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Abstract

We have developed a Poisson random field model for estimating the distribution of selective

effects of newly arisen nonsynonymous mutations that could be observed as polymorphism

or divergence in samples of two related species under the assumption that the two species

populations are not at mutation-selection-drift equilibrium. The model is applied to 91Dro-

sophila genes by comparing levels of polymorphism in an African population of D. melano-

gaster with divergence to a reference strain of D. simulans. Based on the difference of gene

expression level between testes and ovaries, the 91 genes were classified as 33 male-

biased, 28 female-biased, and 30 sex-unbiased genes. Under a Bayesian framework, Mar-

kov chain Monte Carlo simulations are implemented to the model in which the distribution of

selective effects is assumed to be Gaussian with a mean that may differ from one gene to

the other to sample key parameters. Based on our estimates, the majority of newly-arisen

nonsynonymous mutations that could contribute to polymorphism or divergence in Drosoph-

ila species are mildly deleterious with a mean scaled selection coefficient of -2.81, while

almost 86% of the fixed differences between species are driven by positive selection. There

are only 16.6% of the nonsynonymous mutations observed in sex-unbiased genes that are

under positive selection in comparison to 30% of male-biased and 46% of female-biased

genes that are beneficial. We also estimated that D. melanogaster and D. simulans may

have diverged 1.72 million years ago.

Introduction

Comparison between silent (or synonymous) polymorphism with amino acid replacement

(or nonsynonymous) polymorphism has served as a basis of inferring natural selection for

more than 30 years [1]. The original idea of comparison within one species [1, 2] has been

extended by Hudson et al. to comparing polymorphisms within species with fixed differ-

ences between species [3]. Given aligned DNA sequences from two closely related species,

McDonald and Kreitman [4] proposed a statistical test of neutrality for a 2 × 2 contingency

table whose four entries are total numbers of silent or replacement polymorphic sites

within species and fixed differences between species (see also [5–13]). Application of the

statistical test on 30 aligned DNA sequences from the alcohol dehydrogenase gene of three
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species of Drosophila suggested that adaptive fixation of selectively advantageous mutations

may have resulted in a statistically significant excess of divergent replacement sites [4]. Rig-

orous theory underlying the McDonald-Kreitman test was later developed by modeling fre-

quencies of mutant sites as a Poisson random field (PRF) [14]. Within each gene, the model

can be applied to polymorphism and divergence data of two related biological species to

make statistical inference of various genetic parameters, such as mutation rate, selection

coefficient of a nonsynonymous mutation and species divergence time (see also [15–19]).

Later, the model has been extended to multiple genes via a hierarchical Bayesian framework

[20–25]. Among them, Bustamante et al. [22] proposed a hierarchical Bayesian fixed

effects model and application of the model using Markov chain Monte Carlo (MCMC) sim-

ulations found evidence of predominantly beneficial gene substitutions in Drosophila but

detrimental substitutions in the mustard weed Arabidopsis. One generalization of the fixed

effects model was a rather sophisticated Bayesian random effects model [23] and application

of the model to a set of 91 Drosophila genes in two species of African populations found that

about 95% of nonsynonymous mutations that could contribute to polymorphism or diver-

gence are deleterious and most of fixed differences between species are driven by positive

selection [24].

Although the PRF model of Sawyer and Hartl provides an appealing theory for use of poly-

morphism and divergence data, certain biologically unrealistic assumptions were made for

mathematical convenience. In addition to the assumptions of random mating, genic selection,

no migration between species, and independence among nucleotide sites, it also assumed that

two species have reached mutation-selection-drift equilibrium after divergence, selection

coefficients of nonsynonymous mutations at individual locus are constant, and the effective

population sizes of the two daughter species and their common ancestor are the same. More

recently, efforts have been made to relax these assumptions. For example, Wakeley [26] relaxed

the assumption of no migration by studying natural selection and genetic drift in an island

model of subdivision and concluded that the inference about natural selection made from

DNA polymorphism and divergence data are robust to population subdivision for relatively

moderate migration rate. Williamson et al. [27] relaxed the assumption of genic selection by

generalizing the PRF model to allow arbitrary dominance relations in a diploid context. Using

polymorphism data in a site frequency spectrum form, the generalized model yielded maxi-

mum likelihood estimates for both selection and dominance parameters of new mutations.

