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Introduction

Dimensionality reduction (DR) is frequently applied during the analysis of high-dimensional

data. Both a means of denoising and simplification, it can be beneficial for the majority of

modern biological datasets, in which it’s not uncommon to have hundreds or even millions of

simultaneous measurements collected for a single sample. Because of “the curse of dimension-

ality,” many statistical methods lack power when applied to high-dimensional data. Even if the

number of collected data points is large, they remain sparsely submerged in a voluminous

high-dimensional space that is practically impossible to explore exhaustively (see chapter 12

[1]). By reducing the dimensionality of the data, you can often alleviate this challenging and

troublesome phenomenon. Low-dimensional data representations that remove noise but

retain the signal of interest can be instrumental in understanding hidden structures and pat-

terns. Original high-dimensional data often contain measurements on uninformative or

redundant variables. DR can be viewed as a method for latent feature extraction. It is also fre-

quently used for data compression, exploration, and visualization. Although many DR tech-

niques have been developed and implemented in standard data analytic pipelines, they are

easy to misuse, and their results are often misinterpreted in practice. This article presents a set

of useful guidelines for practitioners specifying how to correctly perform DR, interpret its out-

put, and communicate results. Note that this is not a review article, and we recommend some

important reviews in the references.

Tip 1: Choose an appropriate method

The abundance of available DR methods can seem intimidating when you want to pick one

out of the existing bounty for your analysis. The truth is, you don’t really need to commit to

only one tool; however, you must recognize which methods are appropriate for your

application.

The choice of a DR method depends on the nature of your input data. For example, differ-

ent methods apply to continuous, categorical, count, or distance data. You should also con-

sider your intuition and domain knowledge about the collected measurements. It is often the

case that observations can adequately capture only the small-scale relationships between

nearby (or similar) data points but not the long-range interactions between distant observa-

tions. Considering the nature and the resolution of your data is important, as DR methods can

be focused on recovering either global or local structures in the data. In general, linear meth-

ods such as principal component analysis (PCA) [2, 3], correspondence analysis (CA) [4], mul-

tiple CA (MCA) [5], or classical multidimensional scaling (cMDS), also referred to as principal

CA (PCoA) [6], are more adept at preserving global structure, whereas nonlinear methods
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such as kernel PCA [7, 8], nonmetric multidimensional scaling (NMDS) [9, 10], Isomap [11],

diffusion maps [12], and varieties of neighbor embedding (NE) techniques [13] such as t-Sto-

chastic NE (t-SNE) [14] are better at representing local interactions. NE approaches do not

preserve long-range interactions between data points and generate visualizations in which the

arrangement of nonneighboring groups of observations is not informative. As a consequence,

inferences should not be made based on large-scale structures observed in NE plots. Reviews

of linear and nonlinear DR methods are provided in [15] and [16], respectively.

If observations in your data have assigned class labels, and your goal is to obtain a represen-

tation that best separates them into known categories, you might consider using supervised

DR techniques. Examples of supervised DR methods include partial least squares (PLS) [17],

linear discriminant analysis (LDA) [18], neighborhood component analysis (NCA) [19], and

the bottleneck neural network classifier [20]. Unlike the previously listed unsupervised meth-

ods, blind to observations’ group memberships, these supervised DR techniques directly use

the class assignment information to cluster together data points with the same labels.

For situations in which multidomain data are gathered, e.g., gene expression together with

proteomics and methylation data, you might apply DR to each data table separately and then

align them using a Procrustes transformation [21] or, instead, consider methods that allow

integration of multiple datasets such as the conjoint analysis method for multiple tables known

as STATIS [22, 23] and the equivalent method for the conjoint analysis of multiple distance

matrices called DiSTATIS [24] (see Tip 9 for more details). Table 1 gives a classification and a

summary of the basic properties of the DR techniques. To assist practitioners, we also include

in Table 2 a list of stable implementations of methods discussed in this article.

Tip 2: Preprocess continuous and count input data

Before applying DR, suitable data preprocessing is often necessary. For example, data center-

ing—subtracting variable means from each observation—is a required step for PCA on contin-

uous variables and is applied by default in most standard implementations. Another

commonly employed data transformation is scaling—multiplying each measurement of a vari-

able by a scalar factor so that the resulting feature has a variance of one. The scaling step

ensures equal contribution from each variable, which is especially important for datasets con-

taining heterogeneous features with highly variable ranges or distinct units, e.g., patient clinical

data or environmental factors data.

