABP) that also partici-

pate in the adenylation-deadenylation-driven regulation of

poly(A) tails [78–80]. While not explicitly stated in the original

study [52], the mixed A/G tailing would likely occur in the

nucleus given the nuclear localization of TENT4A and

TENT4B [49,50,57]. It is, however, also possible that small frac-

tions of TENT4A/B present in the cytoplasm might also

participate in mixed A/G tailing. The mechanism of substrate

selection and the general impact of mixed A/G tailing by

TENT4A and TENT4B on mRNA metabolism remain to be

established. Finally, the importance of mixed A/G tailing in

different cellular and tissue contexts and at the organismal

levels also requires further experimental confirmation.

(e) TENT5 proteins
TENT5 comprises a group of four previously unrecognized

evolutionarily conserved TENTs also known under the

FAM46 acronym (FAMily with sequence similarity 46) in

human and mice. These are TENT5A (FAM46A, other syno-

nyms C6orf37, FJL20037), TENT5B (FAM46B, MGC16491),

TENT5C (FAM46C, FJL20202) and TENT5D (FAM46D also

known as CT1.26, CT112 and MGC26999) (figure 1). TENT5

proteins were initially discovered by an in silico study and

described as putative poly(A) polymerases [5]. All TENT5

homologues are highly similar in their amino acid sequences

and share a common two-domain architecture with (i) an

NTase domain distantly related to known NTase domains of

other PAPs and TUTases, but comprising well conserved

acidic amino acids in its putative catalytic centre and (ii) a

poly(A) polymerase/20 –50-oligoadenylate synthetase 1
substrate binding domain (PAP/OAS1 SBD) [5,81]. The latter

is likely involved in substrate RNA binding and stabiliza-

tion during poly(A) tail formation. Indeed, a recent study

confirmed that human TENT5C and TENT5D form RNA–

protein complexes and possess poly(A) polymerase activity

that depends on the presence of acidic residues within the

proteins’ NTase domains [82].

In stark contrast to the scarcity of studies describing

TENT5 proteins’ activity on a molecular level, there are

plenty of reports linking mutations in TENT5 proteins to

multiple less or more severe conditions.

TENT5A was first described as C6orf37 (Chromosome 6

open reading frame 37), a protein of unknown function

with possible relation to human retinal diseases including

retinitis pigmentosa [83–85]. Furthermore, TENT5A is highly

expressed in ameloblast nuclei of tooth germs and may

play a significant role in the formation of enamel [86]. More-

over, it has been shown that polymorphism in the second

exon of TENT5A may be associated with an increased risk

of large-joint osteoarthritis [87], which is consistent with

severe skeletal abnormalities of TENT5A knock-out mice

[88]. Finally, loss-of-function mutations in TENT5A have

been reported in patients suffering from severe, autosomal

recessive forms of osteogenesis imperfecta [89].

Much less is known about TENT5B. There is only a single

report demonstrating upregulation of the protein in refractory

lupus nephritis [90].

TENT5C is one of the most frequently mutated genes in a

B-cell malignancy—multiple myeloma (MM)—following

well-known proto-oncogenes of the RAS family [91]. It has

been shown, using whole-genome and whole-exome sequen-

cing, that homozygotic or hemizygotic mutations of TENT5C
are found in 3.4–13% of primary MM cases [91–93]. To date,

over 70 different mutations have been identified, most of

them frameshift or nonsense mutations [94]. Moreover, del-

etion of cytoband 1p12, where the TENT5C gene is located,

was found in about 20% of MM patients and loss of TENT5C
is associated with limited survival [92]. In a recent study, sev-

eral MM cell lines bearing TENT5C mutations showed

significantly reduced growth and lower survival rates of

these cells upon expression of wild-type TENT5C [82]. Further-

more, knock-down of TENT5C enhanced proliferation rates of

B lymphocytes, thus showing the role of TENT5C in generally

suppressing cell growth. Thus, TENT5C likely acts as an onco-

suppressor by the specific and robust polyadenylation of a

subset of mRNAs mostly encoding endoplasmic reticulum-

targeted and secreted proteins [82]. Nevertheless, the specificity

mechanism remains unknown. In another study, TENT5C

overexpression caused downregulation of transcriptional

factors IRF4, CEBPB and MYC, and upregulation of immuno-

globulin light chain [95]. Therefore, the effect of mutations of

TENT5C in MM pathogenesis seems to be caused by the mis-

regulation of the endoplasmic reticulum homeostasis [82,95].

