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Compared with rapid accumulation of protein sequences from high-throughput DNA sequencing, obtaining
experimental 3D structures of proteins is still much more difficult, making protein structure prediction
(PSP) potentially very useful. Currently, a vast majority of PSP efforts are based on data mining of known
sequences, structures and their relationships (informatics-based). However, if closely related template is
not available, these methods are usually much less reliable than experiments. They may also be problematic
in predicting the structures of naturally occurring or designed peptides. On the other hand, physics-based
methods including molecular dynamics (MD) can utilize our understanding of detailed atomic interactions
determining biomolecular structures. In this mini-review, we show that all-atom MD can predict structures
of cyclic peptides and other peptide foldamers with accuracy similar to experiments. Then, some notable
successes in reproducing experimental 3D structures of small proteins through MD simulations (some
with replica-exchange) of the folding were summarized. We also describe advancements of MD-based
refinement of structure models, and the integration of limited experimental or bioinformatics data into
MD-based structure modeling.
© 2019 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Three-dimensional (3D) structures of proteins and their complexes
provide invaluable information, not only for understanding themolecu-
lar basis of themachinery of life, but also for screening and designing of
istry and Drug Design, State Key
ty Shenzhen Graduate School,

Research Network of Computational
new drugs for medical applications [1]. Since the first protein 3D struc-
ture (ofmyoglobin)was solved by X-ray crystallography sixty years ago
[2,3], enormous efforts have been paid for protein structure determina-
tions [4–9]. However, to obtain high-resolution structure of a protein
experimentally is still quite expensive and time-consuming. On the
other hand, the cost of obtaining new protein sequences has dramati-
cally decreased due to significant progresses in high-throughput DNA
sequencing technology [10,11]. Therefore, there is a huge and increasing
gap between the numbers of known structures and sequences. Thus,
protein structure prediction (PSP) has become a cost-effective and
and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license
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high-throughput way to provide structure information for biological
and pharmaceutical researches.

Various methods for PSP have been developed, which can generally
be classified into two types: template-based modeling (TBM) and de
novo structure prediction. TBM predicts the native structure of a pro-
tein target by identifying known protein structure(s) as template
(s) [12], based on sequence-sequence (homology modeling) or
sequence-structure (threading) alignments. Without suitable template,
de novo PSP (template-free modeling) can be used to predict novel
protein fold. The most popular and successful ones are usually based
on assembly of known structure fragments with potential energy
(scoring) functions from mining know protein structures (such as
Rosetta [13,14] and QUARK [15]). Also, inter-residue contacts inferred
from co-evolutionary signals in sequence homologs can significantly
facilitate the de novo PSP [16,17]. The predicted protein models can
span a broad range of accuracies and are potentially suitable for differ-
ent applications [18].

All above popular PSP methods require certain database(s) of
sequences and structures, which are thus called knowledge-based.
However, the fundamental theory supporting PSP is that the 3D struc-
ture of a native-state protein in physiological condition is encoded in
its amino acid sequence, as its lowest-free-energy conformation
[19,20]. Thus, in theory, PSP can be achieved with only an accurate en-
ergy functionwith a proper conformational searchmethod. Most popu-
lar conformational search methods include Monte Carlo (MC) and
molecular dynamics (MD). MC approach has been successfully used to
study the folding of peptides and proteins, using either atomisticmodels
[21–23] ormore coarse-grainedmodels [24–28]. It has also been used to
predict protein loop structures [29]. In theory,MCmethods can be as ac-
curate as MD methods, but MC may suffer from lower efficiency when
using fine-grained representation of the system, especially with large
number of explicit solvent molecules. There is also a danger of biasing
the sampling when using MC.