When the units of all variables are the same, e.g., in high-throughput assays, normalizing

feature variances is not advised, because it results in shrinkage of features containing strong

signals and inflation of features with no signal. Other data transformations may be required,

depending on the application, the type of input data, and the DR method used. For example, if

changes in your data are multiplicative, e.g., your variables measure percent increase/decrease,

you should consider using a log-transform before applying PCA. When working with genomic

sequencing data, two issues need to be addressed before you can apply DR. First, each sequenc-

ing sample has a different library size (sequencing depth)—a nuisance parameter that artifi-

cially differentiates observations. In order to make observations comparable to each other,

samples need to be normalized by dividing each measurement by a corresponding sample size

factor, estimated using specialized methods (e.g., DESeq2 [26], edgeR [27]). Secondly, the

assay data exhibit a mean-variance trend in which features with higher means have higher var-

iances. A variance stabilization transformation (VST) is needed to adjust for this effect and to

avoid bias toward the highly abundant features. For counts with a negative-binomial distribu-

tion, such as the sequencing read counts, an inverse hyperbolic sine transformation or similar
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techniques are recommended [28–30]. Sample normalization and variance stabilization

together are effective and sufficient preprocessing steps for high-throughput data.

Tip 3: Handle categorical input data appropriately

In many cases, available measurements are not numerical but qualitative or categorical. The

corresponding data variables represent categories—nonnumeric quantities, e.g., phenotypes,

cohort memberships, sample sequencing runs, survey respondent ratings. When the relation-

ship between the levels (distinct values) of two categorical variables is of interest, CA is applied

to a contingency table (constructed from the data) whose entries are the categories’ co-occur-

rence frequencies. If more than two categorical variables are available, MCA enables the study

of both the relationship between the observations and the associations between variable cate-

gories. MCA is a generalization of CA and is simply CA applied to an indicator matrix formed

by a dummy (one-hot) encoding of the categorical variables [5]. When the input data contain

both numerical and categorical variables, two strategies are available. If only a few categorical

variables are present, PCA is used on numerical variables, and the group means for the levels

of the categorical variables can be projected as supplementary (unweighted) points (see chapter

9 of [1] for details). On the other hand, if the mixed dataset contains a large number of categor-

ical variables, multiple factor analysis (MFA) [31] can be used. The method applies PCA on

numerical and MCA on categorical variables and combines the results by weighing variable

groups.

Table 1. Dimensionality reduction methods.

Method Input Data Method Class Nonlinear Complexity

PCA continuous data unsupervised Oðmaxðn2p; np2ÞÞ

CA categorical data unsupervised Oðmaxðn2p; np2ÞÞ

MCA categorical data unsupervised Oðmaxðn2p; np2ÞÞ

PCoA (cMDS) distance matrix unsupervised Oðn2pÞ
NMDS distance matrix unsupervised Oðn2hÞ
Isomap continuous� unsupervised ✔ Oðn2ðpþ log nÞÞ
Diffusion Map continuous� unsupervised ✔ Oðn2pÞ
Kernel PCA continuous� unsupervised ✔ Oðn2pÞ
t-SNE continuous/distance unsupervised ✔ Oðn2pþ n2hÞ
Barnes–Hut t-SNE continuous/distance unsupervised ✔ Oðnh log nÞ
LDA continuous (X and Y) supervised Oðnp2 þ p3Þ

PLS (NIPALS) continuous (X and Y) supervised OðnpdÞ
NCA distance matrix supervised ✔ Oðn2hÞ
Bottleneck NN continuous/categorical supervised ✔ OðnphÞ
STATIS continuous multidomain Oðn2P; nP2Þ

DiSTATIS distance matrix multidomain Oðn2P; nP2Þ

Basic properties: input data required, method class, linear or nonlinear, and runtime complexity in terms of: n—the number of observations, p—the number of features

in the original data, k—the selected number of nearest neighbors, h—the number of iterations, and P—the total number of variables in all available datasets collected on

n samples in the case of multidomain data.

�Commonly, Isomap estimates geodesic distances between data points from Euclidean distances, and Diffusion Map and Kernel PCA compute Gaussian kernels and

thus require continuous data input. However, it is possible to use categorical data if other dissimilarities or kernels are used.

