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Abstract: Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease with
heterogeneous clinical manifestations. A diverse innate and adaptive immune dysregulation is
involved in the immunopathogenesis of SLE. The dysregulation of immune-related cells may derive
from the intricate interactions among genetic, epigenetic, environmental, and immunological factors.
Of these contributing factors, non-coding RNAs (ncRNAs), including microRNAs (miRNAs, miRs),
and long non-coding RNAs (lncRNAs) play critical roles in the post-transcriptional mRNA expression
of cytokines, chemokines, and growth factors, which are essential for immune modulation. In the
present review, we emphasize the roles of ncRNA expression in the immune-related cells and cell-free
plasma, urine, and tissues contributing to the immunopathogenesis and tissue damage in SLE.
In addition, the circular RNAs (circRNA) and their post-translational regulation of protein synthesis
in SLE are also briefly described. We wish these critical reviews would be useful in the search for
biomarkers/biosignatures and novel therapeutic strategies for SLE patients in the future.
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1. Introduction

Systemic lupus erythematosus (SLE) is a prototype of chronic systemic autoimmune disease,
characterized by the presence of diverse autoantibodies against different cellular, nuclear,
and extracellular components with consequent chronic inflammation and tissue damage. Factors that are
implicated in lupus pathogenesis include genetic/epigenetic predisposition, environmental stimulants,
sex hormone imbalance, mental/psychological stresses, and certain undefined conjectural factors.
These diverse contributing parameters may lead to complex immune dysfunctions in patients with
SLE via the breakdown of self-tolerance. Dysregulations in innate [1–10] and adaptive [11–15] immune
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systems have been recently widely recognized. The innate immune cells include neutrophils [4,16],
macrophages/dendritic cells [1–3,17] and natural killer cells [5,6,18,19]. The adaptive immune cells
include T lymphocyte subpopulations, Th1, Th2, Th17, Treg, CD45 RO+ memory T (Tm) and follicular
helper T (Tfh) cells [11,12,20–24], as well as B lymphocytes, CD5+ B cells, and regulatory B (Breg)
cells [13–15,25–27]. A comprehensive review on the immunopathogenesis of SLE has been newly
given [28]. In addition, aberrant intracellular signaling in the immune-related cells relevant to lupus
pathogenesis has also been recently explored, including suppressor of cytokine signaling (SOCS) [29,30],
signal transducers and activators of transcription (STATs) [31], type 1 interferon (IFN-1) [32,33], and
ubiquitin, which regulate IFN-α receptor expression [34]. In our previous investigations, Li et al. [35]
have reported that deranged bioenergetics and defective redox capacity in T cells and neutrophils are
relevant to defective cellular immunity in SLE patients. Lee et al. [36–39] have further demonstrated
that leukocyte mitochondrial DNA alterations and dysfunctions can increase oxidative stresses and
are closely related to lupus pathogenesis. Thus, our group has proposed that increased oxidative
and nitrosative stresses may enhance immunosenescence, inflammation, and “inflamm-aging” in
patients with SLE [40]. Table 1 summarizes the abnormal cell biology in the immune-related cells
together with their aberrant intracellular signaling and immunometabolism that are relevant to lupus
pathogenesis. Apparently, the immunological dysfunctions are the final outcome of the patients
with SLE originated from the up-stream genetic/epigenetic regulation for controlling the disease
development. In the subsequent sections, we first discuss the genetic predisposition based on the big
data derived from human genome-wide association studies (GWAS). Then, the sophisticated epigenetic
regulations implicated in lupus pathogenesis were further divided into three parts: (1) regulation
of pre-transcriptional gene expression by DNA methylation/acetylation and histone modifications,
and the post-translational non-histone protein modifications; (2) modulation of the post-transcriptional
mRNA expression by intracellular ncRNAs; and (3) modulation of the post-transcriptional mRNA
expressions by extracellular cell-free ncRNAs. These scenarios are successively discussed in detail in
the following sections.

Table 1. Abnormal cell biology and aberrant intracellular signaling of immune-related cells in
lupus pathogenesis.

Parameter Immunological Function References

[I] Innate immune cells:
• Macrophage/Dendritic cells • Phagocytosis↓ [1–3,17]

• Lymphocyte stimulation↑

• Pro-inflammatory cytokine production↑:

IL-1β, IL-6, TNF-α, IFN-α
• Natural killer cells • Cytotoxicity↓ [5,6,18,19]

• Proliferation↓

• Immunosuppression↓

• Neutrophils • Phagocytosis↓ [4,16]
• NET formation↑

• Effects on Th1 cytokine production↓

• Effects on Th2 cytokine production↑

[II] Adaptive immune cells:
• T lymphocytes • Th1/Th2 ratio↓ [11,12,20–24]
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Table 1. Cont.

Parameter Immunological Function References

Th17/Treg ratio↑

T follicular helper cell number↑

CD45 RO+ memory T cell number↑

• B lymphocytes • Autoantibody production↑ [13–15,25–27]
• CD5+ B cell number↑

• Breg number↓

[III] Intracellular signaling:
• SOCS system
• STAT signaling
• IFN-1 signaling
• Ubiquitin regulation for

IFN-γ

• SOCS1 mRNA and signaling↓
(?)
↑

(?)