In contrast to some earlier claims of TENT5C being an essential

gene whose deficiency would cause embryolethality [96], an

independent study demonstrated a lack of major phenotypes

in TENT5C knock-out mice [82]. Instead, the mice suffered

from anaemia likely owing to an abnormality in haemoglobin

synthesis that might be connected to TENT5C activity as a

growth regulator in the blood cells’ B-lineage [82]. Besides

MM, the TENT5C gene is suggested to play a role in the patho-

genesis of other tumours [97–99]. TENT5C expression is

significantly lower in hepatocellular carcinoma than in
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normal liver tissue [99]. Moreover, TENT5C is upregulated in

response to norcantharidin (an antimetastatic drug used in

hepatocellular carcinoma). Upregulation of TENT5C causes

reduction of cancer cell migration and invasion [98]. A similar

effect is observed in gastric cancer—in cancerous tissues, a sig-

nificant reduction of TENT5C levels is observed. Low TENT5C
levels are associated with higher risk of recurrence after gastric

resection and generally poor prognosis [97]. Finally, mutations

in TENT5C also appear to be related to autism [100].

TENT5D dysfunction might also be related to autism as

TENT5D is overexpressed in the cerebral cortex of mice with

autism-like behaviours [100]. Finally, in humans, antibodies

against TENT5D are present exclusively in the serum of

patients suffering from testis and lung tumours [101].

( f ) MTPAP, also known as FLJ10486, mtPAP, PAPD1,
SPAX4 and TENT6

MTPAP is unique among all the other TENTs as it is localized

exclusively in mitochondria and is the only known ncPAP

known to polyadenylate mitochondrial RNAs [102,103].

In vitro, MTPAP can use all four nucleotides as substrates,

although the strongest activity is observed with both ATP

and UTP [104]. Interestingly, structural and biochemical

analysis suggests that the enzyme is active only as a dimer

[104]. MTPAP does not seem to rely on RNA-binding proteins

for substrate recognition, but some proteins could enhance

its activity. For instance, LRPPRC/SLIRP, a mitochondrial

RNA-binding complex, enhances the polyadenylation of mito-

chondrial mRNAs (mt-mRNAs) by MTPAP in vitro [105,106].

Furthermore, MTPAP might interact with a complex formed

by mitochondrial RNA helicase SUV3 and exoribonuclease

PNPase to regulate the length of mt-mRNA 30 poly(A) depend-

ing on the inorganic Pi/ATP ratios and so in response to

cellular energy changes [107]. In contrast to cellular cyto-

plasmic mRNAs, the poly(A) tails in mt-mRNAs serve

different functions. In mammalian mitochondria, a majority

of the mtDNA-encoded mRNAs (in humans 7 out of 13)

have incomplete stop codons represented only by the U or

UA. MTPAP adds AMP residues to the 30 end of mt-mRNAs

forming an oligo- or poly(A) tail and simultaneously generat-

ing the proper UAA stop codon (reviewed in [108–110]).

MTPAP also plays an important role in the maturation of

mt-tRNAs. In human mitochondria the genes coding for

tRNA Tyr and tRNA Cys overlap by one nucleotide, which

results in an incomplete tRNA Tyr precursor lacking the

30-terminal adenosine. This precursor is a substrate for

MTPAP, which may add one or more AMPs to its 30 end. If

only one AMP is added, the tRNA Tyr precursor becomes a

substrate for CCA addition and further acetylation. In case of

MTPAP adding an oligo(A) tail, either the 30 –50 deadenylase

PDE12 or the endonuclease RNase Z removes the excessive

nucleotides, producing a substrate for CCA addition [111,112].

The role of mitochondrial polyadenylation in RNA stab-

ility, turnover and translation remains an open question and

is discussed elsewhere [108–110]. In two different studies, it

has been observed that the silencing of MTPAP leads to the

shortening of mt-mRNAs’ poly(A) tails [102,103]. However,

in one of these reports no changes in a steady state level of

mt-mRNAs or their protein products have been observed

[103], whereas according to another study, knock-down of

MTPAP decreases the stability of the CO1, CO2, CO3 and

ATP6 mRNAs, but has no effect on the ND3 mRNA [102].
Interestingly, a homozygous N478D mutation in MTPAP also

results in shorter poly(A) tails for all mt-mRNA transcripts

tested, but its effect on stability is transcript-dependent [106].

Two other functions have been proposed for MTPAP. First,

it has been suggested to oligouridylate histone mRNAs, indu-

cing their degradation [56]. Another study proposed that

MTPAP may be involved in adenylation of some miRNAs

[113]. However, since MTPAP is an exclusively mitochondrial

protein, these functions are controversial.