Abbreviations: CA, correspondence analysis; cMDS, classical multidimensional scaling; LDA, linear discriminant analysis; MCA, multiple CA; NCA, neighborhood

component analysis; NIPALS, nonlinear iterative partial least squares; NMDS, nonmetiric multidimensional scaling; NN, neural network; PCA, principal component

analysis; PCoA, principal CA; t-SNE, t-Stochastic Neighbor Embedding; PLS, partial least squares

https://doi.org/10.1371/journal.pcbi.1006907.t001
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Another approach to working with categorical or mixed data is to perform PCA on vari-

ables transformed using an “optimal quantification.” Traditional PCA cannot be applied to

categorical variables, because its objective is to maximize the variance accounted for, a concept

that exists only for numerical variables. For “nominal” (unordered) or “ordinal” (ordered) cat-

egorical variables, variance can be replaced by a chi-squared distance on category frequencies

(as in CA), or an appropriate variable transformation can be applied before doing a PCA. Con-

verting categorical variables to dummy binary features is one method; another approach is to

use optimal scaling categorical PCA (CATPCA) [32–34]. Optimal scaling replaces original lev-

els of categorical variables with category quantifications such that the variance in the new vari-

ables is maximized [35]. CATPCA is then formulated as an optimization problem, in which

the squared difference between the quantified data and the principal component is minimized

iteratively, alternating between the component scores, the component loadings, and the vari-

able quantification.

An advantage of optimal scaling is that it does not assume a linear relationship between var-

iables. In fact, the ability of CATPCA to handle nonlinear relations between variables is impor-

tant even when the input data are all numeric. Thus, when nonlinearities are present and the

standard PCA explains only a low proportion of the variance, optimal scaling provides a possi-

ble remedy.

Tip 4: Use embedding methods for reducing similarity and

dissimilarity input data

When neither quantitative nor qualitative features are available, the relationships between data

points, measured as dissimilarities (or similarities), can be the basis of DR performed as a low-

dimensional embedding. Even when variable measurements are available, computing dissimi-

larities and using distance-based methods might be an effective approach. Make sure that you

Table 2. Example implementations.

Method R function Python function

PCA stats::prcomp sklearn.decomposition.PCA

CATPCA gifi::princals

CA FactoMineR::CA

MCA FactoMineR::MCA

PCoA (cMDS) stats::cmdscale sklearn.manifold.MDS

NMDS ecodist::nmds sklearn.manifold.MDS

Isomap vegan::isomap sklearn.manifold.Isomap

Diffusion Map diffusionMap::diffuse

(Barnes–Hut) t-SNE Rtsne::Rtsne sklearn.manifold.TSNE

LDA MASS::lda sklearn.discriminant_analysis.LinearDiscriminantAnalysis

PLS (NIPALS) mixOmics::pls sklearn.cross_decomposition.PLSRegression

DiSTATIS DistatisR::distatis

Procrustes vegan::procrustes scipy.spatial.procrustes

Software packages and function performing specified DR techniques available in R and python. R implementations are given as package_name::

function_name; listed python functions come from sklearn and scipy libraries. The outputs of most linear DR methods can be visualized in R with

factoextra package [25], used to generate a number of the plots in this article. Abbreviations: CA, correspondence analysis; CATPCA, categorical PCA; cMDS,

classical multidimensional scaling; DR, dimensionality reduction; LDA, linear discriminant analysis; MCA, multiple CA; NIPALS, nonlinear iterative partial least

squares; NMDS, nonmetiric multidimensional scaling; PCA, principal component analysis; PCoA, principal CA; t-SNE, t-Stochastic Neighbor Embedding; PLS, partial

least squares

https://doi.org/10.1371/journal.pcbi.1006907.t002
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choose a dissimilarity metric that provides the best summary of your data, e.g., if the original

data are binary, the Euclidean distance is not appropriate, and the Manhattan distance is bet-

ter. If the features are sparse, however, then the Jaccard distance is preferred.

cMDS/PCoA and NMDS use pairwise dissimilarities between data points to find an embed-

ding in Euclidean space that provides the best approximation to the supplied distances.

Whereas cMDS is a matrix decomposition method akin to PCA, NMDS is an optimization

technique that strives to retain only the ordering of the dissimilarities [36]. The latter approach

is more applicable when you have low confidence in the values of the input distances. When

the dissimilarity data are only available in nonstandard, qualitative formats, more specialized

ordinal embedding methods are available, discussed in detail by Kleindessner and von Lux-

burg in [37, 38]. When using optimization-based multidimensional scaling (MDS), you can

choose to preserve only the local interactions by restricting the minimization problem to only

the distances from data points to their neighbors, e.g., the k-nearest neighbors. This approach

can be referred to as “local” MDS.

Dissimilarities can also be used as input to t-SNE. Similar to local MDS, t-SNE is only

focused on representing the short-range interactions. However, the method achieves locality

in a different way, by converting the supplied distances into proximity measures using a small-

tail Gaussian kernel. A collection of neural network–based approaches, called word2vec
[39], have been developed that also use similarity data (the co-occurrence data) to generate

vector embeddings of objects in a continuous Euclidean space. These techniques have proven

highly effective at generating word embeddings from text corpus–derived data and have since

been adapted for gene coexpression data in the gene2vec program by Du and colleagues

[40]. The robustness of these highly computational methods has not been yet extensively tested

on many biological datasets.