MD simulation methods have a long history. The method was origi-
nally developed about sixty years ago, for theoretical physicists to study
systems of many interacting particles (such as atoms or atom groups)
under classical mechanics [30,31]. The now-dominant version of MD
was also soon established [32], which numerically solves classical equa-
tions of motion according to physical force on each particle. Because
small integration time steps of femtoseconds (10-15 s) are usually neces-
sary for all-atom simulations, to simulate biologically-relevant event
(such as protein folding on N microseconds, 10-6 s) by MD requires a
huge number of numeric calculations. Over the past 40 years, the time-
scales that can be reached by atomistic MD simulation are increasing
rapidly, even faster than the Moore's law [33,34]. Now, MD simulations
have become an important and pervasive physics-based method to ex-
plore the conformational space of peptides and proteins, which can
even fold small proteins (b80 amino acids) to their native structures
[35].

Here we review applications of MD simulation in ab initio structure
prediction of peptides and small proteins, refinement of protein struc-
ture models, as well as structure modeling assisted by experimental or
bioinformatics data. However, we will not review following research
areas traditionally not regarded as a PSP problem, although they are
somehow related to structure prediction and heavily relying on MD
simulations:

1. MD simulation has been extensively used in studying the conforma-
tional dynamics of proteins, for a long time [36]. This can be regarded
as the prediction of an ensemble of structures for a protein in the na-
tive state [37]. However, this type of MD studies rely on known (rep-
resentative or average) structure of a protein.

2. Some proteins or protein segments do not fold to ordered structures
in the native condition [38]. The prediction of structure ensembles of
intrinsically disordered proteins is very important, and MD simula-
tion also plays a very important role [39].
Of course, we cannot cover all relatedworks in this mini-review, but
intended to give some representative examples about the topic of MD-
based structure prediction of peptides and proteins.
2. Methodology Developments for MD Simulation

Since the first protein MD simulation in 1977 [36], with rapidly de-
veloping computing hardware and software, significantly longer
simulation times and larger simulated systems can be achieved. Super-
computers have been built for biomolecular MD simulations such as
protein folding [40]. Software packages for highly efficient MD simula-
tions on parallel computing architectures have also been developed
[41,42]. Using special-purpose supercomputer Anton [43], all-atom
MD simulation reaching millisecond time-scale has been reported in
2010 [44]. Recently, the most exciting progress is the development of
software for routine use of graphic processing unit (GPU) for MD simu-
lations [45–47]. Now,MD simulation is becoming a powerful tool exten-
sively used in studying biomolecular systems. Currently, a few hundred
nanoseconds (ns) per day can be routinely achieved on a small protein
system in explicit solvent.

In anMD simulation, forces are often calculated using a potential en-
ergy function (force field) of the system, which is crucial to the reliability
of the MD simulation. A protein force field contains terms for both
bonded (for bond lengths, bond angles, and dihedral angles) and non-
bonded interactions (van derWaals and electrostatics). It has relatively
simple mathematical formula, but usually contain many empirical pa-
rameters that determine its accuracy. With increasing computational
performance and development of enhanced sampling methods (will
be described below), more andmore inaccuracies in protein force fields
have been revealed [48,49].

These findings have been continuously spurring improvements of
classical protein force fields, including AMBER [50–53], CHARMM
[54–57], andOPLS-AA [58–60].Most of the recent updates have been fo-
cused on the parameters of backbone and/or side-chain dihedral-angle
(torsion) terms to fit ab initioquantummechanics calculations or exper-
imental (especially NMR) observables, because these parameters are
closely related to the conformational behavior of simulated peptide or
protein.

Water molecules plays a crucial role in driving protein folding [61],
and determining the structure and dynamics of protein molecules
[62]. Water models like TIP3P [63] and TIP4P [63] developed in the
early 1980s have been able to accurately describe the various physico-
chemical properties of water at room temperature, and are still widely
used in MD. In these explicit-solvent simulations, a vast majority of
the computational resources are consumed in calculating forces on
water molecules. To increase efficiency, methods to treat water solvent
implicitly have been developed, mostly based on the Generalized Born
(GB) solvation model [64–66]. Sometimes, an energy term related to
solvent-accessible surface areas (SA) was used for approximating the
non-polar contributions to solvation [64].

