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Abstract

Accurate estimation of biological diversity in environmental DNA samples using high-throughput amplicon pyrosequencing
must account for errors generated by PCR and sequencing. We describe a novel approach to distinguish the underlying
sequence diversity in environmental DNA samples from errors that uses information on the abundance distribution of
similar sequences across independent samples, as well as the frequency and diversity of sequences within individual
samples. We have further refined this approach into a bioinformatics pipeline, Amplicon Pyrosequence Denoising Program
(APDP) that is able to process raw sequence datasets into a set of validated sequences in formats compatible with
commonly used downstream analyses packages. We demonstrate, by sequencing complex environmental samples and
mock communities, that APDP is effective for removing errors from deeply sequenced datasets comprising biological and
technical replicates, and can efficiently denoise single-sample datasets. APDP provides more conservative diversity
estimates for complex datasets than other approaches; however, for some applications this may provide a more accurate
and appropriate level of resolution, and result in greater confidence that returned sequences reflect the diversity of the
underlying sample.
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Introduction

High-throughput pyrosequencing [1] has revolutionized the

assessment of large-scale patterns of diversity by enabling easy

access to large numbers of homologous long-read sequences

amplified by PCR (‘‘amplicons’’) from complex environmental

samples [2,3,4]. In addition to allowing researchers to deeply

sequence individual communities, this technology permits simul-

taneous sequencing of many samples in parallel, making it suitable

for complex experimental designs that incorporate replication to

provide robust ecological inferences.

For many ecological applications of this technology, such as

dietary analysis, food-web interactions, and biodiversity monitor-

ing, the principal aim is to accurately infer the composition and

diversity of communities in environmental samples [5,6]. Roche

454 GS FLX Titanium pyrosequencing is the most widely-used

technology for amplicon-based studies of eukaryote and prokary-

ote community diversity, but this approach generates three critical

types of error: homopolymers, base substitutions and chimeras

[7,8,9]. Errors generated from real sequences appear as novel

diversity, and the failure to exclude them (‘‘denoising’’) leads to

inflated diversity estimates in environmental samples [10,11].

Current strategies for accommodating errors, including denois-

ing software (e.g. AmpliconNoise [11] and Denoiser [12]), aim to

maximize the information in the data; that is, maximize the

proportion of the raw data that reflect the true diversity by

removing errors completely or mapping them onto real sequences.

While increasing the signal in a dataset is the primary reason for

applying denoising algorithms, there remains an inherent trade-off

between specificity (false positive rates) and sensitivity (false

negative rates) as these approaches attempt to balance the removal

of errors with the retention of real sequences. Distinguishing

between real sequences and errors remains a significant challenge,

particularly for low-abundance sequences, and can lead all

denoising algorithms both to retain false diversity (False Positives)

and incorrectly eliminate real diversity (False Negatives)

[10,11,12,13,14,15]. In particular, errors are known to inflate

the diversity of low-abundance taxa [16] which complicates the

study of ‘‘the rare biosphere’’ [17]. Unlike other scenarios such as

genome assembly, deeper sequencing to improve sampling of rare

taxa increases the number of observed errors and exacerbates the

bias in diversity estimation [14]. Thus, accurately inferring the

richness of an environmental sample is a significant challenge

regardless of sequencing depth and underlying community

diversity.

We have developed a new bioinformatic pipeline for removing

errors from amplicon pyrosequences. The goal of all denoising

programs is to retain real sequences regardless of rarity or

abundance in order to obtain improved estimates of the true

sequence diversity and community composition of environmental

samples. Our approach uses the abundance distribution of similar

sequences across independent samples, as well as the frequency

and diversity of sequences within individual samples, to distinguish

real sequences from errors. We have implemented our approach in
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Amplicon Pyrosequence Denoising Program (APDP) and tested it

using four published 16S rRNA datasets previously used to

benchmark amplicon denoising software [11,15,18], and four low

and high-diversity 18S rRNA datasets containing known sequenc-

es. We show that independently evaluating every observed

sequence as valid or invalid, using prior knowledge about the

nature and frequency of error-types, allows an increase in accuracy

over existing strategies for both eukaryote and prokaryote

communities. The output from APDP can be exported into

existing software such as QIIME [19] and mothur [20] for

downstream analysis of community diversity.

Methods

Overview of Error Removal with APDP
Amplicon Pyrosequence Denoising Program (APDP) is a Perl

scripted pipeline which removes errors generated when PCR-

amplified DNA fragments (amplicons) are sequenced using Roche

GS FLX 454 Titanium pyrosequencing. The pipeline removes

three critical error-types: i) DNA polymerase errors during PCR

amplification and subsequently sequenced (causing base substitu-

tion errors); ii) chimeras formed during PCR amplification

(creating a hybrid DNA molecule that registers as a novel

sequence); and iii) pyrosequencing errors (generating base

insertion or deletion errors, known as indels).

Validation of observed sequences is the central concept behind

APDP – validated sequences are considered to be real sequences

present in the original environmental DNA sample, and not

generated by methodological errors. Observation of a sequence in

a dataset, even in multiple independent replicates, is not sufficient

to establish that it is a real sequence found in the environmental

sample, as some sources of error such as high-frequency indel

errors caused by pyrosequencing and chimera formation during

PCR amplification [9] may be reproducibly generated in

independent replicates if the same parent sequences are present.

APDP uses the abundance distribution of similar sequences across

independent samples (preferably technical or biological replicates),

as well as the frequency and diversity of sequences within an

individual sample, to distinguish valid observed sequences from

errors observed in the dataset. Algorithms such as AmpliconNoise

and Denoiser map (or cluster) reads onto inferred parent

sequences and select a single sequence to represent all the reads

in a cluster for downstream analyses [11,12]. These approaches

can infer incorrect sequences as parental. The consequences of this

can be the retention of false diversity (e.g. [15]). We hypothesized

that applying more conservative assumptions about the properties

of errors will lead to improved parental sequence inference, and

reduce the likelihood of retaining sequences that represent

erroneous genotypes or OTUs.

APDP makes three assumptions about the properties of errors

generated by Titanium amplicon pyrosequencing: Errors will i) co-

occur with parent sequences among samples; ii) have fewer reads

than parent sequences; and iii) have predictable read abundance

relative to co-occurring parent sequences, according to error-type

(substitution, indel, or chimera). APDP uses several parameters to

describe the predicted abundance of different errors. The default

values have been determined from multiple independent positive

control data sets of eukaryote 18S rRNA gene amplicons, but are

shown to also effectively remove errors for prokaryote 16S rRNA

gene amplicons using this sequencing platform. All parameter

values, however, can be defined by the user. The approach

described here can be used with other high-throughput technol-

ogies, and appropriate parameters would need to be derived from

control datasets from each platform. APDP has two versions: the

default multi-sample version (APDP-MS) as described below, and

a single-sample version (APDP-SS). APDP-SS uses a modified

Preliminary Validation script ignoring the validation criterion

requiring low-abundance sequences to appear in multiple samples.

Description of the APDP Algorithm
APDP uses four discrete steps to fully denoise a dataset. Here we

outline the steps, and a graphical representation of the workflow is

presented in Fig. S1. Error containing reads are identified and

removed at each step using the criteria described below. It should

be noted that APDP has no single denoising step.