They also used simulations to study the bias in estimates of selection parameters caused by

ignoring dominance relations and the results are quite surprising. For frequency spectrum

polymorphism data, inference of selection parameters can be strongly biased even for minor

deviation from the genic selection model. However, the estimates of selection parameters

based on polymorphism and divergence (McDonald-Kreitman) data are nearly unbiased, even

for completely dominant or recessive mutations. For the assumption of independent among

sites, Bustamante et al. [16] used a PRF model of directional selection at DNA sites to study

the power of a likelihood ratio test (LRT) of neutrality for varying levels of mutation and selec-

tion as well as the robustness of the LRT to deviations from the assumption of free recombina-

tion among sites. Based on their study, the LRT has high power to detect deviations from

neutrality but it is not robust to deviations from the assumption of independence among sites;

see also [28].

The time equilibrium assumption has been removed in a so called time-dependent PRF

model where the selective effects of nonsynonymous mutations within each genetic locus are

still assumed to be constant in the model [29, 30]. Application of the time-dependent PRF

model to a nuclear and mitochondrial DNA data of 22 sister pairs of birds that have diverged

across a biogeographic barrier found temporal differences in divergence times, effective
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population sizes, and selective coefficients between the taxa that inhabit humid or drier habi-

tats [31]. The model has also been applied to a data set containing the full-length coding

region of the rice blast disease resistance gene Pi-ta gene from ten rice groups within Oryza
sativa and the wild progenitor species O. rufipogon to estimate speciation and selection [32].

There are other studies where the time-homogeneous assumption was kept but the hierarchi-

cal Bayesian fixed effects structure was extended to a Bayesian random effects model in

which selective effects of nonsynonymous mutations within individual genetic loci are

assumed to follow a normal distribution [23, 24]. In order to obtain accurate estimates of

various genetic parameters, it is necessary to build a biologically more realistic model which

takes into account the inhomogeneity feature of time as well as the randomness of the selec-

tive effects of mutations within genetic loci. In this paper, we present such a model, a time-

dependent random effects PRF model. The corresponding sample configuration formulas of

the proposed theoretical model are applied to a set of 91 Drosophila genes in two species of

African populations,melanogaster and simulans [33]. The main inferences are that i) the

majority of newly-arisen nonsynonymous mutations that have been observed as polymor-

phism or divergence within Drosophila species are mildly deleterious with a mean selection

coefficient of -2.81 times the reciprocal of the haploid effective population size, ii) almost

86% of the fixed differences between species are driven by positive selection, and iii) the

estimated species divergence time between D. melanogaster and D. simulans is 1.72 million

years ago. Two sets of simulated polymorphism and divergence data with 30 genes each

were applied to the proposed model to check the validity of the MCMC simulation algorithm

developed for the model.

Materials and methods

A Time-dependent random effects model

At any one locus, consider a sample of sizem of aligned coding sequences from one species

and another sample of size n of the orthologous sequences from a closely related species. We

assume that the two species are so close that multiple mutations at the same site are negligible.

The nucleotide sites that are polymorphic across the two samples can be classified into one

of the following four categories: silent fixed differences (synonymous sites that are monomor-

phic within the two samples but different between them), silent polymorphisms (synonymous

sites that are polymorphic in one or both samples), replacement fixed differences (nonsynon-

ymous sites that are monomorphic within both samples but different between the samples), or

replacement polymorphisms (nonsynonymous sites that are polymorphic in one or both sam-

ples). The McDonald and Kreitman (MK) 2 × 2 contingency table is composed of the above

four types of counts. In the original time-independent PRF model of Sawyer and Hartl, the

four counts of the MK table were described as four independent Poisson random variables

whose expected values are calculated from the fixation flux and limiting distribution of poly-

morphic nucleotide substitutions [14]. For the time-dependent case, the MK table was general-

ized to a 2 × 3 contingency table by reclassifying the polymorphic sites into new polymorphic

sites (sites that are polymorphic in only one sample) or legacy polymorphic sites (sites that are

polymorphic in both samples) [29].