There are reports linking mutations in MTPAP to some gen-

etic disorders. Mutation N478D in the so-called fingers domain

within a very conserved region of the protein is associated

with an autosomal-recessive disease—spastic ataxia with

optic atrophy [114]. In this condition the poly(A) tails of

mt-mRNAs are significantly shorter in all homozygous

individuals as compared to hemizygous carriers and healthy

individuals [106,114]. Further work established that the homo-

zygous N478D mutation also causes cellular radiosensitivity

and persistent DNA double-strand breaks [115]. Another

mutation in MTPAP, D39G, was found to be associated with

extreme obesity in cattle [116]. Molecular mechanisms leading

to the observed disorders remain elusive.
3. TUTases and uridylation
Uridylation is a common phenomenon reported for the

majority of RNA species in a mammalian cell. In this process

one to 20þ uridines are appended to the RNA 30 end by

either of three confirmed TUTases: TENT1 (U6 TUTase),

TUT4 or TUT7. While TENT1 is a nuclear enzyme, TUT4

and TUT7 localize in the cytoplasm, which in turn defines

their substrate RNAs. In general, in mammals, uridylation

has been linked with the biogenesis of certain RNAs and

with reduced stability of the uridylated RNAs. Here we

describe the major findings with each of the TUTases, the

differential impact of uridylation on different RNA classes

and the global role of uridylation in mammals, concluding

with the newest findings. See also reviews in this issue by

Zigackova and Vanacova [117] and De Almeida et al. [118]

on uridylation in other organisms.

(a) TENT1, also known as RBM21, TUT1 and U6 TUTase
TENT1 is a protein highly evolutionarily conserved among

vertebrates. It is widely expressed in all human tissues and a

decrease in its level in cell lines leads to reduced prolifera-

tion rates and viability [119,120]. In line with this, most

high-throughput genome-scale RNAi or CRISPR-based screens

identified TENT1 as an essential fitness gene [121–124]. TENT1

is dominantly localized in the nucleoplasm and nuclear speckle

body-like structures and/or nucleolus [125,126]. Its localization

in the nucleolus depends on an interaction with the NMP1

nucleolar protein and is reduced by ubiquitination by the

Cullin-RING ubiquitin ligase complex subunit—KLHL7

protein [125]. TENT1 comprises several domains, whose organ-

ization is different from TUT4 and TUT7 (figure 1) [127,128].

Starting from the N-terminus, TENT1 contains: a putative

zinc finger (ZF) domain, an RNA recognition motif (RRM), a

so-called ‘palm’ with a proline-rich region (PRR) insertion, so-

called ‘fingers’ and a kinase associated-1 (KA-1) RNA-binding

domain and a nuclear localization signal (NLS) [128]. The ZF,

RRM and KA-1 domains bind RNA, thus the protein likely

does not require additional protein cofactors for RNA binding
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[128,129]. The mechanistic model deduced from the TENT1

crystal structure implies that the enzyme, by open-to-close

state transitions, adds several UMPs to the RNA’s 30 end,

which becomes compressed within the enzyme’s active

pocket. Once the RNA can no longer translocate to the active

site it dissociates [128]. The PRR region splits the PAP domain

and can be phosphorylated by casein kinase I (CKI) isoforms

a and 1, which modulates the enzyme’s activity [130]. Besides

RNA binding, the KA-1 domain can also bind phospholipids,

and so it might play a role in the postulated PtdIns-4,5(phos-

phatidylinositol-4,5-bisphosphate)-P2-dependent activation of

TENT1, as described below [128].

(i) TENT1 in U6 small nuclear RNA (snRNA) biogenesis
TENT1 was first discovered as an enzyme crucial in biogenesis

of U6 snRNA responsible for the catalysis of pre-mRNA spli-

cing [117,131–133]. The nascent U6 snRNA transcript

contains a tract of four uridines (Us) at the 30 end that serves

as a termination signal for Pol III [134]. To become functional,

U6 snRNA requires further post-transcriptional 30 end matu-

ration involving two opposite activities: oligouridylation

carried out by TENT1 [117,131–133] and subsequent exonu-

cleolytic trimming executed by the USB1 protein, whose

activity additionally leads to formation of a 20 –30 cyclic phos-

phate at the 30 end—a hallmark of U6 snRNA [135–139]. As a

result, the majority of mature human U6 snRNAs contain five

terminal uridines and a 20 –30 cyclic phosphate moiety that pro-

tects them from oligouridylation-mediated destabilization

[118,134,140]. The presence of the terminal U-rich stretch is

also crucial for U6 snRNA function in pre-mRNA splicing.

Briefly, the uridine-rich 30 tail constitutes a binding platform

for the heteroheptameric Lsm2-8 protein complex that, coopera-

tively with the Prp24p protein, facilitates the annealing of U6

and U4 snRNAs during U4/U6 di-snRNP formation, as

shown for the yeast U6 snRNP [141–144]. Thus, TENT1 contrib-

utes to increased stability of U6 snRNA molecules and

indirectly to pre-mRNA splicing regulation.