Tip 5: Consciously decide on the number of dimensions to retain

When performing DR, choosing a suitable number of new dimensions to compute is crucial.

This step determines whether the signal of interest is captured in the reduced data, especially

important when DR is applied as a preprocessing step preceding statistical analyses or machine

learning tasks (e.g., clustering). Even when your primary goal is data visualization, in which

only two or three axes can be displayed at a time, you still need to select a sufficient number of

new features to generate. For example, the first two or three PCs might explain an insufficient

fraction of the variance, in which case the higher-order components should be retained, and

multiple combinations of the components should be used for visualizations (e.g., PC1 versus

PC2, PC2 versus PC4, and PC3 versus PC5 etc.) In some cases, the strongest signal is a con-

founding factor, and the variation of interest is captured by higher-order PCs. If this is the

case, you must use higher-order components to expose the desired patterns.

The optimal choice for the number of dimensions to keep depends largely on the data itself.

You cannot decide on the right dimension for the output before consulting the data. Remem-

ber that the number of dimensions can be at most the minimum of the number of observations

(rows) and the number of variables (columns) in your dataset. For example, if your dataset

contains expression of 10,000 genes but for only 10 samples, there could not be more than 10

(or even 9 if the input data have been centered) axes in your reduced data representation. For

DR methods based on spectral decompositions, such as PCA or PCoA, you could use the dis-

tribution of the eigenvalues to guide your choice of dimensions. In practice, people usually rely

on “scree plots” (example in Fig 1) and “the elbow rule” when making decisions. A scree plot

simply shows the eigenvalues corresponding to each of the axes in the output representation

or, equivalently, the proportion of the variance each axis (e.g., a PC) explains. When viewing
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the plot, you should look for a cutoff point, in which an eigenvalue drops significantly below

the level of the one immediately preceding it—the "elbow" point. Alternatively, you can inspect

a histogram of the eigenvalues and search for the large values that "stand out" from the bulk.

Formally, the Marchenko–Pastur distribution asymptotically models the distribution of the

singular values of large random matrices. Therefore, for datasets large in both the number of

observations and features, you use a rule of retaining only eigenvalues outside the support of

the fitted Marchenko–Pastur distribution; however, remember that this applies only when

your data have at least thousands of samples and thousands of features.

For nonspectral, optimization-based methods, the number of components is usually pre-

specified before DR computations. When using these approaches, the number of components

can be chosen by repeating the DR process using an increasing number of dimensions and

evaluating whether incorporating more components achieves a significantly lower value of the

loss function that the method minimizes, e.g., the Kullback–Leibler (KL) divergence between

transition probabilities defined for the input and the output data in the case of t-SNE. Ideally,

you would like your findings (e.g., patterns seen in visualizations) to be robust to the number

of dimensions you choose.

Tip 6: Apply the correct aspect ratio for your visualizations

Visualization is an important part of the data exploration process. Therefore, it is crucial that

the DR plots you generate accurately reflect the output of the DR methods you use. An impor-

tant but frequently overlooked attribute of a visualization is its aspect ratio. The proportional

relationship between the height and the width (and also the depth) of a 2D (and 3D) plot can

strongly influence your perception of the data; therefore, the DR plots should obey the aspect

ratio consistent with the relative amount of information explained by the output axes

displayed.

Fig 1. Scree plot. For spectral methods, the eigenvalues can be used to decide how many dimensions are sufficient.

The number of dimensions to keep can be selected based on an "elbow rule." In the example shown, you should keep

the first five principal components.

https://doi.org/10.1371/journal.pcbi.1006907.g001
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In the case of PCA or PCoA, each output dimension has a corresponding eigenvalue pro-

portional to the amount of variance it explains. If the relationship between the height and the

width of a plot is arbitrary, an adequate picture of the data cannot be attained. Two-dimen-

sional PCA plots with equal height and width are misleading but frequently encountered

because popular software programs for analyzing biological data often produce square (2D) or

cubical (3D) graphics by default. Instead, the height-to-width ratio of a PCA plot should be

consistent with the ratio between the corresponding eigenvalues. Because eigenvalues reflect

the variance in coordinates of the associated PCs, you only need to ensure that in the plots,

one "unit" in direction of one PC has the same length as one "unit" in direction of another PC.

(If you use ggplot2 R package for generating plots, adding + coords_fixed(1) will

ensure a correct aspect ratio.)