We assume that the two species have an equal and constant haploid effective population

size Ne as their common ancestor and they have diverged tdivNe generations ago. At each locus,

let θs and θr represent the rates of mutations to synonymous and nonsynonymous nucleotides

that are likely to becoming polymorphic or fixed and γ the selection coefficient of a nonsynon-

ymous mutation. These parameters are scaled in terms of the haploid effective population size

so that γ = Nes and θ = Neμ, with s and μ being the conventional selection coefficient and
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mutation rate. Assuming that all synonymous mutations are selectively neutral (that is γ = 0),

our goal is to estimate the distribution of the selection coefficient γ and the species divergence

time tdiv. Using diffusion approximation to discrete time discrete state Markov chain, the dis-

tribution of site polymorphisms in a limiting infinitely large random mating population can

be modeled as Poisson random fields [29]. Moreover, the theoretical results at population

level were used to derive the distributions of the six counts in the generalized 2 × 3 contingency

table. Under the assumption that nucleotide sites evolve independently, the six counts are

independent Poisson random variables with expected values depending on the scaled popula-

tion parameters γ, θs, θr, and tdiv. Mathematical derivation of the expected values are given in

[29]. Now, suppose that values of the selection coefficient γ, at the ith locus, is normally distrib-

uted with mean γi and variance s2
w and values of the γi across all loci is normally distributed

with mean μγ and variance s2
b.

In an aligned DNA sequences of one genetic locus, say locus i, from two closely related spe-

cies, the expected values of the replacement (or nonsynonymous) fixed differences Kri, the

replacement new polymorphisms Ori, and the replacement legacy polymorphisms Hri are

given by

EðKriÞ ¼
yr
sð1Þ

Z 1

� 1

Nðgjgi; swÞL1ðg; tdiv;m; nÞdg ð1Þ

EðOriÞ ¼
yr
sð1Þ

Z 1

� 1

Nðgjgi; swÞL2ðg; tdiv;m; nÞdg ð2Þ

EðHriÞ ¼
yr
sð1Þ

Z 1

� 1

Nðgjgi; swÞL3ðg; tdiv;m; nÞdg; ð3Þ

where N(γ|γi, σw) represents the probability density function of a normal random variable with

mean γi and variance s2
w and

L1ðg; tdiv;m; nÞ ¼
Z 1

0

ðIðx;mÞKðx; nÞ þ Iðx; nÞKðx;mÞÞðsð1Þ� sðxÞÞmðdxÞ

þ 2 tdiv �

Z tdiv

0

Z 1

0

lim
x!0

pðu; x; yÞ
sðxÞ

� �

sðyÞmðdyÞdu
� �

þ LðmÞ þ LðnÞ
ð4Þ

L2ðg; tdiv;m; nÞ ¼
Z 1

0

ð2� xm � ð1 � xÞm � xn � ð1 � xÞn

� 2Jðx;mÞJðx; nÞÞðsð1Þ� sðxÞÞmðdxÞ
ð5Þ

L3ðg; tdiv;m; nÞ ¼
Z 1

0

Jðx;mÞJðx; nÞðsð1Þ � sðxÞÞmðdxÞ: ð6Þ

In the above expressions I(x,m), J(x,m), and K(x,m) denote respectively the probability that a

nucleotide site is monomorphic in the sample at the wild-type (non-mutant), the probability

that the site is polymorphic in the sample, and the probability that the site is monomorphic at
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the mutant nucleotide. Their specific expressions are given by

Iðx;mÞ ¼
sð1Þ � sðxÞ
sð1Þ

�

Z 1

0

pðtdiv; x; yÞ 1 � ð1 � yÞm �
sðyÞ
sð1Þ

� �

mðdyÞ

Jðx;mÞ ¼
Z 1

0

pðtdiv; x; yÞð1 � y
m � ð1 � yÞmÞmðdyÞ

Kðx;mÞ ¼
sðxÞ
sð1Þ
þ

Z 1

0

pðtdiv; x; yÞ y
m �

sðyÞ
sð1Þ

� �

mðdyÞ:

Also

LðmÞ ¼
Z 1

0

xmðsð1Þ � sðxÞÞmðdxÞ �
Z 1

0

Z 1

0

pðtdiv; x; yÞy
mðsð1Þ � sðxÞÞmðdyÞmðdxÞ

The functions s(x) andm(dx) appeared in Eqs (1)–(6) are called the scale function and

speed measure of the limiting diffusion process and defined by s(x) = (1 − e−γx)/γ and

m(dx) = eγdx/(x(1 − x)) for replacement sites and s(x) = x andm(dx) = dx/(x(1 − x)) for silent

sites (i.e. γ = 0). The transition probability density p(t, x, y) satisfies that for any continuous

function f(x) on [0, 1], the integral uðt; xÞ ¼
R 1

0
pðt; x; yÞf ðyÞmðdyÞ is the solution of the diffu-

sion equation

@uðt; xÞ
@t

¼ xð1 � xÞ
@

2uðt; xÞ
@x2

þ gxð1 � xÞ
@uðt; xÞ
@x

ð7Þ

for t> 0 and 0< x< 1, with

uðt; 0Þ ¼ uðt; 1Þ ¼ 0 uð0; xÞ ¼ f ðxÞ ð8Þ

Similarly, the expected values of the silent (or synonymous) fixed differences E(Ksi), silent new

polymorphisms E(Osi), and silent legacy polymorphisms E(Hsi) are given by Eqs (1)–(3) with

γ = 0.