Step 1: Filtering bad reads and assignment of good reads

to sequences and samples. The first step processes raw reads

provided in FASTA file format. There is some debate as to how

well quality scores reflect the accuracy of individual reads or sub-

regions [12,14,21]. APDP therefore determines acceptable reads

using different criteria: acceptable reads contain an exact match to

two user-defined sequences, usually the forward and reverse

primer (and multiplex identifier (MID) sequences if applicable). A

read length cut-off can also be applied. Accepted reads are

trimmed of primer and MID sequences, binned according to

unique amplicon sequence and assigned to their sample of origin

based on the MID(s).

The resulting set of unique sequences is then further filtered to

remove sequences containing multiple primer sequences or

ambiguous nucleotides (Ns), and sequences observed only once

in the entire dataset (global singletons). Removing these prior to

OTU clustering has previously been shown to improve accuracy of

diversity estimates from low-diversity mock datasets where few real

sequences will be represented by global singletons [15]. This

criterion guarantees that APDP will miss real singleton sequences

where they are present, and the impact of this is discussed later.

Local singletons, i.e. sequences with multiple reads in the dataset

but single observed reads in individual samples, are retained and

may be validated by APDP. Thus, sequences can be represented

by single reads in individual samples. The output is a table

comprising a row for each unique sequence, its number of

accepted reads in the entire data set, and the number of accepted

reads in each sample (Fig. S1: Step 1). This contains the data used

in subsequent validation steps.

Step 2. Preliminary validation by sequence distribution

and abundance across samples. Filtered unique sequences

are assigned to groups. Currently, APDP assigns sequences to

groups based on the accession number of the best hit in GenBank

as determined by the BLAST [22] or MEGABLAST [23]

algorithm (the score of the best hit is recorded but not used by

APDP: high-identity hits are not required). Sequences that do not

return a hit are treated as unknown, non-target sequences and

removed. However, APDP is fully compatible with other methods

of group assignment, such as similarity clustering (e.g. [10]), to

retain such sequences.

Sequences within each group are evaluated according to their

distributions across different samples. It is expected that many

erroneous sequences will be placed in the same group and be

observed in the same samples as the parent sequences from which

they are derived, but at much lower frequencies than the parent

sequences (a user-definable parameter – see below). In contrast,

multiple closely-related real sequences may be present in the same

group, and it is expected that these will either occur in different

samples or at higher frequencies than expected errors. The most

abundant sequence in the group is provisionally accepted as valid

unless i) it is only ever observed as a local singleton; or ii) it has

fewer than 10 reads and is observed in only one sample. Thus to

be validated, rare sequences (,10 reads in the dataset) must have

Removing Errors from Amplicon Pyrosequences
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at least three reads, be present in more than one sample, and have

multiple reads in at least one sample. Each additional sequence in

the group is retained if it is observed in different samples to the

most abundant sequence, or co-occurs with the most abundant

sequence at higher relative frequencies than probable errors of this

sequence. The relative frequency is calculated for each sample as a

user-defined proportion of the number of reads observed in that

sample for the most abundant sequence. The cutoff frequency is

conservatively set at 0.50. This ensures that high frequency

sequences co-occurring with the most abundant sequence will still

be validated, as will low-frequency sequences with different

distribution patterns. APDP-SS uses a modified Preliminary

Validation script that does not require low-abundance sequences

to appear in multiple samples (thus only requiring two rather than

three reads to be retained).

Step 3: Secondary validation by potential error-type and

frequency within samples. Sequences are next evaluated

within samples while ignoring groups. In this case, the expectation

is that some errors generated from one or more real parent

sequences observed in the same sample could be assigned initially

into different groups. The three main sources of error (indel,

substitution and chimeras) are expected to lead to specific types of

sequence and occur at different frequencies [7,8]. For each

sample, sequences are ranked by relative abundance (sequences

with a single read in the sample are considered ‘ambiguous’ or

unknown), and all unique combinations of three-way alignments

are performed using MUSCLE [24] in order of abundance: the

two more abundant sequences are considered the parent

sequences and a third less-abundant sequence a potential daughter

sequence. The type and number of differences between all three

sequences is noted, as well as the number of reads and compared

against expectations of the frequency of these types of errors

derived from positive controls to determine whether one or more

sequences could be generated as an error of the others. If the two

parent sequences differ only by indels, the less abundant sequence

is considered a potential pyrosequencing error and flagged as

invalid in that sample. It is not rejected at this stage, as it may be

considered valid in other samples, and subsequently retained (see

Step 4). If the two parent sequences differ by base substitutions, it

is possible that one was generated as a DNA polymerase-error of

the other. A sequence is flagged as invalid in that sample if it has

fewer than axn reads, where a is the number of reads of the more

abundant sequence, n is the number of nucleotide mismatches

inferred from the alignment, and x is a user-defined proportion

(default value is 0.02). The potential for the daughter sequence

arising as a chimera of the two parent sequences is assessed by

comparing the match of the daughter sequence to the parent

sequences moving from the start of the alignment towards the end.

If the daughter mismatches both parents at any point, the

probability of it being a chimera is considered to be zero. If that is

not the case then the number of times that the daughter sequence

‘switches’ from matching one parent to the other is counted. The

daughter is flagged as invalid if it has fewer than bys reads, where b

is the number of reads of the less abundant parent, s is the number

of ‘‘switches’’, and y is a user-defined proportion (default value is

0.15). Sequences that pass all three tests are flagged as valid in the

sample.

Step 4: Final validation. After all samples have been

separately processed, the valid and invalid observations are

collated for each sequence. The final step requires the user to

define the number of valid observations required to retain a

sequence. In cases where no technical replication has been

performed (e.g. PCR or sequencing replicates), there is no

justification to exclude any sequence validated in one or more

samples. Sequences passing a threshold of valid observations

(default = 1) are accepted.

Datasets used to Benchmark APDP
We assessed the denoising accuracy of APDP using eight Roche

454 GS FLX Titanium datasets derived from eukaryote (18S) or

prokaryote (16S) ribosomal RNA (rRNA) gene amplicons (Table

S1). Six datasets comprised low-diversity constructed communities

of known sequences (18Smock1-3, 18Smock4-6, 16Sv13, 16Sv34,

16Sv45 and 16Sv6). One (18Smock1-3) was used to develop

APDP and set the default parameter values. Five datasets,

including a replicate of the test set (18Smock4-6) and four 16S

datasets, were used to test APDP under default parameters. To

avoid the problem of over-training APDP to a single dataset, the

additional artificial datasets were chosen from the literature to

increase the variation in the gene target (18S rRNA vs 16S rRNA),

16S gene subregion (affecting level of variation between taxa,

amplicon length, and expected error-profile), expected richness,

taxonomic composition, sequencing depth, and laboratory of

origin (Table S1). Datasets of known composition such as these are

widely-used for benchmarking denoising approaches as it is

possible to assess the accuracy both of the number of clusters

returned and their identity [11]. However, such datasets are

generally low-complexity and do not possess a long tail of rare taxa

characteristic of environmental samples [11,12,14]. The remain-

ing two datasets therefore comprised highly-diverse environmental

communities of plankton and macrophytes sampled from along

the Murray River, Australia (18SEnv1-2).