Besides the accuracy and reliability of force field (including solvent
model), another important factor severely limits the applications of
MD: the time scale that can be easily achieved by a conventional MD
simulation is usually much shorter than those related to real problems.
Thus, enhanced sampling methods have been developed. Some use bi-
ased potential to force barrier crossing on pre-defined reaction coordi-
nates (collective variables), such as umbrella sampling [67] and
metadynamics [68]. However, these methods can hardly be used in ac-
tual structure prediction because the end point of folding should be un-
known. Thus, enhanced sampling methods using energy as a reaction
coordinate were developed, including biased potential methods such
as acceleratedmolecular dynamics [69], generalized ensemblemethods
such as replica-exchange molecular dynamics (REMD) [70], and
methods combining the two aspects [71]. Currently, the REMDmethod
becomes the most popular one for ab initio folding, partly because it
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can utilize current main-stream multi-node parallel computing archi-
tectures very efficiently. In addition, replica-exchange method can also
be used with MC simulation, which has been used in I-TASSER [72]
structure prediction pipeline by Zhang’s group to facilitate the fragment
assembly and conformational search.

3. Peptide Structure Prediction

Peptides fill the gap between small-molecule drugs and proteins, and
potentially can have both their advantages [73]. Numerous peptides
have been found in natural products, and some of them have become
drugs with great biological functional diversity. Still, millions of peptide
sequences are estimated occurring in prokaryotic genomes [74], plants
[75], venom in eukaryotes [76,77] and there are even larger sequence
space for designed peptides as chemical tools and drug leads [78–81].
Because the function of a peptides is always related to its unique confor-
mational behavior [82,83], accurate peptide structure prediction (PepSP)
would contribute significantly to the peptide-based drug design.

Many attempts have been made for developing PepSP, including
evaluations of some common PSPmethods (Rosetta, I-TASSER) and spe-
cific development of PepSP methods (PepLook, Pep-Fold). However,
these methods often cannot consistently predict the experimental
structures of peptides. For example, Rosetta cannot reproduce the ex-
perimental structure of an α-conotoxin [84]. Peplook, Pep-Fold and I-
Tasser predicted a set of 38 cyclic peptides consisting of 5-30 residues
with average backbone RMSD (root-mean-square deviation from corre-
sponding experimental structure) values of 3.8 Å, 4.1Å and 2.5 Å, re-
spectively [85]. At the same time, solvent effect has been found very
important for conformations of peptides [83,86], which can be treated
explicitly in MD simulation, and the configuration entropy can be con-
sidered. In addition, a peptide in solution can have distinct conforma-
tions [87,88] with small free energy difference, bringing high demand
on the accuracy of the energy function and solvent model.

For many naturally occurring or designed peptides, MD-based
methods can be very suitable for predicting their 3D structures. Firstly,
alignment of short sequences may be less reliable, hindering the use
of comparative modeling techniques for PepSP [89]. Secondly, struc-
tures of short peptides are usually highly sensitive to their exact
sequences, small variations may cause massive conformational alter-
ations [90]. Third, compared with proteins, converged conformational
sampling of small peptides can be much more easily achieved by MD
simulations, especially with enhanced sampling methods.

Dill and coworkers studied the structure prediction of peptide frag-
ments using REMD simulations with implicit solvent [91,92]. For 133
8-residue fragments from six different proteins, 85 of them have no pre-
ferred structure, while the structures of 41 out of 48 structured peptides
Fig. 1. Developments of the variants of the three most popular al
bear some resemblance to their native structures [91]. Most linear pep-
tides do not have a stable structure that can be determined by experi-
ments, making it very difficult to benchmark PepSP methods on them.
Still, there are some designed foldable linear peptides, including
β-peptides [93,94], that canbe foldedbyMDsimulations twodecades ago.