Adaptive directional adaptive Metropolis MCMC sampling algorithm

For a set of L loci, the model contains three types of within-locus parameters θri, θsi, and γi,
i = 1, 2, . . ., L as well as four across-loci parameters tdiv, μγ, σb, and σw. These parameters can

be estimated by Markov chain Monte Carlo simulations under a hierarchical Bayesian frame-

work. Specifically, we use gamma distributions with given parameters as prior distributions of

the two types of mutation rates, θsi, θri, a normal-inverse-gamma distribution as a conjugate

prior of the mean μγ and between-locus variance s2
b, and uniform distributions for the diver-

gence time tdiv and within-locus standard deviation σw. That is

ys;i � Gðas; bsÞ

yr;i � Gðar; brÞ

ðmg; sbÞ � NIGða0; b0; m0; n0Þ

tdiv � Uð0; tmaxÞ

sw � Uð0; smaxÞ

ð9Þ

All hyperparameters α0, β0, αs, βs, αr, βr, μ0, and n0 are chosen to be small (* 0.001) so as to

be “uninformative” and tmax and σmax are large fixed values. Based on the sampling formulas

given by Eqs (1)–(3) and the prior distributions given by Eq (9), a joint posterior distribution
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of the model parameters can be written as

Lðysi; yri; mg; sb; gi; sw; tdiv;Ksi;Osi;Hsi;Kri;Ori;HriÞ

¼
YL

i¼1

n
Nðgijmg; sbÞGðysijas; bsÞGðyrijar; brÞ

�Poi1ðysi; 0; 0; tdiv;Ksi;mi; niÞPoi2ðysi; 0; 0; tdiv;Osi;mi; niÞ

�Poi3ðysi; 0; 0; tdiv;Hsi;mi; niÞPoi1ðyri; gi; sw; tdiv;Kri;mi; niÞ

�Poi2ðyri; gi; sw; tdiv;Ori;mi; niÞPoi3ðyri; gi; sw; tdiv;Hri;mi; niÞ
o

�Gð
1

s2
b
ja0; b0ÞNðmgjm0;

sb
ffiffiffiffiffin0

p Þuðtj0; tmaxÞuðswj0; smaxÞ

ð10Þ

where L is the total number of loci, N(y|μ, σ), Γ(y|α, β) and u(y|0, Y) are respectively normal,

gamma and uniform probability densities, and

Poijðy; g; sw; tdiv; cj;m; nÞ ¼
e� ljðljÞ

cj

cj!
j ¼ 1; 2; 3;

where

c1 ¼ Ks; l1 ¼ EðKsÞ or c1 ¼ Kr; l1 ¼ EðKrÞ

c2 ¼ Os; l2 ¼ EðOsÞ or c2 ¼ Or; l2 ¼ EðOrÞ

c3 ¼ Hs; l3 ¼ EðHsÞ or c3 ¼ Hr; l3 ¼ EðHrÞ

8
><

>:

In general, at each step of the Monte Carlo simulations, the two types of the mutation rates

θri and θsi are updated by Gibbs-samplers based on gamma distributions and the selection

coefficient γi is updated by Metropolis random-walk algorithm. Upon finish of the above pro-

cess for all of the L loci, two global parameters μγ and σb are updated from a normal-inverse-

gamma distribution according to a Gibbs-sampler and the other two global parameters tdiv

and σw are updated individually using two Metropolis random-walks.

However, the practice of the above described sampling method was unsuccessful in the

sense that the underlying Markov chains did not converge or converged extremely slow to

their target distributions. The reason for the slow convergence is that each of the three parame-

ters (μγ, σb, σw) has a high autocorrelation which makes proposal values rely heavily on previ-

ous values and hence the chain moves slowly through entire parameter space. Although, in

theory, the chain will eventually converge to its stationary distribution in a long iteration, a

more approachable solution is to improve the proposal distribution of the Metropolis algo-

rithm. Haario et al. proposed an adaptive Metropolis (AM) algorithm to adjust both the step

size and spatial orientation of an assumed Gaussian proposal distribution [34]. Application of

the AM algorithm did reduce the autocorrelation but the sampling efficiency is still low due to

the existence of high correlation among (μγ, σb, σw).