High-diversity datasets. Two complex environmental data

sets were generated in this study from water column, sediment and

vegetation samples taken at two sampling locations along the

Murray River near Mildura, Victoria, Australia in austral Summer

(7–9th February 2009, 18SEnv1) and Autumn (24–26th April 2009,

18SEnv2). At each location, sampling comprised: four 15 liter

samples representing the water column (open water, littoral water,

littoral near-bottom water, and aphotic near-bottom water), one

sample of macrophytes and two (Autumn) or three (Summer)

zooplankton net sweeps. No specific permissions were required by

State and Federal authorities to collect water, macrophyte or

zooplankton samples that were used in this study. This study did

not involve endangered or protected species.Material from all

samples (excluding zooplankton) was separated into size classes by

passing through a series of filters (500–2000 mm, 53–500 mm, 1–

53 mm, 0.22–1 mm). A total of 44 and 48 environmental samples

were processed for 18SEnv1 and 18SEnv2 respectively. DNA was

extracted from each sample using UltraClean Soil DNA kits (MO

BIO Laboratories Inc, Carlsbad, CA). In addition, 18SEnv2

included positive control independently barcoded sample of total

DNA extracted from a single freshwater shrimp to further assess

the default settings. PCR reactions over 35 cycles to amplify

between 200 and 500 base pairs (bp) in the 39 region of the gene

encoding the 18S ribosomal RNA were conducted on all samples

using the primers All18SF (59-TGGTGCATGGCCGTTCT-

TAGT-39) and All18SR (59-CATCTAAGGGCATCACA-

GACC-39) as previously described [2]. PCR products were

purified using Qiagen QIAquick PCR Purification Kit and

amplified for a further four cycles to attach Titanium fusion

primers incorporating sequencing adapters and a sample-specific

combination of forward and reverse barcode sequences. A single

PCR was performed for each sample from each site, labeled with a

unique forward and reverse barcode combination. Tagged

samples were pooled in equal concentrations (0.22–1 mm fractions

were added at 1/5 concentrations due to small amplicon lengths

that might preferentially sequence). Summer (18SEnv1) and

Removing Errors from Amplicon Pyrosequences
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Autumn (18SEnv2) samples were processed and sequenced

separately on 1/2-picotiter plate each using Roche 454 GS FLX

Titanium sequencing chemistry.

Low-diversity datasets. Two 18S rRNA amplicon datasets

were created using pre-defined assemblages consisting of 16 cloned

18S rRNA gene sequences of varying length and distance, mixed

in three different ratios (see Fig. S2 for experimental design and

Table S2 for clone sequences). For each of the three different

concentration assemblages (Fig. S2 Assemblages 1–3) we per-

formed 5 separate PCRs (technical replicates) which were

individually barcoded in triplicate following the procedure above.

The resulting 45 samples were pooled into a single tube in equal

concentrations. This pool was split into two and each half

sequenced on J-picotitre plate using Roche 454 Titanium

sequencing technology. This procedure generated two sequence

replicates each containing three barcoded assemblages of 16 18S

rRNA gene clones mixed in different concentrations (18Smock1-3

and 18Smock4-6).

Four 16S rRNA mock community datasets were selected to

represent the diversity of regions used in prokaryote metagenomics

(Table S1). The first 16S rRNA dataset (16Sv13) comprised twelve

samples derived from pyrosequencing of the V1–V3 region from a

mock community of 21 prokaryotes constructed to test the

sequencing and analysis protocols used by the Human Micro-

biome Project [25] (Tables S1 and S3). Amplicon pools were

sequenced in triplicate at each of four different sequencing centers,

and twelve samples were chosen to incorporate three sequencing

replicates performed at each of the four centers. Reference

sequences were obtained by filtering the relevant region from the

Human Microbiome Project Mock dataset alignment and

trimming it to match the observed pyrosequence lengths for each

denoising approach. We followed a previous study that used this

dataset to benchmark denoising strategies and excluded Methano-

brevibacter smithii sequences from the reference alignment [14].

These sequences show low similarity to the primers and were

rarely amplified.

Two further 16S rRNA datasets (16Sv34 and 16Sv6) datasets

comprised a set of V3–V4 and V6 region amplicons generated

from an artificial community of 20 16S rRNA clones (V3V4P and

V6P [18]). Reference sequences for both these datasets were

obtained from the original authors (S. Craig Cary, personal

communication).

The final Titanium pyrosequence dataset (16Sv45) was a

published set of 16S rRNA V4–V5 region amplicons, generated

by PCR of a mock community of 91 full length 16S rRNA clones

in equal concentrations. This is currently the most diverse mock

community used to benchmark Titanium denoising and diversity

estimation tools. We used the modified set of 80 reference

sequences used in [26] (Michael Rosen, personal communication).

This set of references sequences accounts for a number of

complications in the original reference sequences, including

ambiguous base calls, indistinguishable sequences, and a high

homopolymer rate for some sequences [26].

APDP Analyses
All single-sample and multi-sample datasets were analysed using

APDP-SS or APDP-MS respectively using default parameter

values for Steps 1–3, with the following exceptions: 1) for the

16Sv13 dataset, many of the amplicons were too long to sequence

through the reverse primer under the conditions of the original

study. This resulted in many long reference sequences being

rejected at the first filtering step and highlights a drawback of using

APDP for analysing long amplicons where few reads will reach the

reverse primer. Therefore for these datasets, we truncated

pyrosequences at 200 bp and 400 bp prior to applying the regular

filtering steps rather than search for a reverse primer; 2) the group

assignment step for all datasets used MEGABLAST; 3) environ-

mental sequences were not excluded for the 16S datasets, as this

was found to slightly improve performance. The final validation

step (Step 4) varied between multi-sample data sets. For the

18Smock data sets, sequences were retained if validated in four out

of five technical replicates. For the 16Sv13 datasets, sequences

were retained if validated in all three sequencing replicates from at

least one of the four sequencing centers. For the 18SEnv data sets,

there was no technical replication among the samples, so

sequences were retained if validated in a single sample. Sequences

in all single-sample datasets were retained if validated using default

parameters.

Benchmarking the Performance of APDP
The total number of sequences or OTUs returned is not a good

criterion to evaluate the performance of an algorithm, as some real

sequences may be falsely rejected and erroneous sequences falsely

retained [27]. Therefore, we used both the accuracy of returned

sequences and the accuracy of OTUs, to evaluate the performance

of APDP.

Validated pyrosequences that perfectly matched a reference

sequence were classified as true positives, following [26]. Terminal

gaps were excluded from consideration, so that sequences that

terminated early were counted as true positives. Pyrosequences

within 3% pairwise distance (excluding ambiguous bases and

terminal gaps) to a reference sequence with no closer match were

classified as near-matches, similar to the criterion used in [18].

Previous studies have considered near-match sequences to be false-

positives as they represent incorrectly called genotypes [26],

whereas others have considered them close enough to be

effectively true-positives [18] (for example, the clustering method

used in [11] would cluster most, if not all, near-match sequences

with the correct reference sequence). We differentiated between

true-positive and near-match sequences in order to assess the affect

of alternative measures of accuracy on the relative performance of

APDP and other approaches. For each reference sequence only

one pyrosequence could be considered a true-positive or near-

match: if more than one pyrosequence hit the same reference, the

closest match (or most abundant in the case of a tie) was

considered a true-positive, and others classified as false positives.

Reference sequences with no matching or near-matching

pyrosequences were classified as false-negatives.

To construct OTUs, validated sequences were aligned in

MUSCLE using default parameters followed by a refinement step.