Cyclization of linear peptides, either by backbone or side-chain link-
ages, can achievemuch lower conformationalflexibility [95,96] andbet-
ter drug-like properties, which are attractingmore andmore attentions.
Because availability of their experimental structures (especially X-ray
crystal structures) and resemblance to protein loops, we think that cy-
clic peptides (CPs) are much better candidate for benchmarking struc-
ture prediction methods, compared with linear peptides.

REMD simulations using AMBER ff96 with GBSA implicit solvent
were performed to 18 cyclic RGD peptides [97], showing agreements
between the simulated and experimental inter-proton distances.
Among them, the predicted structure of cilengitide (5 residues) have
0.25 Å backbone-RMSD to its crystal structure bound to integrin. A
structure prediction study of peptoid [98] shows, REMD simulation
using generalized AMBER forcefield (GAFF) [99]with implicit solvation,
combing a quantum mechanical refinement, correctly predicted the X-
ray crystallographic structures of a N-aryl peptoid trimer and a cyclic
peptoid nonamer to the accuracy of 0.2 Å and 1.0 Å RMSDs, respectively.

Recently, MD simulations using explicit solvent models have be-
come more and more widely used. REMD simulation of Vasopressin
and Oxytocin (peptide hormones cyclized by disulfide bond) and their
mutants were performed [100], and the resulted structural ensembles
were validated against experimental NMR chemical shifts and 3JHαHN
scalar couplings. In 2016, Lin and coworkers investigated the ability of
MDwith bias-exchange metadynamics (BE-META) to predict the struc-
ture of a cyclic octapeptide [101]. Representative structures of fivemost
commonly populated states from simulations with four different force
fields gave RMSD ranging from 1.11 Å to 1.88 Å to the NMR structure.

Recently, we simulated 20 all-trans CPs of 5-12 residues using
explicit-water REMD with four different force fields: AMBER ff99SB –
ILDN, OPLS-AA/L, RSFF1, and RSFF2 [102,103]. Our recently developed
RSFF2 [104] force field performs the best (Fig. 3), which can predict
the crystal structures of 17 out of these 20 CPs with backbone RMSD b

1.1 Å, and 8 CPs with backbone RMSD b 0.5Å. Metadynamics with
RSFF2 was used recently by Lin and coworkers to study sequence–
structure relationships of some simple cyclic hexapeptides [90], and de-
sign well-structured cyclic pentapeptides [105]. REMD with RSFF2 has
also been used to study α-helical stapled peptides, together with GAFF
to describe the non-standard amino acids, giving prediction in excellent
agreements with experimental observations [106–108]. In one case
with X-ray crystal structure solved, the predicted structure is almost
identical to experimental one (RMSD of 0.3Å). (See Figs. 1 and 2).
l-atom protein force fields: AMBER, CHARMM, and OPLS-AA.



Fig. 2. Statistics (box plots) of the backbone RMSD values between predicted structures
from REMD simulations with various force fields and their X-ray crystal structures of 20
all-trans CPs of 5-12 residues.
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However, in spite of good conformational sampling and advanced
force fields, MD simulation still cannot accurately predict peptide struc-
tures in all cases. Very recently, it was shown that the cis/trans isomer-
ization of N-methylated cyclic hexapeptides cannot be reliably
predicted [109]. Recently, simulation of guanylin (a 15-residue peptide
with four cysteines) showed that the distribution of three disulfide-
bond isomers is in qualitative agreement with experiment, but the
most stable conformation of the isomer 2 is significantly different
from the poorly ordered structure of the truncated peptide [110]. In an-
other study, BE-META simulations were performed on five cyclic
isoDGR-containing α/β-peptides using eight widely used force fields
with explicit water to reproduce 79 NMR observables [111]. Most of
the force fields display good agreement with experimental 3J(HN,Hα),
but poor agreement was observed for NMR observables directly related
to β-amino acids. In addition, accelerated MD simulations of three CPs
were performed to predict their conformations [112], and benchmarked
against inter-proton distances from NMR experiments and X-ray struc-
tures, revealing discrepancy between calculations and experimental ob-
servations. These studies are showing that MD-based PepSP can be a
very good approach to evaluate force fields.