It is quite common that MCMC simulations in high dimension, like the current situation,

introduce significant amount of correlation among parameters and hence the searching paths

are sometimes dominated by some of the parameters. As the result, the sampling trajectories

will be trapped at a rather restricted area of the whole parameter space. Bai Proposed an adap-

tive directional Metropolis-within-Gibbs (ADMG) algorithm to adjust both sampling direc-

tion and scale componentwisely with a Metropolis-within-Gibbs sampler [35]. Here we

adopted both AM and ADMG algorithms to propose an adaptive directional adaptive Metrop-

olis (ADAM) algorithm to update the three parameters (μγ, σb, σw) jointly. Based on the
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algorithm, a singular value decomposition (SVD) is performed on the empirical covariance

matrix and orthonormal vectors from the SVD are used as sampling directions. Specifically, in

a total of 2,000,000 iterations, we first run the above described process for 50,000 iterations to

obtain an empirical variance covariance matrix of (μγ, σb, σw), say C0. The three parameters

were then jointly updated for another 100,000 iterations using a multivariate normal distribu-

tion with the fixed covariance matrix C0. At each step of the final 1,850,000 iterations, we (1)

performed a singular value decomposition on the empirical covariance matrix Ct, t> 150,000

such that Ct = DStDT, (2) set Yt ¼ DTXTt , (3) updated Yt based on a three-dimensional normal

distribution with mean Yt and variance-covariance matrix δSt, (4) transformed Yt back to the

original set of parameters by (DT)−1Yt, (5) and recalculated the empirical covariance matrix

recursively. Here δ = exp(2d(δ(k) − 0.3)) is a jumping scale, d = 3 is the dimension of the vector

of parameters and δ(k) is an average acceptance rate for every k iterations with k = 100 in our

implementation. The resulting chain from above updating process is no longer Markovian due

to the fact that calculation of the empirical covariance matrix uses cumulative information

from all previous states. However, it can be shown that the chain with adapted direction satis-

fies both the diminishing adaptive condition and the bounded convergence condition and

hence it would converge to the target distribution [36]. In the calculation of the three Poisson

means, given by Eqs (1)–(3), Crank-Nicholson method was used to integrals involving the

transition density p(t, x, y), Gauss-Legendre quadrature was used to numerically solve integrals

from 0 to 1, and Gauss-Hermit quadrature was used for integrations over (−1, +1) [37]. The

whole updating procedure was implemented using a parallel computing technique, Message

Passing Interface (MPI) [38]. It is noticed that leg-5 autocorrelations for μγ, σb and σw range

from −0.01 to 0.34 across the two simulated data sets as well as the set of 91 Drosophila genes

showing that the proposed sampling algorithm could be useful in MCMC simulations where

model parameters are highly auto-correlated.

Results

Simulation study

Two data sets each containing 30 loci were generated according to the following three steps.

First, the four global parameters μγ, σb, σw, and tdiv were set to be fixed. Second, at each locus,

the silent and replacement mutation rates θs and θr were generated from two continuous uni-

form distributions with given ranges, the numbers of alignment sequencesm and n were

drawn from two discrete uniform distributions with certain ranges, and the selection coeffi-

cient γ was sampled from a normal distribution with mean γm and variance s2
w, where γm was

a random draw from a normal distribution with mean μγ and variance s2
b. Third, the six counts

of a locus specific 2 × 3 contingency table were obtained from Poisson distributions where the

expected values are given by Eqs (1)–(3) for replacement sites and Eqs (1)–(3) with γ = 0 for

silent sites. Specifically, the given values of the parameters (μγ, σb, σw, tdiv) for the two simulated

data sets are (−6.82, 3.78, 2.56, 4.38) and (9.15, 3.15, 2.37, 0.56) respectively. After disregarding

the first 250,000 iterations as a burn-in period, 5,000 samples were taken every 400 steps to

form ten consecutive subchains. Convergence of the chain is confirmed by trace plots and

Gelman-Rubin (GR) diagnostic being less than 1.1 [39]. The median estimates of the above

parameters from last subchains are (−8.56, 7.53, 3.09, 4.66) for the first data set and (12.38,

6.59, 5.32, 0.51) for the second set. The true values of the four parameters (μγ, σb, σw, tdiv) and

those estimated from the proposed model for the two simulated data sets are plotted in Fig 1.