The dist.seqs command in mothur was used to make a pairwise

distance matrix, and OTUs were constructed using the average-

neighbor method. The most abundant pyrosequence was used as a

representative for each OTU. OTUs were classified as true

positives if the representative sequence matched a reference

sequence. Similar to the classification scheme used [18], remaining

OTUs were classified as miscalled if the representative sequence

was within 3% of an otherwise missing reference and comprised

pyrosequences matching a reference. OTUs were classified as

near-match if the representative sequence was within 3% of a

reference that otherwise would be missing and did not contain any

pyrosequences matching a reference. As above, OTUs more than

3% different to a reference, or those where a closer match or more

abundant OTU was assigned to the same reference were classified

as false positives. References with no true-positive, miscalled, or

near-match OTU, were classified as false negatives.

For the two 18SEnv data sets, although the composition of these

datasets is unknown (apart from the positive control samples),

Removing Errors from Amplicon Pyrosequences
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observations during sampling and previous work demonstrated the

presence of at most three freshwater shrimp decapod species in this

section of the Murray River [28] (see Table S4). Numerous other

taxa are present (e.g. diatoms, algae, fungi etc), but the actual

diversity of these is unknown. The three decapod species represent

the only detectable taxa for which the maximum number of

species is known through independent observation. The 18S

rRNA sequence for the amplicon used in this study is known for

individuals of each species and they cluster into unique 3% OTUs.

Although the genetic diversity within each species or individuals at

this locus is not known, we consider it highly unlikely that each

species will occupy more than one OTU because this region of the

18S rRNA gene is highly conserved between congeneric species:

species in different genera often share identical sequences, and

many genera are separated by ,1% genetic distance. In this study,

the 3% distance used to cluster sequences into OTUs is greater

than the inter-specific genetic distance between each of the three

shrimp species and at least one other species. Thus, 3% OTUs

would be expected to encompass all intraspecific diversity. We

therefore treated this subset of three predicted sequences (and

three 3% OTUs) to be a surrogate for comparing the accuracy of

denoising approaches for an entire complex dataset, and infer that

poorly denoised decapod sequences would be reflected with the

other taxa present that could not be reliably identified and

evaluated in the same way. Validated sequences with a bitscore

.200 to the best hit from a MEGABLAST search of the NCBI nr

database were assigned the taxonomy of the best hit. The

taxonomic identity and number of sequences assigned to decapod

species was used to assess accuracy.

Comparison with other Algorithms
We compared the performance of APDP with three widely-used

denoising approaches. All six mock community datasets were

analyzed with AmpliconNoise [11]. Raw flowgram files from

18Smock1-3, 18Smock4-6 and six 16Sv13 samples (representing

three sequencing replicates from two sequencing centers) were

processed separately with AmpliconNoise v1.27 using the protocol

and parameter values in the example script provided with the

software (RunTitanium.sh). The only deviations from this protocol

were: 1) minflows was set to 120 for both 18Smock datasets; 2) the

truncation length prior to running SeqNoise was set to 200 bp and

400 bp for 16Sv13, and to 130 bp for both 18Smock datasets; 3)

we used Perseus rather than PerseusD for chimera checking; and

4) Perseus parameter settings of a= 26.14268 and b= 0.40297

[11] were used for the 16Sv45 chimera checking step. Denoised

pyrosequences for the 16Sv34 and 16Sv6 datasets were obtained

from the original authors (Charles Lee, personal communication).

Denoised pyrosequences for 16Sv45 were obtained from http://

userweb.eng.gla.ac.uk/christopher.quince/Data/

Titanium_s25_cd.fa, and chimera-checked using Perseus as

described above. Denoised pyrosequences from each dataset were

then put through the final steps in the RunTitanium.sh protocol to

find all unique sequences, construct 3% OTUs and return a set of

representative sequences.

All eight data sets were analyzed with QIIME v1.3 (incorpo-

rating the Denoiser algorithm) and mothur v.1.22 (including the

implementation of PyroNoise [29]; v.1.20 was used to error-

correct both environmental data sets). For each analysis method,

raw Titanium pyrosequencing data (as sff files) were analyzed

using command pipelines and parameter settings based on

available online recommendations from the relevant authors

(QIIME tutorials homepage at http://qiime.org/tutorials/index.

html and Schloss Lab Standard Operating Procedure [14] and

available at http://www.mothur.org/wiki/Schloss_SOP). All da-

tasets were denoised as independent sff files (for example

18Smock1-3, 18Smock4-6, 18SEnv1 and 18SEnv2 were analyzed

as four separate files). The separate samples comprising 16Sv13

were denoised separately by each method, and then combined into

a single file for further processing. Suggested parameter values

were altered in some instances due to the nature of our datasets.

For example, the suggested ‘‘minflows = 450’’ in the mothur SOP

could not be used with the 18S rRNA datasets as our full-length

amplicons are too short to meet this threshold. Other alterations

were found to improve results over the suggested defaults, and the

best performing set of parameters was used in our comparisons.

The commands and parameters used for each analysis method and

dataset are shown in Fig. S3 and Fig. S4.

The performance of each method was measured by evaluating

the accuracy of individual denoised sequences and 3% OTUs

using the same criteria as described above. OTUs were

constructed from denoised pyrosequences a following the

commands in Fig. S3 and Fig. S4. For the two high diversity

18SEnv data sets, the accuracy of each method was determined by

the number and identity of decapod OTUs returned. A

representative sequence was obtained for each OTU and

taxonomy was assigned to each OTU as above.

Results

Performance of APDP
All data sets contained many more unique sequences than

expected due to large numbers that were derived from errors (see

number of unique sequences in Table 1). The observed relative

frequency of known and reference sequences across all nine data

sets ranged from 0.001% to 31.53%, and varied over several

orders of magnitude within each data set (Tables 2, S4 and S5).

Among data sets errors accounted for 16.73%–79.82% of accepted

reads and 98.46%–99.86% of unique sequences. A significant

number of relatively abundant errors were observed above the

minimum frequency thresholds in all data sets, and most were

correctly rejected (Table 2). Despite the high error rates, APDP

was able to recover the vast majority of reference sequences

correctly in all data sets. APDP performed particularly well on the

multi-sample 18S rRNA datasets. The impressive performance of

APDP here is unsurprising, as the 18S datasets closely resemble

the dataset that the algorithm was trained on, and fulfill the

replicated multiple-sample study design criterion that it is designed

to exploit. APDP missed a total of twelve out of forty reference

sequences in two single-sample datasets (16Sv34 and 16Sv6) and

one out of twenty four in 16Sv13. We examined the frequency of

the false negative reference sequences in the corresponding raw

data, and found that seven were not present in the raw data and

four were excluded as global singletons. A final false negative had

six reads in a dataset with no replication (16Sv6) and was excluded

in favor of a more abundant error that was classified as a false

positive sequence.

Reproducibility of Sequences across Technical Replicates
The six assemblages in the two 18Smock datasets (18Smock1-6)

were used to test the reproducibility of real and error sequences

among technical (i.e. PCR) replicates. All 16 reference sequences

were always observed in all five replicates. A number of errors

(126–273 sequences) were observed in all five replicates, although

most were present in just one or two replicates (Fig. S5). We

examined the relationship between sequence abundance and

technical reproducibility using all unique sequences observed in

18Smock6. Mean rank abundance was strongly correlated with

the number of replicates in which a sequence was observed

Removing Errors from Amplicon Pyrosequences
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(r2 = 0.86) and few sequences were observed in all technical

replicates (Fig. S5). The rank-abundance of validated sequences

also varied little across PCR replicates (Fig. S6). Importantly, the

valid status of sequences was not dependent on rank abundance –

for example one reference sequence ranked 113th in read

abundance in one technical replicate and was validated, whilst

many more abundant errors were identified and removed (Fig. S6

C).