(ii) TENT1 as an adenyltransferase. The Star-PAP
There is some controversy regarding the role of TENT1

in nuclear adenylation of mRNAs in response to stress

conditions. A decade ago TENT1 was reported as a highly

processive nuclear speckle-targeted and PtdIns4,5P2-

regulated nuclear poly(A) polymerase (Star-PAP) in vitro
[126,145,146]. It was suggested that TENT1 serves as a bio-

sensor for the transduction of stress signals within the cell

nucleus through targeting mRNAs involved in oxidative

stress response (HO-1 and NQO-1) and mRNA of a pro-apop-

totic gene Bcl-2 interacting killer (BIK) [126,145,146]. It was

postulated that TENT1 interacts with CPSF-73, CPSF-160 of

the Cleavage and Polyadenylation Specificity Factor and sev-

eral other proteins, leading to the formation of poly(A) tails,

instead of the canonical poly(A) formation pathway employ-

ing PAPa/g, and thus specifically regulating the supply of

selected mRNAs [126,129,147,148]. However, recent struc-

tural studies of nucleotide recognition by TENT1 revealed a

superior coordination of the uracil base by hydrogen bonding

with two conserved Asn and His residues and some stacking

interactions within the enzyme’s nucleotide binding pocket,

while ATP is stabilized by just a single hydrogen bond

[128]. The arrangement of core TENT1 domains is topologi-

cally homologous to the yeast Cid1 uridyltransferase (but
also to the human MTPAP). In line with this, biochemical

in vitro activity assays showed that TENT1-mediated uridyla-

tion of U6 snRNA-u4 and 30-UTR-HO1 transcripts is tens of

times more efficient than adenylation [128], which is in dis-

agreement with a previous report showing higher ATP

specificity of TENT1 in in vitro extension of A15 and A44 oligo-

nucleotides [126]. Nevertheless, the substrates used in the two

experimental set-ups were significantly different, i.e. poly(A)

RNAs in [126] and HO-1 30 UTR without 30 adenines in [128],

which might have influenced the observed preferences. Given

the highly complex nature of the 30 end regulatory networks

(figure 2) it also cannot be ruled out that TENT1 activity

changes in vivo owing to its allosteric or structural transitions

under specific physiological conditions, such as oxidative

stress, or through specific interacting proteins. Interestingly,

TENT1 interacts also with nuclear PIPKIa and PKCd kinases,

which by phosphorylation might change its substrate prefer-

ence from UTP to ATP [126,146,147]. Finally, some recent

reports also indicate that TENT1 interacts with both the

Perlman syndrome 30 –50 exoribonuclease DIS3L2 and Argo-

naute2 in an RNA-dependent manner, contributing to the

regulation of miRNA abundance by uridylating RISC-bound

miRNAs and inducing their degradation [113,149–151]. This

process would likely happen in the cytoplasm and thus it

constitutes another controversy regarding TENT1.

(b) TUTases (TUT4 and TUT7) in cytoplasmic
RNA uridylation

TUT4 (also known as KIAA0191, PAPD3, TENT3A and

ZCCHC11) and TUT7 (also known as FLJ13409, KIAA1711,

PAPD6, TEBT3B and ZCCHC6) share significant sequence

similarities and TUT7 is thought to have evolved as a result

of TUT4 duplication [152]. Both TUT4 and TUT7 are large pro-

teins (in human approximately 185 and 171 kDa, respectively)

and comprise catalytic ribonucleotidyltransferase domains

with a conserved DDD triad in their catalytic centres and,

interestingly, non-catalytic NTr-like domains lacking critical

catalytic aspartate residues (figure 1). Important are four

zinc finger/knuckle domains of C2H2 (one, ZF) and CCHC

(three, ZK) types scattered within the proteins’ bodies. The

ZF and ZKs might act as protein–RNA and protein–protein

interaction platforms. Indeed, the first of these motifs from

the protein’s N-terminus (ZF) has been demonstrated to inter-

act with the LIN28a protein [127,153] and the third has been

shown to be involved in the stabilization of the growing oli-

gouridine tail during uridylation of the pre-let-7 miRNA

precursors [127]. TUT4 comprises two additional domains—

one on its N-terminus and one on its C-terminus. These

domains seem irrelevant for uridyltrasferase activity but

might play some other yet undiscovered roles [127,153].

Most reports suggest redundant functions of TUT4 and

TUT7, however, depending on cellular model or tissue

context, these enzymes might also perform different functions.