For both data sets, the divergence time tdiv converged quickly to their true values with slight

variation but most of the simulation results tend to overestimate the selection parameters μγ,
σb and σw. The magnitude of the estimated mean selection coefficient m̂g in both data sets was
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Fig 1. True vs. estimated values of the four model parameters. The true values (x-axes) of the four parameters (μγ, σb, σw, tdiv) and their

corresponding model estimates (y-axes) (m̂g; ŝb; ŝw; t̂ div) for the two simulated data sets. Straight lines represent y = x.

https://doi.org/10.1371/journal.pone.0194709.g001
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approximately 1.3 times larger than their corresponding true values but the sign of the parame-

ter stayed the same as the given values. Estimates of the between-locus variance ŝb for the two

simulated data sets were roughly twice as large as the given values and hence the scatter plot of

σb versus ŝb in Fig 1 could not show the diagonal line of y = x. Similarly, the estimates of the

within species variance ŝw for the two simulated data sets were 1.2 and 2.2 times larger than

their given values. The 95% credible intervals of the four parameters all covered the given

values. One possible reason for such behavior is that σb and σw are two artificial parameters

implanted into the model to be biologically realistic but they are lack of data support. It may

require a much longer MCMC simulation runs to capture the true values of σb and σw or add-

ing more loci into the data may supply more information about the between and within loci

variations.

Results on polymorphism and divergence data from Drosophila

The time-dependent random effects PRF model was applied to the data of [33]. The data con-

tains the coding sequences of 91 genes in samples of Drosophila melanogaster collected from

Lake Kariba, Zimbabwe [40]. The number of alignments of the DNA sequences ranges from

seven to twelve. As a comparison of the intraspecific polymorphism with interspecific diver-

gence, a single highly inbred line of Drosophila simulans was sampled from Chapel Hill, North

Carolina [41]. These 91 genes were classified as male-biased (33 out of the 91), female-biased

(28 out of the 91) and sex-unbiased (30 out of the 91) genes based on the difference of gene

expression level between testes and ovaries. After 150,000 burn-in iterations, ten subchains

were formed by taking samples every 400 steps to reduce autocorrelation. Each subchain con-

tains 500 samples and model parameters were estimated using median values and their 95%

credible intervals (CIs) from last subchain. In diffusion time scale, for all 91 genes together, the

mean selection coefficient μγ = −2.81 with a 95% CI of (−9.71, 2.68), the between-loci standard

deviation σb = 6.00 with (3.27, 9.09), the within-locus standard deviation σw = 6.16 with (0.39,

9.76), and the species divergence time t = 2.67 with a 95% CI of (2.48, 2.89). This estimated

negative mean selection coefficient supports the viewpoint that most newly arisen nonsynon-

ymous mutations are deleterious [22–24, 42, 43]. The same data was applied to a mutation-

selection-drift equilibrium random effects PRF model and estimated a mean selection coeffi-

cient of −5.7 based on 21,000,000 MCMC iterations [24], while application of the same data to

a time-dependent fixed effects model gave an estimate of 1.98 for μγ [30]. Although it is biolog-

ically more realistic to model selective effects within a gene as a random variable, as in [24],

assuming mutation-selection-drift equilibrium may bias estimates of the selective effects. On

the other hand, building the species divergence time explicitly into a model, as in [30], is less

artificial but the assumption of constant selection within a gene may fail to capture negative

selective effects. When we apply the proposed random effects model individually to the three

expression classes of genes, the estimated mean selection coefficients and their 95% credible

intervals for the 33 male-biased genes, 28 female-biased genes and the 30 sex-unbiased genes

are respectively −2.27 with (−9.10, 3.18), −2.17 with (−8.54, 3.61) and −4.34 with (−11.95,

1.95). The distributions of the scaled selection coefficients for the three groups of genes are

presented in Fig 2, expressed in terms of normal density curves. The three density curves in

Fig 2 are quite similar to those in Sawyer et al. [24] except that the magnitude of the mean val-

ues based on our proposed time-dependent random effects model is smaller than the estimated

mean values using time-independent random effects model given in [24]. It is likely that the

artificial assumption of mutation-selection-drift equilibrium in [24] biased the estimates of the

selection coefficients. Using median estimates and their corresponding 95% credible intervals,