The aspect ratio issue is illustrated with a simulated example, depicted in Fig 2. In the rect-

angular (Fig 2A) and the square (Fig 2B) plots, the aspect ratio is inconsistent with the variance

of the PC1 and PC2 coordinates; the result is an (incorrect) apparent grouping of the data

points into a top and a bottom cluster. In contrast, Fig 2C, with lengths of the two axes set to

respect the ratio between the corresponding eigenvalues, shows correct clustering, consistent

with the true class assignment. For more examples of how the aspect ratio can affect the plot

interpretation, see chapters 7 and 9 of [1].

The ordering of the dimensions is not meaningful in many optimization-based DR meth-

ods. For example, in the case of t-SNE, you can choose the number of output dimensions (usu-

ally two or three) before computing the new representation. Unlike the PCs, the t-SNE

dimensions are unordered and equally important because they have the same weight in the

loss function minimized by the optimization algorithm. Thus, for t-SNE, the convention is to

make the projection plots square or cubical.

Tip 7: Understand the meaning of the new dimensions

Many linear DR methods, including PCA and CA, provide a reduced representation both for

the observations and for the variables. Feature maps or correlation circles can be used to deter-

mine which original variables are associated with each other or with the newly generated output

dimensions. The angles between the feature vectors or with the PC axes are informative: vectors

at approximately 0˚ (180˚) with each other indicate that the corresponding variables are closely,

positively (negatively) related, whereas vectors with a 90˚ angle indicate rough independence.

Fig 3A shows a correlation circle with scaled coordinates of the variables’ projection. The

plot indicates that high values of PC1 indicate low values in "Flav" (flavanoids) and "Phenols"

(total phenols) and high values in "Malic Acid" and "AlcAsh"(alcalinity of ash). Additionally,

"AlcAsh" (alcalinity of ash) levels seem to be closely negatively correlated with "NonFlav Phe-

nols" (nonflavanoid phenols) and independent of "Alcohol" levels.

Original variables’ importances to the new dimensions can be visualized using contribution

bar plots. A variable’s contribution to a given new axis is computed as the ratio between its

squared coordinate (in this axis) and the corresponding sum over all variables; the ratio is

often converted to percentages. Many programs provide the variables’ contributions as stan-

dard output; these contributions can be defined for not only a single but also multiple DR axes

by summing the values corresponding to selected components. Fig 3B shows variables’ percent

contribution to PC1; note that the percent contribution does not carry information on the

direction of the correlation. When working with high-dimensional datasets such as high-

throughput assays, a contribution bar plot for thousands or more variables is not practical;

instead, you can limit the plot, showing only the top few (e.g., 20) features with highest

contribution.
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Variables and observations can be included in the same graphic—referred to as a “biplot.”

The term was coined by Kuno Ruben Gabriel [41] in 1971, but similar ideas were proposed by

Jolicoeur and Mosimann already in 1960 [42]. Biplots such as the one in Fig 4 allow you to

explore the trends in the data samples and features simultaneously; looking at both at the same

time, you might discover groups of similar (close by) observations that have high or low values

for certain measured variables (see Tip 8 for further details).

Tip 8: Find the hidden signal

The primary objective of DR is to compress data while preserving most of the meaningful

information. Compression facilitates the process of understanding the data because the

Fig 2. Aspect ratio for PCA plots. Two simulated Gaussian clusters projected on the first and the second PCs. Incorrect aspect ratio in a rectangular (a) and square (b)

plot. Correct aspect ratio in (c, d) where the plot’s height and width are adjusted to match the variances in PC1 and PC2 coordinates. Colors shown in (d) indicate the true

Gaussian group membership. Dim1, dimension 1; Dim2, dimension 2; PC, principal component; PCA, PC analysis.

https://doi.org/10.1371/journal.pcbi.1006907.g002
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reduced data representation is expected to capture the dominant sources of variation more

efficiently. The aim is to uncover the "hidden variables" that can successfully expose the under-

lying structure of the data. The most frequently encountered latent patterns are discrete clus-

ters or continuous gradients.

In the former case, similar observations bundle together away from other groups. An exam-

ple of a simulated clustered dataset is shown in Fig 5A. When performing the cluster analysis,

in which the goal is to estimate samples’ group memberships, it is common practice to first

apply PCA. More specifically, practitioners often use a set of the top (e.g., 50) PCs as input to a

clustering algorithm. PCA reduction is intended as a noise-reduction step because the top

eigenvectors are expected to contain all signals of interest [43]. Regrettably, this property does

not extend to all DR methods. The output generated by neighborhood embedding techniques,

such as t-SNE, should not be used for clustering, as they preserve neither distances nor densi-

ties—both quantities highly important in the interpretation of clustering output.