(i) Oligo- and monouridylation in pre-miRNA regulation—
a double faceted effect of TUTases

Initially, TUTases were characterized for their role in uridylat-

ing precursors of the let-7 miRNA family. These miRNAs are

involved in cell differentiation and deregulated in cancer

development (reviewed in [154,155]). In non-differentiated

cells the LIN28a protein is expressed. It specifically binds
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miRNA precursors and a TUTase, promoting processive oli-

gouridylation of the precursor miRNA, which ultimately

precludes its processing by DICER and leads to degradation

of the oligouridylated pre-let-7 [156–163]. In contrast to that,

in differentiated cells LIN28a is not expressed [42,164]. In its

absence, TUT4/7 add prevalently just a single uridine to the

30 end of the pre-let-7 RNAs. In fact, miRNA precursors fall

into two families regarding their 30 end: it is either a 2-nucleo-

tide 30 overhang (group I of prototypical pre-miRNA) or just a

single nucleotide 30 overhang (group II). Since DICER requires

a 2-nucleotide 30 overhang for processing of the pre-miRNA

into mature miRNA, group II pre-miRNA comprising a

majority of let-7 family RNAs cannot be processed [42]. How-

ever, once monouridylated, the group II pre-miRNAs are

conveyed to the later steps of their maturation [42,43]. Thus, a

single protein LIN28a provides a crucial discriminatory mech-

anism for either oligo- or monouridylation and their

respective effects in blocking or promoting microRNA matu-

ration. Small molecules inhibiting LIN28a-pre-let-7 interactions

have recently been published providing a foundation for the

treatment of LIN28a-induced disorders, mainly different

cancers ([165] and references therein).

Apart from LIN28a, another protein—TRIM25—has been

implicated in pre-miRNA oligouridylation [164]. TRIM25

might act as a pre-let-7-specific activator of LIN28a/TUT4-

mediated uridylation. In mammals also mature miRNAs are

globally and/or specifically uridylated under a variety of con-

ditions including normal growth, differentiation, in response

to either dynamic environmental changes, accompanying

viral infection or in maintenance of steady-state naive T cells

[113,149,166–170]. As a result of uridylation miRNAs might

lose their regulatory potential and are destined for degradation.

Experimental evidence gathered so far and recent struc-

tural information on the pre-miRNA-LIN28a-TUT4 ternary

complex revealed a processivity mechanism for uridylation

wherein all components of the ternary complex contribute to

stabilization of the TUTase-RNA interactions [127,171]. Fur-

thermore, once a few uridines are appended, the ZK 2

domain in the TUTase engages the growing oligo(U) tail in

U-specific interactions that altogether assure enough stability

for further processive oligo(U) addition by the TUTase [127].

The structure also suggests the way in which the TUTase dis-

criminates between group I and group II pre-miRNA, which

relies on specific binding of group II miRNA precursors to

the enzyme in a pre-catalytic state. Once monoU has been

added, the newly formed 2-nucleotide overhang positions

the RNA in a post-catalytic state reinforcing RNA dissociation.

A similar non-favourable positioning in the post-catalytic state

accounts for a lack of extension on the group I miRNA precur-

sors in the absence of LIN28a [127]. In the absence of LIN28a

TUT4/7 uridylate exposed 30 ends in a distributive manner

without the need for a protein cofactor [43,172].
(ii) Uridylation in replication-dependent histone mRNA clearance
It is currently acknowledged that TUT7 and to a lesser

extend TUT4 are responsible for uridylating histone mRNAs

[57,58,173]. Histone mRNAs form a distinctive group of mam-

malian mRNAs, since they possess a stabilizing 30 stem-loop

instead of a poly(A) tail [174,175]. The availability of histone

mRNAs in a cell is tightly regulated so that their expression

keeps pace with DNA replication in the S phase. The tight

regulation is important since if expressed in other cell growth
phases histones interfere with several cellular processes leading

to severe cytotoxicity [176]. The tight regulation takes place

both on transcriptional and post-transcriptional levels to

ensure histone supply at the onset of S phase and their rapid

clearance once replication is completed. In mammals, transcrip-

tion of histone mRNAs changes 5–6 fold during cell cycle

[177,178], thus the pivotal role in regulation of histone mRNA

supply is their uridylation-dependent clearance [56]. For details

on histone mRNA regulation see a comprehensive review by

Marzluff & Koreski [179] and a review by Stacie et al. [180].
(iii) mRNAs—general importance of uridylation in apoptosis,
oocyte and embryo development

With the development of TAIL-Seq, a tool for global 30 termi-

nome analysis [181], it became apparent that not only

replication-dependent histone mRNAs but also mRNAs

acquiring poly(A) tails are uridylated, though to different

extents and depending on their poly(A) tail lengths. While

for some mRNA species nearly 50% possessed 30 non-

templated uridines, for some others only a minor fraction

(less than 2%) were uridylated [182]. This discrepancy

might have resulted from either specific uridylation or less

effective degradation of some mRNAs, but the mechanistic

explanation of either possibility requires further testing. In

general, uridylation occurs frequently with mRNAs posses-

sing short poly(A) tails of less than 20 As [182]. Uridylation

levels correlate with decreased mRNA stabilities [182] that

at least partially result from removal of uridylated mRNAs

by the DIS3L2 30 –50 exoribonuclease [140,180]. Uridylated

RNAs are also likely removed by the 50 –30 decay, since

uridylation induced decapping, as shown in studies with uri-

dylated reporter RNAs in human cellular extracts [184].