Comparison with other Approaches
Over all six mock datasets, APDP returned the fewest false

positive and false negative sequences (Table 3). APDP also

returned the fewest false positive and false negative OTUs when

only true positives were considered (‘‘TP-only’’). AmpliconNoise

and mothur returned fewer false negative OTUs where miscalled

and near-match OTUs were considered correct (‘‘TP+NM’’), and

this came at the expense of higher false positive rate (Table 3).

Excluding sequences and OTUs with fewer reads than the

minimum detection threshold for APDP (‘‘cutoff’’; see Table 2

for threshold for each dataset) reduced the number of false

positives (but still above APDP), and resulted in increased false

negatives above APDP.

For denoised sequences returned from individual datasets,

APDP returned generally low false positive and false negatives for

all multi-sample and most single-sample datasets (Tables 4 and 5).

When only true positive sequences were considered correct (‘‘TP

Only’’) APDP had the fewest false positives in five of six datasets,

the fewest false negatives in four of six datasets, and the fewest for

both in three of six datasets. APDP performed best by both

methods in all multi-sample datasets. When true positive and near-

match sequences were considered correct (‘‘TP+NM’’), APDP had

the fewest false positives in four of six datasets, the fewest false

negatives in four of six datasets, and the fewest for both in all

multi-sample datasets. AmpliconNoise was the best alternative

method, with fewer false negatives than APDP in two datasets

(16Sv34 and 16Sv6) but more false positives in all datasets.

Applying a read abundance cutoff to the alternative methods

reduced the false positive rate considerably, but often increased the

false negative rate above that of APDP (Tables 4 and 5). The only

method to outperform APDP by both measures for a single dataset

was AmpliconNoise after removal of singletons from the 16Sv34

dataset, but there was no single approach that consistently

outperformed APDP by either measure. Removing low-abun-

dance sequences from the AmpliconNoise results returned fewer

false positives than APDP in some cases.

The results were similar for 3% OTUs constructed from

denoised pyrosequences from each approach (Tables 6 and 7).

When only true positive OTUs were considered correct (‘‘TP

Only’’) APDP had the fewest false positives in all six of six datasets,

the fewest false negatives in five of six datasets, and the fewest of

both in all multi-sample and two single-sample datasets. When

true positive, miscalled, and near-match OTUs were considered

correct (‘‘TP+NM’’), APDP had the fewest false positives in five of

six datasets, the fewest false negatives in four of six datasets, and

the fewest of both in all multi-sample and one single-sample

dataset. As for the denoised pyrosequences, AmpliconNoise was

the best alternative method, with fewer false negatives than APDP

in two datasets (16Sv34 and 16Sv6). Again, applying an

abundance cutoff to the alternative methods reduced the number

of false positives, but increased the number of false negatives.

However, false positives were reduced below the APDP level in

only one dataset, and only when miscalled and near-match OTUs

were considered correct (16Sv34 TP+NM).

APDP was least effective on the 16Sv34 dataset (Tables 5 and

7), however all methods tested had difficulty identifying rare

reference sequences (Table S6). This dataset returned fewer

accepted reads than other datasets used in our study, possibly due

to the expected length of the amplicons combined with a poor

sequencing run (Table S1). We explored the hypothesis that APDP

performs poorly on longer amplicon sequences by comparing

APDP and AmpliconNoise on the same set of six 16Sv13 samples

truncated at 200 bp and 400 bp (Table S7). APDP returned fewer

false positive sequences and OTUs and fewer false negative

sequences than AmpliconNoise at both truncation lengths. Both

methods found at least a near-match to all expected OTUs.

Table 1. Accuracy of APDP for eight Titanium pyrosequence data sets.

Expected
sequences

Pyrosequencing
reads Unique Sequences Filtered sequences

Preliminary
Validation Final Validation

High diversity

18SEnv1

All Unknown 357,432 99,303 18,559 1,164 929

Decapoda only 3 523 4 3

18SEnv2

All Unknown 314,414 52,048 13,684 990 841

Decapoda only 2 754 2 2

Low diversity

18Smock1-3 16 268,874 26,675 6,088 55 16

18Smock4-6 16 275,876 24,934 5,874 63 16

16Sv13 24 268,818 12,793 4,144 1,127 34

16Sv34 20 75,447 9.135 1,056 57 17

16Sv45 80 62,873 13,831 1,321 112 93

16Sv6 20 53,653 1,040 266 56 19

Also shown are the number of raw pyrosequences, number of unique sequences, number of unique sequences after APDP filtering, and the number of unique
sequences after Preliminary and Final validation.
doi:10.1371/journal.pone.0071974.t001
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In the high-diversity environmental samples, APDP recovered

far fewer OTUs than the strategies implemented in QIIME or

mothur and all three methods retained tails of rare OTUs (Fig. 1 A

and C). To determine the relative accuracy of the diversity

estimates in our two complex environmental datasets where the

true compositions were unknown, we examined the subset of all

OTUs recovered by each method that were classified as Class

Decapoda (see Methods for justification of this approach). APDP

recovered the correct number and identity of known true decapod

sequences from within a diverse mixture of sequences in both

18SEnv1 and 18SEnv2 (Table S8), even when present in the raw

data at low-frequency (Table S3). In contrast, mothur inferred 184

and 94 decapod OTUs for 18SEnv1 and 2 respectively, while

QIIME inferred ten decapod OTUs in 18SEnv1 and one only

from 18SEnv2. Both methods correctly recovered at least one

OTU representative for each of the known species, except QIIME

failed to recover an OTU representative of the shrimp Paratya

australiensis from 18SEnv2 (Table S8) even though the sequence

was present in four samples at relative frequencies of 0.002%–

0.08% (Table S3). The majority of the false diversity recovered by

each method was low-frequency OTUs (Fig. 1) that were inferred

to be derived from errors of the true shrimp sequence present in

the samples (Table S8).

Discussion

Errors in high-throughput amplicon pyrosequencing of envi-

ronmental samples can lead to inflated taxonomic richness

estimates and distort inferred community composition which

restricts the utility of new sequencing technologies when address-

ing ecological questions. Here, we present new software (APDP)

for identifying real sequences and removing errors from Roche

454 FLX Titanium amplicon pyrosequences. The aim of APDP is

to identify an error-free set of sequences that can be used alone or

in conjunction with other software, such as QIIME and mothur, to

test ecological hypotheses regarding the composition of eukaryote

and prokaryote communities by significantly reducing or elimi-

nating the contribution of erroneous diversity. APDP does not

assign taxonomy to sequences, nor does it cluster sequences to

create OTUs, but the resulting set of validated sequences can be

used for this purpose to account for intraspecific variation rather

than methodological error.

Accuracy of Error-removal
The results presented here highlight the strengths and potential

issues that arise from the conservative approach of APDP. In

particular, the performance of APDP on a wide range of datasets

using default error-frequency parameter settings shows the broad

utility of this approach to remove errors and identify real diversity

in prokaryote and eukaryote Titanium amplicon pyrosequencing

datasets (Tables 3, 4, 5, 6 and 7). In addition to relatively low false

positive and false negative rates, APDP has several other beneficial

features: 1) it can process raw reads containing forward and

reverse primers and multiplex identifiers; 2) is able to process

.2M Titanium reads (i.e. all the reads from two full sequencing

runs) distributed across .200 samples on a standard desktop

computer with a single processor; 3) implements an error removal

strategy that is not specific to any DNA target amplicon; and 4)

does not require a reference alignment.