Unlike discrete clusters, continuous changes in the data are less frequently identified. It is

important to know how to identify and accurately interpret latent gradients, as they often

appear in biological data associated with unknown continuous processes. Gradients are pres-

ent when data points do not separate into distinct tightly packed clusters but instead exhibit a

gradual shift from one extreme to another; they often emerge as smooth curves in DR visuali-

zations. It is worth noting that data points are often arranged in horseshoes or arch-shaped

configurations when PCA and cMDS (PCoA) is applied to data involving a linear gradient. A

“horseshoe effect” can appear in PCA and cMDS plots when the associated eigenvectors take

on a specific form [44] because of the properties of the data covariance or distance matrices

used for computations, in particular, when these matrices can be expressed as centrosymmet-

ric Kac–Murdock–Szego matrices [45].

Fig 3. Variables’ projection. PCA on wine dataset shows how variables’ representation can be used to understand the meaning of the new dimensions. Correlation circle

(a) and PC1 contribution plot (b). AlcAsh, alcalinity of ash; Dim1, dimension 1; Dim2, dimension 2; Flav, flavanoids; NonFlav Phenols, nonflavanoid phenols; OD,

OD280/OD315 of diluted wine; PC, principal component; PCA, PC analysis; Phenols, total phenols; Proa, proanthocyanins.

https://doi.org/10.1371/journal.pcbi.1006907.g003
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Fig 4. PCA biplot. A single plot for the wine dataset combines both the samples’ and the variables’ projection to the first two

principal components. AlcAsh, alcalinity of ash; Dim1, dimension 1; Dim2, dimension 2; Flav, flavanoids; NonFlav Phenols,

nonflavanoid phenols; OD, OD280/OD315 of diluted wine; PCA, principal component analysis; Phenols, total phenols; Proa,

proanthocyanins.

https://doi.org/10.1371/journal.pcbi.1006907.g004

Fig 5. Latent structure. Observations in PCA plots may cluster into groups (a) or follow a continuous gradient (b). Dim1, dimension 1; Dim2, dimension 2; PCA,

principal component analysis.

https://doi.org/10.1371/journal.pcbi.1006907.g005
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You can see an example of this pattern for simulated data with a latent gradient in Fig 5B. Con-

tinuous transitions are frequently encountered when measurements are taken over time; for exam-

ple, the cell development literature is rich with publications introducing methods for analyzing

pseudotime, a gradient observed during cell differentiation or development [46, 47]. There can be

multiple gradients affecting the data, and a steady change can be recorded in different directions

[48]. However, the variable behind the observed continuous gradient could be unknown. In this

case, you should focus on finding the discrepancies between the observations at the endpoints

(extremes) of the gradients by inspecting the differences between their values for any available

external covariates [49], if collected (see Tip 7). Otherwise, you might need to gather additional

information on the samples in your dataset to investigate the explanation of these differences.

Additional contiguous measurements—those not used for DR computations—are fre-

quently collected on observations included in the dataset. The extra information can be used

to improve the understanding of the data. The simplest and most common way to use the

external covariates is to include them in DR visualizations—with their values encoded as color,

shape, size, or even transparency of corresponding points on the plot. An example of this is

shown in Fig 6A: the PCA embedding for a dataset on wine properties [50], in which the data

points are colored by wine class, a variable that the DR was blind to. The observed grouping of

the wines suggests that 13 wine properties used for DR can characterize the wine categories

well. The "Wine Data Set" is accessible from the University of California Irvine (UCI) Machine

Learning Repository [51].

Sometimes, directly plotting the external variable against the newly computed features is an

effective way of exposing trends present in the data. For example, a scatter plot of a continuous

variable, e.g., a patient’s age or weight, versus coordinates of a selected output dimension

shows correlation between the selected covariate and the new feature. If the external informa-

tion is categorical instead of continuous, a boxplot of the PC coordinates (e.g., PC1, PC2, or

others) can be generated for each level of the variable.

Fig 6. Using external information. (a) A PCA sample projection on the wine dataset shows that, based on their properties, wines tend to cluster in agreement with the

grape variety classification: Nebbiolo, Grignolino, and Barbera. (b) A PCA biplot can be used to find which groups of wines tend to have higher levels of which property.