It is likely that similarly to the situation in fission yeast, uri-

dylated RNAs are bound by LSM1-7, decapped by the

decapping complex (involving several protein components;

see [185] for a review) and degraded by the XRN1 50 –30

exoribonuclease [186]. Furthermore, abortive initiation of

mRNA transcription by Pol II leads to the production

of so-called transcriptional start-site-associated RNAs—

TSSs. These are pervasively oligouridylated and undergo

uridylation-dependent clearance by DIS3L2 [187,188].

There is no doubt that uridylation is common in mamma-

lian cells. However, how essential is the modification? Is

uridylation just a fine-tuning mechanism in RNA decay

that if missing can be replaced by other pathways, or does

uridylation play an indispensable role and, if so, is it spatially

or temporarily restricted? A study by Thomas et al. [189]

highlighted the global importance of uridylation in apopto-

sis. Apoptosis is a complex process involving multiple

regulatory mechanisms that occur in a step-wise manner.

On the level of RNA, initial apoptotic mitochondrial outer

membrane permeabilisation (MOMP) induces a global

degradation of translation-competent mRNAs but not of non-

coding RNAs at the onset of apoptosis [189,190]. The global

mRNA decay is induced by TUT4/7-mediated uridylation

and executed by DIS3L2 30 –50 exoribonuclease [189]. Simul-

taneously, pre-mRNA splicing and RNA nuclear export are

inhibited, which prevents the production of stress-responsive

factors [191] and precedes phosphatidylserine externalization

and DNA fragmentation. In fact, knock-down of TUTases or

DIS3L2 leads to anti-apoptotic effects and increases survival

of cells exposed to apoptotic stimuli [180,189].
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Recent evidence identifies another crucial role of TUTases

and uridylation in gametogenesis and early development.

These results come from a study with TUT4/7 conditional

knock-out (cKO) mice that demonstrated that TUTases are dis-

pensable in adult animals since their lack does not lead to global

transcriptome changes in somatic cells [35]. Instead, the TUT4/

7-mediated uridylation regulates the maternal protein-coding

transcriptome in developing oocytes and is indispensable to

complete meiosis I and for generation of functional oocytes as

well as for early embryo development following fertilization,

as the fertilized TUT4/7cKO did not develop past two-pronuclei

stage [35]. The early embryo is transcriptionally inactive and

relies on maternally deposited transcripts. Thus, the regulation

of transcript supply implies mostly poly(A) tail length adjust-

ments and uridylation-induced degradation of certain

transcripts at the completion of a programmed developmental

stage. The global effect of TUTases and uridylation in oogenesis

(and likely embryogenesis) apparently requires oligouridine

tails as the ratio of oligo- to monouridylated RNAs is signifi-

cantly higher in oocytes than in other investigated mouse cell

types and tissues [35]. TUT4/7 depletion resulted in a deregu-

lation of a group of transcripts that were upregulated in TUT4/
7cKO oocytes and lacked oligouridine tails present in the con-

trol TUT4/7CTL oocytes, while a pool of transcripts remained

unchanged between these test conditions. It seems awkward,

however, that only a minor fraction of less than 2% of tran-

scripts was found uridylated in the control oocytes (and other

cells) in this study. The above observations thus suggest that

the specificity of TUT4/7-mediated uridylation is important,

leading to elimination of only a strictly defined cohort of tran-

scripts and thus likely allowing for smooth maternal-to-

zygotic transition. Such conclusions were only recently made

also for X. laevis and zebrafish [192]. By using a morpholino-

induced conditional depletion of TUT4/7 homologues in X.
laevis and zebrafish embryos it has been demonstrated that

the TUT4/7-mediated uridylation is at the onset of maternal

transcriptome clearance during maternal-to-zygotic transition

at 4–6 h post fertilization [192]. On the basis of these reports

it becomes apparent that TUTases are especially needed in

oogenesis and at early stages of embryo development.
(iv) Uridylation of snRNA, tRNA and other RNA polymerase III
transcripts

TUTases play roles in the regulation of a cohort of other RNA

species in the cytoplasm. Among them are snRNAs that consti-

tute integral parts of the pre-mRNA splicing catalysing

spliceosome [193]. Four of these RNAs—U1, U2, U4, U5—are

transcribed by RNA polymerase II and one—U6 snRNA—by

RNA polymerase III, and all undergo a series of specialized

processing steps both in the nucleus and in the cytoplasm

[137,194]. Misprocessed snRNAs are uridylated by the

TUTases and destined for DIS3L2-mediated decay

[140,188,195]. Initially, the TUT-DIS3L2 pathway was con-

sidered in nuclear snRNA processing and biogenesis.