Sensitivity and Specificity of APDP
A potential issue of the stringent error-removal strategy in

APDP is the sensitivity to rare diversity. The ability to detect real

rare sequences and distinguish them from low abundance errors is
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essential for accurate diversity estimation. The relative frequency

threshold of detection by APDP is dependent on experimental

design, but the minimum absolute frequency is fixed at two (single

sample datasets) or three reads (Table 2). Importantly, this

absolute lower bound is independent of the total number of reads,

so increasing sequencing depth means increasingly rare sequences

can be validated by APDP. Using these thresholds, APDP

identified reference sequences within or below published detection

limits for rare taxa (0.01%–1.0% [30,31]) in both high and low-

diversity data sets (lowest relative frequency = 0.0008%). Further-

more, our results show that existing widely-used strategies for

error-removal often retain false low-abundance sequences and

OTUs in high and low diversity datasets that can compromise

inferences of the richness and extent of the rare biosphere (Fig. 1,

Tables 4, 5, 6 and 7).

Although APDP performs well here on a range of datasets, there

may be cases, such as under-sampled high-diversity heterogeneous

communities, where real rare sequences will be missed due to the

relatively conservative nature of the algorithm. The results

presented here suggest that APDP will have greater specificity

than other methods (it retains less false positives in most datasets),

but this potentially traded for reduced sensitivity (it falsely rejects

more true positives in some datasets). In particular, sequences

observed only once in an entire dataset (i.e. global singletons) were

missed by APDP analyses of 16Sv34 and 16Sv6. Singleton

sequences comprise a large proportion of all metagenomic

datasets, independent of the level of diversity in the underlying

sample, and a large proportion of these are likely to be errors

(Table 1). However, APDP will also remove real singletons where

they are present. Removing singletons is a conservative approach

and is based on our view that independent reproducible

observation offers a greater degree of confidence that an

observation is correct. This position is supported by our results

(Fig. 1, Tables 4, 5, 6 and 7) and previously published studies (e.g.

[15]) that all methods will have issues with effectively distinguish-

ing real rare diversity from errors. When choosing an analysis

method there is a trade-off between detecting real low-abundance

sequences and rejecting low-abundance errors (Tables 4, 5, 6 and

Table 3. Overall accuracy of denoised pyrosequences and 3% OTUs retained by APDP and three alternative denoising approaches
using six artificial community datasets.

Sequences 3% OTUs

TP only TP+NM TP only TP+MC+NM

Method
Number of
Datasets

Total
Expected
Sequences

Total
Observed
Sequences FP FN FP FN FP FN FP FN

APDP 6 176 195 43 24 31 12 19 21 9 11

AmpliconNoise 6 174 506 383 50 360 27 189 39 164 14

cutoff 6 174 172 63 65 48 50 59 46 44 31

mother 6 183 6205 6052 38 6038 24 2358 35 2329 6

cutoff 6 183 538 385 39 377 31 315 36 292 13

QIIME 6 204 1113 1024 115 946 37 431 102 351 22

cutoff 6 204 772 683 115 610 42 269 102 190 23

Bold numbers indicate best result in the column. The number of false positives (FP) and false negatives (FN) is shown for cases where miscalled and near-match OTUs
are considered to be incorrect (TP only) or correct (TP+NM and TP+MC+NM). In addition, the results are shown for each method after excluding OTUs with fewer reads
than the minimum detection threshold of APDP (cutoff).
doi:10.1371/journal.pone.0071974.t003

Table 4. Accuracy of denoised pyrosequences from the three multi-sample artificial community datasets retained by APDP and
three alternative denoising approaches.

18S1–3 18S4–6 16Sv13

TP only TP+NM TP only TP+NM TP only TP+NM

Method FP FN FP FN FP FN FP FN FP FN FP FN

APDP 0 0 0 0 0 0 0 0 11 1 11 1

AmpliconNoise 33 6 30 3 38 3 37 2 243 3 243 3

cutoff 2 12 2 12 0 10 0 10 36 3 36 3

mothur 2226 0 2226 0 2502 0 2502 0 742 9 738 5

cutoff 110 0 110 0 102 0 102 0 20 9 19 8

QIIME 188 2 186 0 172 1 171 0 496 34 476 14

cutoff 87 2 85 0 91 1 90 0 357 34 341 18

The number of false positives (FP) and false negatives (FN) is shown for near-match sequences are considered to be incorrect (TP only) or correct (TP+NM) sequences. In
addition, the results are shown for each method after excluding denoised sequences with fewer reads than the minimum detection threshold of APDP (cutoff).
doi:10.1371/journal.pone.0071974.t004
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7), and preference for either will depend on the biological question

being addressed. This choice will be influenced by whether false

positives or false negatives more strongly affect the biological

conclusions drawn. If investigators are interested in rare sequences

that may have been falsely excluded, APDP makes these sequences

available as supplementary files for further investigation. Further-

more, missed rare taxa can be validated by sequencing more

deeply whereas false identified taxa leave no obvious indicator that

they are incorrect; importantly, our results suggest that APDP is

less susceptible to the OTU inflation that affects other tools when

deeply sampling low-diversity datasets [14].

Repeatability of Real Sequences in Biological and
Technical Replicates

APDP performs particularly well when biological and technical

replicates are included in the experimental design (Tables 4 and 6).

The use of repeated observation of sequences or OTUs across

samples is not in itself novel, and the occurrence of OTUs across

multiple biological replicates has been used previously to improve

confidence in diversity estimates [32]. APDP has been designed to

take advantage of both biological and technical replicates (e.g.

independent PCRs from the same sample), and we strongly

advocate the use of technical replicates to improve the identifica-

tion and removal of errors. The majority of errors are rare and

poorly reproducible between technical replicates due to the

stochastic nature of the processes that govern their generation,

whereas real sequences and more common errors are more

abundant and highly reproducible (Fig. S5). APDP exploits this to

remove errors: highly-abundant, reproducible errors are removed

from individual replicates as their high read counts accurately fit

assumed error profiles. Low-abundance, less reproducible errors,

such as highly-divergent chimeras and multi-base DNA polymer-

ase-errors, are more difficult to identify as errors in individual

replicates but are removed by requiring sequences to be validated

in a minimum number of replicates. When assessing the diversity

of low-abundance sequences in high-diversity samples (i.e.

sequences present with fewer than 10 reads across an entire

experiment), APDP is dependent on the observation of rare real

sequences in environmental or technical replicates. Low-depth

sequencing of highly-diverse communities may impact on the

ability of APDP to adequately define the composition of the rare

biosphere, particularly when many of these taxa will be present at

frequencies below 1/R, where R is the number of reads from each

technical replicate. Here, real rare sequences may be observed in

Table 5. Accuracy of denoised pyrosequences from the three single-sample artificial community datasets retained by APDP and
three alternative denoising approaches.

16Sv34 16Sv45 16Sv6

TP only TP+NM TP only TP+NM TP only TP+NM

Method FP FN FP FN FP FN FP FN FP FN FP FN

APDP 10 13 4 7 17 4 13 0 5 6 3 4

AmpliconNoise 20 16 9 5 28 17 22 11 21 5 19 3

cutoff 12 16 2 6 5 17 1 13 8 7 7 6

mothur 51 11 51 11 448 10 438 0 83 8 83 8

cutoff 20 11 20 11 99 10 92 3 34 9 34 9

QIIME 19 19 11 11 105 52 59 6 44 7 43 6

cutoff 19 19 11 11 86 52 41 7 43 7 42 6

Nomenclature and abbreviations are as Table 4.
doi:10.1371/journal.pone.0071974.t005

Table 6. Accuracy of 3% OTUs constructed from denoised pyrosequences from the three multi-sample artificial community
datasets retained by APDP and three alternative denoising approaches.