Dim1, dimension 1; Dim2, dimension 2; PCA, principal component analysis.

https://doi.org/10.1371/journal.pcbi.1006907.g006
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External information can also be incorporated in biplots. Fig 6B shows how combining the

external information on the observations with the interpretation of the new axes in terms of

the original variables (as described in Tip 7) allows you to discover that “Barbera” wines tend

to have higher values of "Malic Acid" and lower "Flavanoids," and “Grignolinos” tend to have

low "Ash" and "Alcohol" content.

Additionally, external information can be used to discover batch effects. Batch effects are

technical or systemic sources of variation that obscure the main signal of interest. They are fre-

quently encountered in sequencing data, in which samples from the same sequencing run

(lane) cluster close together. Because batch effects can confound the signal of interest, it is a

good practice to check for their presence and, if found, to remove them before proceeding

with further downstream analysis. You can detect technical or systemic variations by generat-

ing a DR embedding map with the data points colored by their batch membership, e.g., by the

sequencing run, the cage number, the study cohort. If a batch effect is discovered, you can

remove it by shifting all observations in such a way that each batch has its centroid (the group’s

barycenter) located at the center of the plot (usually the origin of the coordinate system).

Tip 9: Take advantage of multidomain data

Sometimes, more than one set of measurements is collected for the same set of samples; for

example, high-throughput genomic studies involving data from multiple domains are often

encountered. For the same biological sample microarray gene expression, miRNA expression,

proteomics, and DNA methylation data might be gathered [52]. Integrating multiple datasets

allows you to both obtain a more accurate representation of higher-order interactions and

evaluate the associated variability. Samples often exhibit varying levels of uncertainty, as differ-

ent regions of the data can be subject to different rates of changes or fluctuations.

One way of dealing with “multidomain,” also referred to as “multimodal,” “multiway,”

“multiview,” or “multiomics” data, is to perform DR for each dataset separately and then align

them together using a Procrustes transformation—a combination of translation, scaling, and

rotation to align one configuration with another as closely as possible (see [21] and [36]). A

number of more advanced methods have also been developed, for instance, STATIS [22] and

DiSTATIS [24, 53] are generalizations of PCA and classical MDS, respectively. Both methods

are used to analyze several sets of data tables collected on the same set of observations, and

both are based on an idea of combining datasets into a common consensus structure called the

“compromise” [54].

The datasets can all be projected onto this consensus space. The projections of individual

datasets can be helpful for observing different patterns in observations characterized by data

from different domains. Fig 7 shows an example of the use of DiSTATIS on five simulated dis-

tance tables for 20 synthetic data points. Different colors correspond to different data points,

and different shapes correspond to different distance tables. The compromise points between

the tables are denoted with larger diamond shape markers. For a detailed survey on the analy-

sis of multitable data, with a focus on biological multiomics datasets, see Meng and colleagues

[55].

Tip 10: Check the robustness of your results and quantify

uncertainties

For some datasets, the PCA PCs are ill defined, i.e., two or more successive PCs may have very

similar variances, and the corresponding eigenvalues are almost exactly the same, as in Fig 8.

Although a subspace spanned by these components together is meaningful, the eigenvectors

(PCs) are not informative individually, and their loadings cannot be interpreted separately,
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because a very slight change in even one observation can lead to a completely different set of

eigenvectors [1]. In these cases, we say that these PCs are unstable. The dimensions corre-

sponding to similar eigenvalues need to be kept together and not individually interpreted.

When working with techniques that require parameter specification, you should also check

the stability of your results against different parameter settings. For example, when running t-

SNE, you need to pick a value for perplexity, and different settings can alter the results

obtained even qualitatively. It has been frequently observed that when the perplexity is set to a

Fig 7. Multidomain data. DiSTATIS on multiple distance tables defined for the same observations. Multiple distances can be

computed from different data modalities, e.g., gene expression, methylation, clinical data, or from data resampled from a known

data-generating distribution.

https://doi.org/10.1371/journal.pcbi.1006907.g007
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very small value, “artificial clusters” start forming in t-SNE plots [56]. You should not use the

values of the t-SNE objective function, the KL divergence, as a criterion to choose an "optimal

perplexity," because the KL divergence always decreases (monotonically) as perplexity values

increase. For t-SNE, a Bayesian information criterion (BIC)-type rule for selecting perplexities

was proposed by Cao and Wang in [57]. However, in practice, you should repeat DR computa-

tions for a range of input parameters and visually evaluate whether the patterns discovered are

consistent across varying specifications, as stability theory for t-SNE has not yet been devel-

oped. In particular, if the clustering pattern disappears with only a slight increase of the per-

plexity value, the grouping you observed might be only an artifact due to an unsuitably small

choice of the parameter.