However, this possibility was ruled out [140], which

was later corroborated by the discovery of a nuclear snRNA

processing 30 –50 exoribonuclease—TOE1 [196].

In a CLIP assay with a mutant DIS3L2 (D391N), uridylation

sites have been found within bodies of all mature rRNA

species: 28S, 18S, 5.8S and the Pol III-transcribed 5S rRNAs,

and less so, but also present, in the so-called ETS and ITS

parts of the rRNA precursor [188]. The identified fragments
most likely represent degradation intermediates, thus strongly

suggesting that rRNAs are also targets of (most likely) TUT4/

7-mediated uridylation and rely on subsequent degradation by

DIS3L2 [188].

Transcription by Pol III complements mammalian RNAs

with diverse short and usually highly structured non-coding

RNAs [197,198]. Importantly, all these transcripts end in 4–5

Us, which is a termination signal for Pol III-mediated transcrip-

tion. Recent evidence confirms the generality of the

cytoplasmic uridylation-induced DIS3L2-executed RNA

decay in regard to many Pol III transcripts including U6

snRNA, snoRNA, tRNA, Y and vault RNA, Rmrp, 7SL, BC200
and several others [140,188,195]. Transfer RNAs (tRNAs) are

likely some of the most notable regulated RNAs as they play

an essential function in protein biosynthesis. In their CLIP

study, Ustanienko et al. [188] showed mapping to tRNA trun-

cated within the T-loop or to the 30-end tRNA trailers, which

implied that uridylation-induced DIS3L2 decay involves mis-

processed extended forms of tRNAs and likely might also

regulate properly processed tRNAs. Y and vault RNA

(VTRNA) are short RNAs that form RNP assemblies in the

cytoplasm. In fact, VTRNAs form likely the biggest known

human cytoplasmic RNPs with a mass of approximately

13 MDa and overall dimensions of 40 � 40 � 70 nm [199].

While Y RNA likely play a role in DNA replication and

RNA processing [74], VTRNAs have been linked to multidrug

resistance and anti-apoptotic effects in cancer cells [200]. More-

over, both ncRNA types might serve as precursors for the

generation of short RNA, svRNA and Ys RNA, which likely

act in post-transcriptional regulation of some mRNAs

[201,202]. The importance of these RNAs in cells has not

been firmly established. Nevertheless, they are among the

most prominent TUT4/7-DIS3L2 substrates [140,188,195].

Another Pol III transcript regulated by uridylation and

DIS3L2-mediated decay is Rmrp. Its function in mammalian

cells is not clear but mutations in human RMRP gene lead to

cartilage–hair hypoplasia (CHH), manifesting in a few serious

deficiencies [203]. Imprecise 30 ends of Rmrp RNAs have been

found heavily oligo- and polyuridylated in DIS3L2 co-immu-

noprecipitates, with as many as 26 30 uridines and a median

length of 12 uridines [195]. Interestingly, since Pol III-tran-

scribed ncRNAs were the dominant fraction of RNAs

enriched in DIS3L2 co-IPs, the authors proposed that

ncRNAs are prime targets of the uridylation-induced

DIS3L2-executed decay [195]. This, however, might at least

partially result from particular features of the short ncRNAs,

namely: (i) naturally occurring 4–5 Us at their 30 ends, which

might remain free from base-pairing interactions and protrude

from RNPs [140,187,188,195]; and (ii) their stable structures

that might effectively stall DIS3L2 on these substrates

(Warkocki et al. 2016, unpublished). In vitro reconstitution of

TUTase activity and DIS3L2-mediated RNA degradation

assured that at least in the case of the tested tRNA, Y and

vault RNAs and Rmrp the concerted uridylation-induced 30 –

50 decay does not require other protein factors besides a

TUTase and DIS3L2 [140,188,195].
(v) Uridylation of RNA viruses and human LINE-1
retrotransposons

It has been demonstrated that exogenous RNAs of viral origin

are also heavily uridylated with as many as a few tens of uri-

dines appended to their 30 ends [204]. Indeed, a recent report
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demonstrated that RNA viruses constitute an important target