Fig 3 shows the selection coefficients of individual genes for the three expression classes with
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Fig 2. Distribution of selective effects. Estimated distribution of scaled selection coefficients γ of newly arisen nonsynonymous

mutations that have been observed as polymorphism or divergence withinDrosophila species. The distributions infer only for those

mutations whose selective effects are not so severe such that there is a reasonable chance for these mutations to accumulate high

frequencies in a population and hence to be included in a relatively small sample. Three distributions are based on the estimates of

the 33 male-biased genes (yellow), 28 female-biased genes (gray), and 30 sex-unbiased genes (red).

https://doi.org/10.1371/journal.pone.0194709.g002
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Fig 3. Estimated selection coefficients for the three gene classes. Median estimates of the scaled selection coefficient γ for the male-biased,

female-biased, and sex-unbiased genes with the loci sorted by the values of the estimates. Error bars represent 95% credible intervals.

https://doi.org/10.1371/journal.pone.0194709.g003
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the loci sorted by the values of the estimates. Based on the estimates, 30% of male-biased and

46% of female-biased genes are under positive selection while only 16.6% of the nonsynon-

ymous mutations observed in sex-unbiased genes are beneficial. Our finding suggests that

newly arisen replacement mutations in sex-biased genes are more likely to be beneficial. How-

ever, the nonsynonymous mutations in Figs 3 and 2 include only those mutations whose dele-

terious effects are not very severe so that there is a reasonable chance for these mutations to

accumulate high frequencies in a population and hence to be included in a relatively small

sample.

If we assume that Ne generations is 0.645 million years for Drosophila [14], the estimated

t = 2.67 implies a species divergence time of 1.72 million years between D. melanogaster and D.
simulans. This value falls almost in the middle of the range 0.8–3 million years, which has been

used as a standard of comparison [44, 45]. When the time-dependent random effects model

was individually applied to the 33 male-biased genes, 28 female biased genes and the 30 sex-

unbiased genes to estimate selection parameters, the model also generated estimates for the

divergence time parameter tdiv. It turns out that the three estimates from the three expression

classes are identical to the estimated tdiv using the 91 genes together, which shows that the pro-

posed time-inhomogeneous random effects model is biologically realistic.

One distinguishing feature of the random effects model is its ability to estimate important

quantities in the area of population genetics such as the expected population proportion of

nonsynonymous substitutions that are positively selected among new mutations, the expected

population proportion of nonsynonymous substitutions that are positively selected among

polymorphisms present in the sample, and the positively selected population proportion

among fixed differences between the species. The expected population proportions of the ben-

eficial new mutations at each locus is given by the following integral

Z þ1

0

Nðgjgi; swÞ dg

and the estimates of the quantity across the 91 genes are low, with a median value of 0.421. The

expected population proportions of sample polymorphisms due to positive selection at each

locus, estimated as

R þ1
0
ðL2ðg; t;m; nÞ þ L3ðg; t;m; nÞÞNðgjgi; swÞ dg

R þ1
� 1
ðL2ðg; t;m; nÞ þ L3ðg; t;m; nÞÞNðgjgi; swÞ dg

are higher for the 91 genes, with a median value of 0.554. The expected population proportions

of fixed differences due to positive selection at each locus, calculated by

R þ1
0

L1ðg; t;m; nÞNðgjgi; swÞ dg
R þ1
� 1

L1ðg; t;m; nÞNðgjgi; swÞ dg

are significantly higher, with a median value of 0.854. The functions Λ1, Λ2 and Λ3 are defined

in Eqs (4)–(6). The three types of population proportions for all 91 genes together as well as

individually for the male-biased, female-biased and sex-unbiased genes are displayed in Fig 4

and the results are quite consistent with those obtained from a time-homogeneous random

effects model [24].