4. Ab Initio Protein Folding

As early as in 1975, Levitt &Warshel reported the folding simulation
of a small protein (bovine pancreatic trypsin inhibitor) from fully ex-
tended conformation to RMSD of 5.3 Å, using a very simple model
(two particles per residue) [113]. Limited by computational resource,
energy minimization and normal-mode thermalisation were used in-
stead of MD. Since then, there were numerous computational studies
of folding and tertiary structure prediction of peptides and proteins,
mostly using simplified protein models with Monte Carlo methods
[114]. At early time, the direct atomistic MD simulation of folding has
been impractical.

With increasing time resolution of experiments, people began to re-
alize that some ultrafast folding proteins (with 20 ~ 106 residues) can
fold on the time scale of a few μs [115]. This encourage the use MD sim-
ulation to study protein folding. In 1998, using a massively parallel su-
percomputer, a simulation of the folding of 36-residue villin headpiece
subdomain (villin HP-36) in explicit water was performed for 1 μs
[116]. Collapsed structures with native-like secondary structures were
observed, and the RMSD of the representative structure is 5.7 Å. In
1999, Takada et al. reported successful folding of an artificial three-
helix-bundle protein (54 residues) using overdamped Langevin
dynamics (an MD version usually for implicit-solvent coarse-gained
simulations) [117]. A simplified model of 3~4 particles per residue
allowed trajectories up to 1microsecond (μs). Soon later, a naturally oc-
curring three-helix-bundle protein was folded from random-coil struc-
tures to RMSD of ~ 3 Å within 1 μs, by similar method [118].

Since 2000, successful atomistic folding simulations of some
miniproteins in implicit solvent were reported, including: 20-residue
three-stranded β-sheet Beta3s [119], 16-residue C-terminal β-hairpin
from protein G [120], 23-residue BBA5 with ββα structure [121,122],
20-residue α-helical Trp-cage [123]. Besides, 35-residue villin HP
[124], 10-residue chignolin [125], and 46-residue α-helical fragment B
of protein A [126] were successfully folded using explicit solvent. Plain
MD or REMD were used in these works, but other enhanced sampling
methods can also be used. For example, accelerated MD has been used
to fold four fast-folding proteins (chignolin, Trp-cage, villin HP, and
WW domain) [127].

Besides, more efficient discrete molecular dynamics (DMD) simula-
tion can be performed based on stepwise potentials with implicit solva-
tion [128]. Using replica-exchange DMD, six small proteins (20–60
residues) with diverse native structures have been successfully folded
[129]. For the smallest three (Trp-cage, villin HP, WW domain), predic-
tions of RMSDs between 2~3 Å can be achieved. However, we do not see
wide spread use of DMD in folding studies, possibly due to using less re-
alistic physics model.

One approach to surmount the time scale barrier is to constructMar-
kov state models (MSMs) using many different MD trajectories. It has
been successfully used for all-atom ab initio folding of small systems
such as the villin HP-35, for which the most populated state has an av-
erage RMSD of 2.3Å [130]. Combining thousands of MD simulations
with explicit solvent (each trajectory up to 1 μs, totally 1.3ms), an atom-
istic model of the folding of an 80-residue fragment of the λ repressor
was obtained to capture dynamics on a 10 milliseconds time scale
[131]. Using Folding@Home distributed computing platform [132],
∼3000 unfolded-initiated trajectories of implicit-solvent MD were gen-
erated for 39-residue protein NTL-9 with an experimental folding time
of ∼1.5 ms, two trajectories reached RMSD b 3.5 Å [133]. An alternative
method is Milestoning [134,135], developed by Elber and coworkers.
Milestoning samples slow processes by coarse graining conformational
space and performing large numbers of short simulations, yielding ki-
netics and pathways. However, these methods are too expensive to be
applied in practical ab initio structure prediction, although very useful
for folding mechanism studies.