18S1–3 18S4–6 16Sv13

TP only TP+NM TP only TP+NM TP only TP+NM

Method FP FN FP FN FP FN FP FN FP FN FP FN

APDP 0 0 0 0 0 0 0 0 2 0 2 0

AmpliconNoise 14 7 9 2 17 7 13 3 98 1 97 0

cutoff 2 10 2 10 2 9 1 8 30 1 29 0

mother 1017 1 1016 0 1021 0 1021 0 71 1 70 0

cutoff 97 1 96 0 101 0 101 0 4 1 3 0

QIIME 73 4 69 0 70 1 69 0 144 13 131 0

cutoff 37 4 33 0 36 1 35 0 82 13 69 0

The number of false positives (FP) and false negatives (FN) is shown for cases where miscalled and near-match OTUs are considered to be incorrect (TP only) or correct
(TP+NM). In addition, the results are shown for each method after excluding OTUs with fewer reads than the minimum detection threshold of APDP (cutoff).
doi:10.1371/journal.pone.0071974.t006

Removing Errors from Amplicon Pyrosequences

PLOS ONE | www.plosone.org 9 August 2013 | Volume 8 | Issue 8 | e71974



single samples at very low frequencies due to stochastic sampling

effects, and these types of sequences can be excluded by APDP.

However, evidence from incomplete sequencing of highly-diverse

environmental samples has shown that real rare sequences

(,0.020%–0.025% relative frequency per sample) are reproduc-

ibly observed in pyrosequencing datasets in both biological and

technical (PCR) replicates [33]. In addition, our results confirm

that real rare sequences are highly reproducible among technical

replicates at similar relative frequencies ($0.04%, Table S5).

While technical replication is clearly desirable, it is not always

essential for accurate error-removal using APDP: the 18SEnv1–2

environmental data sets have multiple biological samples but no

technical replication, and three of the 16S datasets comprise a

single sample with no replication, yet APDP was able to remove

almost all errors and retain most of the correct sequences and

OTUs (Fig. 1, Table 2). This supports our conclusion that APDP,

combined ideally with appropriate experimental design incorpo-

rating multiple samples per treatment and replicate PCRs, is an

effective approach to removing erroneous diversity and retaining

real rare sequences in low and high diversity environmental

datasets.

Potential Sources of Bias and Inaccuracy
The current version of APDP requires that the entire amplicon

(including reverse primer and/or MID) be sequenced. In the case

of long amplicons (e.g. 16Sv45 data set amplicons are .350–

400 bp), premature sequence termination and higher error rates

[8] may lead to the exclusion of a high proportion of raw

pyrosequences, although APDP is still able to remove errors from

these data sets as effectively as the other tested algorithm (Fig. 1,

Table 3). However, in the case of amplicons that are so long the

reverse primer is unlikely to be sequenced (e.g. some 16Sv13

amplicons are over 500 bp), APDP failed to recover any reference

sequences longer than 480 bp (data not shown). Truncating these

sequences using a modified initial filtering approach, we were still

able to retain more real diversity and had the same or better false

negative rate than AmpliconNoise at both truncation lengths

(Table S7). In addition, both methods performed better when

amplicons were shorter, possibly because the first 200 bp of a

pyrosequence are the most accurate, or because more 16S gene

copies were indistinguishable from each other. In either case, it

appears that preference should be given to identifying the shortest

amplicon that provides adequate resolution to address the

biological question at hand. Refining this approach to enable

APDP to process partial sequences from long amplicons where the

entire molecule cannot be sequenced with the current technology

is possible, although improvements in read length are expected to

significantly reduce the need for this feature.

A further possible drawback to our initial approach is the use of

the BLAST algorithm in APDP to assign sequences to groups. By

using this algorithm, APDP is in effect a semi-supervised

approach, and the results of APDP could potentially be less

accurate if applied to communities from novel environments with

few close relatives present in the reference database. In addition,

BLAST is relatively slow and takes up a large proportion of the

total processing time (Table S9). We therefore re-analyzed four

mock community datasets (18Smock1-3, 18Smock4-6, 16Sv13,

and 16Sv45) using the 2% single-linkage precluster method (SLP

[10]) to assign sequences to groups (Table S10). Using this

unsupervised clustering approach, APDP again recovered the

sixteen correct sequences and removed all errors in both 18S

datasets. For the 16S datasets, fewer sequences were returned

using SLP, which resulted in a loss of sensitivity to individual

sequences and fewer false positives. This approach also recovered

the same expected OTUs additional false positive OTUs (Table

S10). This result was still better than any of the other methods

tested using this dataset, including AmpliconNoise (Tables 4, 5, 6

and 7). APDP can, therefore, be used independently of a reference

database to accurately retain real diversity and remove more

erroneous sequences than all other tested approaches on these

eukaryote (18S rRNA) and prokaryote (16S rRNA) datasets using

the default error frequency parameter values.

Implications for Ecological Applications
There are clear implications for ensuring accurate denoising in

ecological applications where the accurate identification of

organisms (or genotypes) present in environmental samples is of

paramount importance, such as monitoring specific taxonomic

groups. In such cases, this emerging sequencing technology will

only be useful if the correct taxonomic diversity can be inferred

from environmental samples. For example, environmental health

of rivers is often assessed by conducting surveys of invertebrate

diversity and accurate inference of taxonomic richness is likely to

benefit from emerging molecular techniques [34]. Similarly, there

are increasing efforts to describe the diversity present in different

environments [35], in order to gain critical insights into ecological

Table 7. Accuracy of 3% OTUs constructed from denoised pyrosequences from the three single-sample artificial community
datasets retained by APDP and three alternative denoising approaches.

16Sv34 16Sv45 16Sv6

TP only TP+NM TP only TP+NM TP only TP+NM

Method FP FN FP FN FP FN FP FN FP FN FP FN

APDP 8 10 3 5 4 6 1 3 5 5 3 3

AmpliconNoise 19 13 9 3 22 7 19 4 19 4 17 2

cutoff 11 13 2 4 5 7 2 4 9 6 8 5

mothur 20 10 12 2 138 17 124 3 91 6 86 1

cutoff 10 10 3 3 60 15 49 6 43 7 40 4

QIIME 16 15 4 3 77 40 41 4 23 12 19 8

cutoff 16 15 4 3 63 40 27 4 22 12 18 8

Nomenclature and abbreviations are as Table 6.
doi:10.1371/journal.pone.0071974.t007
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and biological processes affecting the distribution of organisms and

communities within ecosystems [36]. Furthermore, accurate

inference of genetic diversity is increasingly important in defining

conservation units [37]. In our study, APDP outperformed the

existing denoising approaches when inferring the known diversity

of prokaryote and eukaryote datasets. Therefore it is an

Figure 1. Abundance and accuracy of OTUs recovered by APDP, QIIME and mothur analyses of high diversity environmental
datasets. Sequences are ordered by rank abundance on the x-axes. Note that the scale varies for each graph as the number of OTUs recovered
differs for each dataset and method. Y-axes are log-scaled. The total number of OTUs recovered (n), and the relative frequency distribution for all
OTUs (rank abundance bar chart) are shown for each analysis. a) All OTUs recovered from the high-diversity 18SEnv1 dataset that contains an
unknown number of OTUs by each analysis method. b) OTUs recovered from 18SEnv1 that were classified as Decapoda (expected to comprise three
OTUs). Spacing between some high-frequency bars has been manipulated to aid visualization of the mothur result due to the high OTU return. c) All
OTUs recovered from the high-diversity 18SEnv2 dataset. d) OTUs recovered from 18SEnv2 that were classified as Decapoda (expected to comprise
two OTUs). The expected number of decapod OTUs (b and d) is shown in parentheses along with a pie chart showing the proportion classified as
good (blue), noise (red) or missed (no color).
doi:10.1371/journal.pone.0071974.g001
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appropriate tool for estimating the taxonomic richness of

environmental samples, and subsequently, for making inferences

about the health and biology of environmental systems founded on

robust ecological data.