Discussion

We have developed a Poisson random field model for estimating the distribution of selective

effects of newly arisen mutations that could be observed as polymorphism or divergence in
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Fig 4. Estimates of the expected population proportions. Median estimates of the expected population proportions of positively selected

nonsynonymous mutations among newly arisen new mutations (N), sample polymorphisms (S), and sample fixed differences (F) with error bars

representing 95% credible intervals. Proportions are calculated based on the 33 male-biased genes (yellow), 28 female-biased genes (gray), 30 sex-

unbiased genes (red), and the 91 genes together (purple).

https://doi.org/10.1371/journal.pone.0194709.g004
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samples of two related species and species divergence time under the assumption that the two

species populations are not at mutation-selection-drift equilibrium. One limitation of our

Bayesian random effects model is the assumption of constant and equal population sizes of the

two daughter species and their common ancestor. Certain types of demographic changes may

influence the fate of mutant alleles and ignorance of such changes can confound the interpreta-

tion of polymorphism and divergence and hence results in biased estimates of the selective

effects [4, 12, 21, 43, 46, 47]. For instance, some classes of deleterious nonsynonymous poly-

morphisms which might previously have remained polymorphic could be eliminated due to a

sudden increase in the effective population size and thereby causing a decrease of the nonsy-

nonymous polymorphisms without affecting nonsynonymous divergence. Although the Dro-
sophila melanogaster data applied in our study was derived from African populations that have

relatively less demographic complexity [40, 48], a more sophisticated model that takes into

account various demographic changes while inferring natural selection is need to be devel-

oped. Williamson et al. proposed a time-inhomogeneous PRF model to make inference about

constant selection and population growth simultaneously based on Single Nucleotide Poly-

morphism (SNP) data from one species [25]. Boyko et al. extended the site frequency spectrum

based PRF approach to allow for simultaneous inference of demography and the distribution

of fitness effects among newly arisen mutations [21]. The differences between our approach

and theirs are that their studies are based on maximum likelihood methods and applied to site

frequency spectrum data from single population. Simulation results have shown that PRF

models with genic selection can strongly bias the estimates of selection parameters when the

underlying data is a frequency spectrum of polymorphisms from one population but the esti-

mates are nearly unbiased for the polymorphism and divergence data from two related species

[27].

Our model also assumes that nucleotide sites at each genetic locus evolve independently

while the various local rate of recombination tells us that the nucleotides within a gene are

more or less linked. As for estimating the mean selection coefficient, simulation results have

shown that PRF approaches are relatively robust to violation of independent site assumption

[16, 21, 28]. Nevertheless, inferences about the distributions of the selective effects for tightly

linked genes based on PRF models should still be interpreted cautiously. At a particular locus,

the distribution of selective effects of nonsynonymous mutations that have become polymor-

phic or fixed in a sample is assumed to be Gaussian which has fixed variance across loci. The

normal assumption in a continuous time model of selection is natural based on the Central

Limit Theorem [10]. Other alternatives that have been considered include some heavy-tailed

distributions such as Laplace and Chi-square [49], nearly exponentially distribution [50] or

gamma distribution with a shape parameter between 0.1 and 1 [51].

To what degree the genetic variation observed in a polymorphism and divergence data

links to phenotypic variation, especially to those medically interesting phenotypes are unclear

[52–55]. It seems plausible that some rare and negatively selected nonsynonymous mutations

are related to certain human genetic diseases and hence our estimates of the distribution of the

selective effects may help identifying genes that might have related to underlying diseases. In

fact, we have applied the time-dependent random effects PRF model to a data containing cod-

ing sequences of whole genome of two patients with cytogenetically normal myelodysplatic

syndrome (CN-MDS). Based on our preliminary estimates from chromosome one, there are

about 33 genes whose scaled selection coefficients are smaller than -20, about 230 genes with

−20< γ< −10, and 160 genes whose γ values are bigger than -10 but smaller than zero. Of

course, these results based on our current model are very rough references for disease gene

identification and a model which will be more suitable for the application of polymorphism

and divergence data from cancer patients and healthy population is under development.
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Supporting information

S1 File. Data of the 91 Drosophila genes. The data contains the coding sequences of 91 genes

in samples of Drosophila melanogaster collected from Lake Kariba, Zimbabwe [40] and a single

highly inbred line of Drosophila simulans from Chapel Hill, North Carolina [41]. In the file,

Column 1 and 2 list the numbers of alignments of the DNA sequences from the two species

(M and N). Column 3-8 are the numbers of silent fixed difference (Sf), silent new polymor-

phism (Snp), silent legacy polymorphism (Slp), replacement fixed difference (Rf), replacement

new polymorphism (Rnp) and replacement legacy polymorphism (Rlp). Column 9 (Locus)

lists the names of the genes and the last column (Class) classifies these 91 genes as male-biased

(M), female-biased (F) and sex-unbiased (U) genes based on the difference of gene expression

level between testes and ovaries.
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