With increasing computing power and force field improvements, si-
multaneously folding simulations of more proteins have been reported.
Using special purpose computer Anton, Lindorff-Larsen et al. reported
the first successful large-scale folding simulation [35]. Eleven proteins
of 10~80 residues were reversibly folded to RMSD b 3.6 Å using the
CHARMM22* force field in explicit water. Using REMD with our RSFF1
[136] force field, we also folded all these 11 proteins to RMSD b 3.8 Å,
along with the Trp-cage TC5b and wild-type engrailed homeodomain
(EnHD) [137] (Fig. 3). By analyzing continuous trajectories tracking
every replica exchange, we also found that REMD can increase the fold-
ing rate by about 6 times, through significantly (N 102 times in most
cases) increases the diffusion rate on rough energy landscape. Using in-
expensive GPUs and implicit solventmodel (~1 μs/day can be achieved),
Simmerling and coworkers reported successful folding for 16 of 17 pro-
teins (10–92 residues) with a variety of secondary structures and
topologies, although the native conformations may not be thermody-
namically preferred [138].

Although ultrafast folding proteins are relatively rare, a considerable
fraction of protein domains can fold within time scale of milliseconds
[139,140]. Using Anton machine, Piana et al. performed eight one-
millisecond (1 ms) MD simulations of ubiquitin (a very common 76-
residue protein) in explicit water [141]. Starting from the folded struc-
ture, spontaneously unfolding to RMSDs of N 20Å and refolding to Cα
RMSDs of 0.5 Å was observed. However, no folding events were ob-
served in the two simulations initiated in the unfolded state, which is
understandable since the estimated folding time is about 3 ms.

From above, it is clear that atomisticMD simulation of folding can be
used for ab initio PSP, but it is still quite expensive and do not have sig-
nificant advantage compared with fragment-assembly and MC-based
methods in real PSP application. Instead, it is often used to study
the folding mechanism, which is also scientifically very important.



Fig. 3. Large-scale folding simulations reported in 2014 [137], using REMD with explicit solvent model. Experimental and predicted (center of the most populated cluster) structures are
shown inmagenta and rainbow color, respectively. PDB ID for each protein is given in parentheses with a star indicating a close variant was used. The number of amino acid (aa) residues
and the Cα-RMSD (value in parenthesis is without a few terminal residues) of each predicted structure are also given.
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However, when using coarse-gained force field (such as UNRES [142]),
much more efficient conformational sampling can be achieved and
larger protein can be folded, even in real ab initio PSP, rather than repro-
ducing known structures. Especially, UNRES model with REMD simula-
tion outperformed bioinformatics methods on predicting the correct
topology of target T0663 (about 200 residues) in the CASP10 without
any input from template or experiment [143,144].

5. Protein Structure Refinement

Currently, various informatics-based PSP methods have been devel-
oped. Usually, MD-based methods are not necessary, even when a de-
tectable template is not available. However, currently predicted
protein models are often much less accurate compared with experi-
ments, limiting their usage in some important applications including
structure-based drug design [18,145]. Thus, structure refinement from
low-accuracy models to high-accurate ones is very important, although
it is also a very difficult challenge [146]. A crucial motivation for devel-
oping physics-based refinement methods is that if the limits of
informatics-based methods were being reached, utilizing physics was
essential to finally have modeling methods that rival experiment.