Conclusions

Accurate diversity estimation from Roche 454 GS FLX

Titanium amplicon pyrosequencing requires that errors generated

by the methodological pipeline be distinguished from true

sequence diversity. APDP is an alternative denoising approach

that can explicitly use the experimental design of a sequencing

project to more accurately predict the number and identity of

abundant and rare real unique sequences in multi-sample mixtures

of known composition as well as complex environmental samples.

APDP is written in Perl and runs on Linux using a command-line

interface. Although used here on ribosomal RNA sequences, and

Roche GS-FLX 454 Titanium chemistry, the approach used in

APDP is applicable to any gene marker and amplicon sequencing

platform, provided error profiles are characterized using positive

control sequences. APDP is freely available (http://www.ict.csiro.

au/downloads.php) and is distributed with additional scripts for

converting APDP outputs into QIIME and mothur formats for

downstream diversity analyses.

Supporting Information

Figure S1 Workflow of APDP. An example is shown for the

validation of three real sequences from their pyrosequence and

PCR errors (indels [blue], polymerase errors [purple], and

chimeras [red]), distributed among four samples (A–D).

(DOCX)

Figure S2 Experimental design used to generate the six
18Smock pyrosequenced amplicon data sets. Step 1: Mock

assemblages (18Smock1-6) created by mixing differing dilutions of

16 plasmid clones of 18S rRNA amplicons (see Table S2 for

sequences and dilution group information). Plasmids were classified

into one of three dilution groups which determined the concentra-

tion in each assemblage relative to clones in Group 1. Two very

similar sequences (Clones 6A and 6B) were assigned to Group 3, and

each added at one-half the concentration of Group 2 to simulate a

heterozygotic individual. Step 2: Five independent 18S rRNA PCR

amplifications (35 cycles) were performed for each assemblage,

resulting in 15 PCRs. For each assemblage, each amplification was

performed at a different time point by the same technician. Step 3:

Each PCR was then subjected to four further rounds of PCR

amplification with fusion primers to add Titanium sequencing

adapters and MID (DNA barcode) sequences. This was performed

in triplicate with the same forward barcode (denoted by the PCR

number) and one of three reverse barcodes (R01–R03), resulting in

45 total PCRs. Step 4: The 45 PCRs were column-purified,

quantified by nanodrop, and pooled into a single tube in equal

concentrations. Step 5: The pooled sample was split into two, and

each half sequenced independently using Roche 454 GS FLX

Titanium chemistry. The first half contained data sets 18Smock1-3

and the second half contained data sets 18Smock4-6.

(DOCX)

Figure S3 Analysis pipeline used for QIIME analyses
including Denoiser implementation. Specific data set

filenames have been replaced by xxxx.

(DOCX)

Figure S4 Analysis pipeline used for mothur analyses
including AmpliconNoise implementation (shhh.flows).

Specific data set filenames have been replaced by xxxx. Parameter

values are shown for the 18Smock and 18SEnv analyses, with

alternative settings for 16S analyses indicated where relevant.

(DOCX)

Figure S5 Reproducibility of observed sequences
among technical replicates. Columns and positive error bars

indicate the mean and standard deviation of the proportion of

unique sequences in each 18Smock data set observed in a given

number of technical replicates. Black squares and error bars show

the average and standard error of the mean rank abundance for

each sequence in the 18Smock-6 Assemblage 3) data set for each

number of technical replicates (n = 6).

(DOCX)

Figure S6 Rank abundance of top 120 sequences from
the 18Smock-6 data set. a. The top 120 sequences based on

total read abundance. b.-f. Top 120 sequences from each technical

replicate (1–5). Y-axis is log-scaled. Yellow bars indicate reference

sequences validated in final analysis, blue bars are error sequences

rejected by APDP.

(DOCX)

Table S1 Roche 454 GS FLX Titanium amplicon pyro-
sequencing data sets used in this study. Shown are the

number of samples in the dataset, DNA marker amplified, origin

of the data set, median expected amplicon length of available

reference sequences, total number of raw reads returned, number

of assigned reads (based on matches to primers and barcodes), and

whether the data set was used to train or test APDP.

(DOCX)

Table S2 Sequences used to create 18Smock assem-
blages, including clone names, dilution group assign-
ments for relative concentrations, and plasmid insert
sequence.
(DOCX)

Table S3 Availability of previously published datasets
used in this study.
(DOCX)

Table S4 Relative frequencies of 18S rRNA amplicon
sequences from known decapod species in both envi-
ronmental data sets and the number of decapods
sequences recovered by APDP. For each dataset, samples

were pooled by forward MID for analysis.

(DOCX)

Table S5 The observed relative frequencies for each
clone sequence in the 18Smock data sets. The group for

each clone is also shown. Maximum and minimum frequencies for

each assemblage are shown in bold.

(DOCX)

Table S6 Classification of reference sequences based
on denoised pyrosequences from two single-sample
datasets for which APDP performed poorly: (a) 16Sv34;
and (b) 16Sv6. The number of reads in the raw data that match

each reference is shown. Results for each method include near-

match sequences as correct (‘‘TP+NM’’) and are shown before and

after application of a read abundance cutoff ‘‘(c)’’. AN = Ampli-

conNoise. White = true positive; light gray = near-match; dark

gray = false positive (no denoised pyrosequence within 3%

sequence similarity); black = false negative (missed).

(DOCX)

Table S7 Effect of sequence truncation length on the
accuracy of denoised pyrosequences and 3% OTUs
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retained by APDP and AmpliconNoise analyses of six
16Sv13 datasets. TP = true positive, MC = miscalled,

NM = near-match, FP = false positive, FN = false negative.

(DOCX)

Table S8 Accuracy of OTUs retained by alternative
approaches to error removal. Expected and observed

numbers of OTUs assigned to each taxon are shown, as well as

the number of OTUs falsely assigned to other decapod taxa not

present in the Murray River.

(DOCX)

Table S9 Comparison of computational processing
time in days required for APDP, QIIME and mothur to
analyse three pyrosequence datasets. For APDP, the

proportion of the total processing time taken up by the BLAST

group assignment step is shown in parentheses. All analyses were

performed on the same desktop PC except the 18SEnv1 mothur

analysis, which was run on a six-core 80 GB RAM computer.

(DOCX)

Table S10 Effect of alternative methods used to assign
unique sequences to groups on the accuracy of denoised
pyrosequences and 3% OTUs retained by APDP.
TP = true positive, MC = miscalled, NM = near-match, FP = false

positive, FN = false negative.

(DOCX)
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