for uridylation by TUT4/7 in C. elegans, human A549 cells and

murine fibroblasts [205]. While in wild-type cells a significant

fraction of viral RNAs was uridylated, in cells lacking TUTases

this fraction was reduced to nearly 0 and the percentage of

infected cells was also significantly higher than in the wild-

type cells. Thus the authors concluded that uridylation by

TUT4/7 constitutes a defence mechanism against infections

by RNA viruses [205]. Last but not least, a recent study demon-

strated a potent multi-layer restriction of human LINE-1

retrotransposons by uridylation [206]. LINE-1 is a group of ver-

tebrate retrotransposons that in humans constitute nearly 17%

of the entire genome [207,208]. They proliferate by a copy-and-

paste mechanism involving transcription and reintegration

into a new site within the genomic DNA by a so-called

target-primed reverse transcription (TPRT) mechanism poten-

tially leading to de novo mutations in the germline owing to the

temporal loss of epigenetic marks that silence LINE-1 in

somatic cells [189]. Nevertheless, LINE-1s are also expressed

in some somatic cells, especially neurons [209–211]. They are

also expressed in cancers [212]. In contrast to other protein-

coding mRNAs, uridylation of LINE-1 mRNA not only

enhances degradation of otherwise extremely stable LINE-1

mRNAs but also, and most importantly, it might block

initiation of reverse transcription during TPRT, which under

normal conditions requires base-pairing of the poly(A) tail of

LINE-1 mRNA with a short oligo(dT) stretch released from

genomic DNA (figure 3) [172,206,213]. Such base pairing

cannot be achieved between the oligo(U) tail of mRNA and

genomic oligo(dT) [206]. Importantly, TUT4 and TUT7 show

slightly different effects on LINE-1 mRNA steady-state levels

and stabilities that likely results from TUT4, but not TUT7,

enrichment in cytoplasmic foci [206].

Biochemical investigations demonstrated that structured

RNAs with their 30 end involved in base-pairing acquire none

or shorter U-tails than non-structured substrates or substrates

with their 30 ends clearly protruding from the main RNA
body [140,214]. Thus it seems that a mechanistic prerequisite

for uridylation might involve resolving secondary and tertiary

structures or removal of proteins (like PABPC [182]), both of

which occlude 30 ends and prevent uridylation of some physio-

logical TUT substrates. One could expect helicases and

RNPases (proteins destabilizing RNA–protein interactions) to

functionally cooperate with the TUTases by removing proteins

or resolving secondary and tertiary structures to promote uridy-

lation. Indeed, such a functional cooperativity mechanism

involving MOV10 helicase and TUT4/7 has been recently pro-

posed for uridylation of LINE-1 mRNAs that otherwise are

tightly packed and protected from external enzymatic activity

by a shell formed by multiple copies of the LINE-1 L1-ORF1p

chaperone protein (figure 3) [206].
4. Conclusion
Eleven mammalian TENTs play important roles in post-tran-

scriptional gene expression regulatory mechanisms acting in

nucleus, cytoplasm and mitochondria. They mainly control

the stability of RNA species. Cytoplasmic ncPAPs (TENT2,

TENT5) stabilize substrate mRNAs, while polyadenylation by

the nuclear counterparts (TENT4A/B) seems to have mixed

effects. Such enzymes can induce exosome-mediated decay

or, because of their promiscuous nucleotide specificity with

substantial incorporation of GMP residues within the poly(A)

tails of mRNA molecules, they can stabilize mRNAs when

they are exported into the cytoplasm. Cytoplasmic TUTases

(TUT4/TUT7) mostly induce RNA decay, while nuclear

TUT1 stabilizes U6 snRNA. Importantly, although in some

cases knowledge about their role and mechanism of action is

already substantial, in many cases, TENT5 enzymes for

instance, we are just at the beginning of the journey. It is also

important to point out that there are several substantial contro-

versies in the field, some of which were described herein. Thus,

further research is clearly needed to understand how TENTs
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regulate gene expression in mammals with a closer look at the

subcellular, cellular, tissue and developmental stage contexts.
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Genetic analysis of FAM46A in Spanish families with
autosomal recessive retinitis pigmentosa:
characterisation of novel VNTRs. Ann. Hum.
Genet. 72, 26 – 34. (doi:10.1111/j.1469-1809.2007.
00393.x)

84. Lagali PS, Kakuk LE, Griesinger IB, Wong PW,
Ayyagari R. 2002 Identification and characterization
of C6orf37, a novel candidate human retinal disease
gene on chromosome 6q14. Biochem. Biophys. Res.
Commun. 293, 356 – 365. (doi:10.1016/S0006-
291X(02)00228-0)

85. Schulz HL, Goetz T, Kaschkoetoe J, Weber BHF. 2004
The retinome—defining a reference transcriptome
of the adult mammalian retina/retinal pigment
epithelium. BMC Genomics 5, 50. (doi:10.1186/
1471-2164-5-50)
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P, Borg Å, Rovira C. 2009 The non-coding RNA of
the multidrug resistance-linked vault particle
encodes multiple regulatory small RNAs. Nat. Cell
Biol. 11, 1268 – 1271. (doi:10.1038/ncb1972)

202. Nicolas FE, Hall AE, Csorba T, Turnbull C, Dalmay T.
2012 Biogenesis of Y RNA-derived small RNAs
is independent of the microRNA pathway. FEBS
Lett. 586, 1226 – 1230. (doi:10.1016/j.febslet.2012.
03.026)
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