A separate concern is a method’s stability against outliers. In general, it is known that obser-

vations far from the origin have more influence on the PCs than the ones close to the center;

sometimes it is possible that only a small fraction of the samples in the data almost fully deter-

mines the PCs. You should be mindful of these situations and verify that the structure captured

by DR represents the bulk of the data and not just a few outliers. In DR maps, the outliers are

the remote points, distant from the majority of the observations. In the case of PCA and other

linear methods, if all of the points in a sample projection plot are located close to the origin

(the center of the plot), with only one or a few points lying very far away, the DR solution is

said to be dominated by the outliers. You should inspect suitable data-specific quality control

Fig 8. Unstable eigenvalues. When subsequent eigenvalues have close-to-equal values, PCA representation is unstable. PCA, principal

component analysis.

https://doi.org/10.1371/journal.pcbi.1006907.g008
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metrics for these points and consider their removal. If samples are removed, the DR needs to

be recomputed, and the changes in the output representation should be noted. Observe how

observations shift by comparing the DR visualizations before and after the removal of the out-

liers. You should consider removing not only the technical outliers but also the "outgroups,"

the aberrant groups known to be extensively different from the majority of the data. Eliminat-

ing the outgroups and recomputing the DR allows for patterns in the bulk of the data to

emerge. On the other hand, if a dataset contains many aberrant observations, stable methods

such as robust kernel PCA [58] should be used.

Additionally, you can estimate the uncertainties associated with observations by construct-

ing a collection of "bootstrap" datasets, i.e., random subsets of the data generated by resam-

pling observations with replacement. The bootstrap set can be treated as multiway data, and

the STATIS or Procrustes aligning method described in Tip 8 can be applied to "match" the

random subsets together. When a realistic noise model for the data is available, instead of

using bootstrap subsamples, you can generate copies of all data points by perturbing the mea-

surement values for each sample and then applying the STATIS or DiSTATIS methods as

described in the previous tip to generate the coordinates for the “compromise” and for each

individual perturbed copy of the data. Obtaining multiple coordinates estimates per data point

allows you to estimate the corresponding uncertainty. You can visualize each sample’s uncer-

tainty on a DR embedding map using density contours or by plotting all data points from each

bootstrap’s projection onto the compromise. Fig 9 shows the Procrustes alignments of PCA

projections for two simulated datasets. The colored lines indicate density contours for the out-

put coordinates of the bootstrap subsets, and the diamond markers correspond to the coordi-

nates of the projection of the full data. Plots were produced for 20 synthetic data points from a

Fig 9. Data point uncertainties. Stability in the DR output coordinates for each data point. Projections of bootstrap samples for two 10D simulated datasets with rank 2

(a) and rank 5 (b) onto the first two PCs aligned using a Procrustes transformation. Smaller, circular markers correspond to each bootstrap trial, and larger, diamond

markers are coordinates of the full dataset. DR, dimensionality reduction; PC, principal component.

https://doi.org/10.1371/journal.pcbi.1006907.g009
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true 2D and 5D Gaussian, both orthogonally projected to 10 dimensions. We can observe that

uncertainties for points in the lower-rank data are much smaller, i.e., the first 2 PCs represent

the first dataset better than the second one.

Conclusion

DR is very useful and sometimes essential when analyzing high-dimensional data. Despite

their widespread adoption, DR methods are often misused or misinterpreted. Researchers per-

forming DR might find the sheer number of available methods already intimidating, not to

mention the wide variety of different dissimilarity metrics or parameter settings required by

some of these methods. This set of ten tips serves as a checklist or informal guideline for practi-

tioners. We described a general step-by-step procedure for performing effective DR and gave

pointers for correctly interpreting and adequately communicating the output of DR algo-

rithms. Most of the recommendations discussed here apply to any DR method, but some were

instructions directed toward specific reduction approaches.

In addition to everything discussed earlier, we would like to offer one extra piece of advice:

keep track of all the decisions you make, including the method you select, the distances or ker-

nels you choose, and the values of parameters you use. The most convenient way to save all

steps of your work together with the results obtained is through an R, an IPython, or a Jupyter

notebook; these applications allow you to generate a full analysis report containing narrative

text, code, and its output. Recording your choices is a crucial part of reproducible research

[59]; it allows others to replicate the same results you obtained and speeds up your analysis

process the next time you work with similar data. We provide an example of a reproducible

report generated with R-markdown in the S1 Text and S1 Code files.

Supporting information

S1 Code. An R-markdown file containing a reproducible record of all plots included in

this article.

(RMD)

S1 Text. A pdf report rendered from an R-markdown file in S1 Code containing text, fig-

ures, and code.

(PDF)
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