In 2000, refinement using explicit-solvent MD simulations that em-
ploy the locally enhanced sampling (LES) was applied to low-resolution
model of a small disulfide-rich 29-residue protein CMTI-1, and im-
provement from 3.7 Å to 2.5 Å was reported [147]. Explicit-solvent
MD simulation of Rosetta models (of 36-mer HP-36 and 65-mer S15)
was also used to generate structures for subsequent ranking using the
MM-PBSA free energy function [148], and structures with RMSD b 1.5
Å can be sampled. However, a systematic study (in 2001) on 12 small,
single-domain proteins failed to observe successful refinement [149].
On a set of 20 proteins, explicit-solventMD simulations ofmost proteins
moved initial model structures further away from their native confor-
mations, with performances worse than energy minimization using
implicit-solvent potentials [150]. Several studies reveal the importance
of proper scoring functions to selectmore native-like ones among struc-
tures sampled during MD [151–153], because the percentage of more
native-like (improved) structures is usually b50% and may decrease as
refinement progress.

Restraints can be applied to focus the conformational sampling on
the vicinity of the initial model. In 2007, Chen & Brooks performed
implicit-solvent REMD simulations with distance restraints between
Cα atoms on five protein models, and significantly refinements were
observed on three of them [154]. Later, Feig & coworkers [155,156]
made significant progress, using restrained explicit-solvent MD and
special structure selection and averaging protocol assisted by a statisti-
cal potential (DFIRE [157]). Their method ranked the first in the model
refinement category of CASP10 [146]. Lee’s group also developed a re-
finement protocol based on a series of short (5 ns in total) explicit-
solvent MD simulations with weak positional and distance restraints
[158]. Recently, the combination of restrained MD simulations with ac-
curate force fields is clearly useful and has been adopted by most top-
ranking groups in the CASP12 refinement challenge [159]. However,
the top-ranking groups are relatively conservative, yielding structures
that are quite close to the initial ones.

Shawand colleagues found that their CHARMM22* forcefield,which
can fold a diverse set of small proteins, may not stabilize the experimen-
tal structure of a protein in long-timeMD simulations, and good refine-
ment can hardly be achieved [160]. Thus, the success of structure
refinement highly relies on the force field accuracy. We recently evalu-
ated the applicability of RSFF1 in protein structure refinement [161]. For
30 single-domain proteins from CASP8-10 refinement targets with di-
verse structures and a large Cα RMSD coverage of 1-9 Å,MD simulations
(380 K) with weak Cα position restraints gave best structures with
RMSD reduced by -0.85 Å on average. Using long-time REMD simula-
tionswith RSFF1, two homologymodels (TR614 and TR624)with initial
RMSD N 5 Å, can be improved to RMSD b 3 Å. Results from CASP12 indi-
cate that our approach is adventurous, and can provide significantly re-
fined models for some targets (such as TR866, TR894 and TR944) but
performs modestly overall.

6. Data-assisted Modeling

As described above, applications of MD in both ab initio structure
prediction and model refinement [162] suffer from two interrelated
challenges: insufficient conformational sampling and inaccurate force
field. However, limited amounts of structural information can accelerate
MD-based structure determination and may also improve simulation
accuracy [163]. Meanwhile, experimental techniques have been devel-
oped to provide limited (low-resolution, sparse, ambiguous, or uncer-
tain) structure information in a relatively short time and low cost, and
bioinformatics techniques have also been developed to predict struc-
ture information including secondary structures and residue-residue
contacts. Data-assisted modeling has become a sub-category of the
CASP experiments since CASP11 (2014) [164].

It has been a long history to use data from known protein structures
to guide MD folding simulation and structure prediction. In 1989,
Friedrichs and Wolynes proposed the “associative memory Hamilto-
nians” (AMH) [165], which can learn structure features from a set of
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memory proteins. With the incorporation of homologous protein(s) in
the memory set and certain information based on secondary structure
prediction, near-native structures of a 111-residue protein (rice cyto-
chrome c) can be obtained starting from random structures using simu-
lated annealing MD with a simplified model [166]. With AMH
constructed from a database of non-homologous proteins, several α-
helical proteins [167] and α/β proteins [168] can be folded to near-
native structures (4–8 Å) usingMD-based simulated annealing. Further
improvements were made by the same group, especially the incorpora-
tion of water-mediated interactions [169]. After years of developments,
a coarse-grained protein forcefield calledAWSEM(associativememory,
water mediated, structure and energy model) was established, which
incorporates local structure biasing from fragments with known struc-
tures and similar sequences [170]. However, it seems not to be superior
to popular fragment-assembly-based de novo PSP methods. Recently, a
new scheme calledAAWSEM(atomistic associativememory,waterme-
diated, structure and energy model) has been developed [171]. It is an
ab initio PSP method that starts from the ground up without using bio-
informatics input.

MD-based methods have also been developed to incorporate dis-
tance distribution derived from the SAXS experiment as restraints, in-
cluding the use of coarse-grained force field [172]. Restraints from
various paramagnetic NMR experiments (including pseudo-contact
shifts, residual dipolar couplings, paramagnetic relaxation enhance-
ment, and cross-correlated relaxation) can be incorporated in computer
modeling of protein 3D atomic structures, but substantial challenges re-
main before wide spread use [173].

Chemical crosslinking mass spectrometry (XL-MS) can provide
information about residue-pairs in close proximity that can be incorpo-
rated into modeling, although the data may be spares and of low-
resolution. Replica-exchange DMD simulations using the Medusa
potential with distance restraints from XL-MS experiments gave
lowest-energy models of 2.7 Å and 5.4 Å for FK506-binding protein
and myoglobin, respectively [174]. MD simulations of a large number
of proteins can also be used to find appropriate distance constraint
from investigating Lys side-chain motions [175].

Dill and coworkers developed a method called Modeling Employing
Limited Data (MELD) that can harness problematic experimental or the-
oretical data in a Bayesian framework to assist physics-based structure
modeling [176,177], which can use a variety of samplingmethods obey-
ing detailed balance but implicit-solvent REMD is a good choice. Using
loose physical insights (such as proteins have hydrophobic cores and
secondary structures), MD simulations of protein folding can be speed
up by two ~ five orders of magnitude [178]. Therefore, the MELD
method can also be used for ab initio PSP, and structures of three pro-
teins (with 97, 67, 68 residues, respectively) from CASP targets can be
predicted blindly with RMSD of 2.8 Å , 1.4 Å, 1.5 Å from native struc-
tures, respectively [179].

Besides altering the potential energy function in MD, an iterative
screening-after-sampling strategy can be used [180]. By selecting con-
formations that better fit with the low-resolution data from each cycle
of MD simulations, high-quality atomic model can be achieved.
7. Summary

With rapid increasing of computer performance, as well as continu-
ous software and force field developments, MD simulation has been in-
creasingly used in studying biomolecular systems. In principle, it
can describe the underline physics of detailed atomic interactions
determining a protein structure, and potentially be more accurate
than knowledge-based PSP methods. In this mini-review, we showed
that all-atom MD simulations can predict structures of cyclic peptides
and other peptide-based foldamers with accuracy similar to experi-
ments. Then, we summarized some notable successes in reproducing
experimental 3D structures of small proteins through ab initio folding
simulations. We also described recent advancements of using MD sim-
ulationswith state-of-the-art forcefields in improving structuremodels
from bioinformatics-based PSP, which is one of the most useful for
real-word applications. Finally, some methodology developments and
applications of using limited experimental or theoretical data to guide
MD-based structure modeling were also introduced. We feel that, in
the future, more sophisticated and integrative methods will be devel-
oped, including those combining different levels of structure represen-
tation (multi-scale MD simulations) and those utilizing the power of
machine learning (to take advantage of large amount of data generated
by MD) [181].
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