[29,30]
[31]
[32,33]
[34]

[IV] Immunometabolism • Bioenergetics↓ [35]
[V] Redox capacity
• Oxidative stresses

↓

↑
[36–40]

•Mitochondrial DNA
heteroplasmy ↑

↑: increase;↓: decrease; Treg: regulatory T cell; Breg: regulatory B cell; CD: cluster of differentiation; STAT: signal
transducer and activator of transcription; IFN: interferon; IFN-1: type 1 interferon; NET: neutrophil extracellular
trap; SOCS: suppressor of cytokine signaling.

2. Understanding the Genetics/Epigenetics of Patients with SLE in the Post-GWAS Era

In the past decades, using the data from GWAS, many authors have tried to explore the complicated
genetic structures of SLE. Large-scale genetic association studies have uncovered a substantial fraction
of the genomic heritability of SLE [41–44]. In combination with recently developed next-generation
sequencing (NGS) studies, authors have identified over 100 genetic loci in association with SLE [45,46].
However, nearly all identified variants are located within the non-coding regions [46–48]. In particular,
the variants are enriched within super-enhancers, stretch enhancers, and multiple-enhancers [49].
More interestingly, a significant proportion of risk alleles demonstrated in the GWAS play essential
roles in B cell activation [48,50] and signaling relevant to the induction of IFN-1s [51]. Accordingly,
the pathogenesis of SLE can be further accounted for by the big data with regard to its molecular
basis [52,53].

2.1. Genetic Loci Susceptible to Lupus Pathogenesis

It is conceivable that pathological autoantibodies and immune complexes (ICs) are responsible for
diverse tissue inflammation and damage via complement activation in patients with SLE. In the course
of IC formation, some of these autoantibodies per se and the ICs may activate complements and result
in deleterious effects. Normally, the Fcγ receptors and complement receptors are crucial for clearing
these noxious molecules for preventing the accompanying IC deposition and inflammatory reactions.
Defects in IC clearance-related components may result in the development of lupus. Fielder et al. [54]
have found that the presence of null alleles for C2, C4A, and C4B are relevant to genetic susceptibility
to SLE. Furthermore, immunoglobulin Fc receptors are key components for amplification of chronic
inflammation in SLE [55]. Genetic variants of Fc receptors have been found associated with SLE
susceptibility and disease severity [56,57]. Low copy numbers of FCGR3B are a risk factor for SLE [58,59].
The classical major histocompatibility complex (MHC) genes, i.e., human leukocyte antigen (HLA),
are associated with ordinary immune function. In the HLA regions, class II genes are dominant as
SLE susceptibility loci, including HLA-DRB1 (DRB1*1501 and DRB1*0301) [60,61]. In addition to the
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above IC processing and HLA-associated genetic loci, many genes are related to the immune signal
transduction. For example, Toll-like receptor (TLR)/IFN-1 and other pathways are relevant to lupus
pathogenesis [43–53]. Besides, genes specific for B cell activation and signaling implicated in the
induction of IFN-1 have also been discovered [46,47,50,51]. The HLA and non-HLA associated loci
involved in lupus pathogenesis in the post-GWAS era are listed in Table 2.

Table 2. Genetic loci associated with lupus pathogenesis demonstrated in the big data from genome-wide
association studies.

[I] Advances in genome-wide association studies on SLE [43–53].
• Immune complex processing genes:
· C1q, C2, C4
· FcγR2A, FcγR3A
· CRP
· ITGAM
• Immune signal transduction genes:
· STAT4 · TNFSF4
· IRF5 · BLK
· BAN K1 ·MECP2 (?)
· PTPN22 · PXK (?)
· PCDCD1 · XKR6 (?)
• TLR/IFN-1 pathway:
· TREX1 · IRAK1 (?)
· TNFAIP3 · STAT1 (?)
• HLA-DR:
· Disease-association: DR3, DR9, DR15, DQA1*0101
· Disease-protection: DR4, DR11, DR14
• Others:
· PDHX/CD44 · IFNK
· ICAM1-ICAM4-ICAM5· UBE2 L3
· TRAF6 · IRF8
· PPP2CA ·MAV5
· MYG9-APOL1
• IFN-1 signaling:
· IRF4 ·MYC
· IRF5 · IFIH1 (MDA5)
· ERK1 · TNFAIP3
• B cell receptor signaling:
· FcγRIIb (FcγRIIB) · PRDM1 (BLIMP1)
· BANK1 (BANK1) · CSK (C-Src tyrosine kinase, CSK)
· BLK (BLK)

The molecules in ( ) are encoded by the respective genes. SLE: systemic lupus erythematosus; IFN-1: type 1
interferon; TLR: Toll-like receptor; HLA: human leukocyte antigen.

2.2. Epigenetic Regulation in Patients with SLE

Epigenetics is the study of heritable changes in gene functions that occur without a change in genetic
codes. The basis of epigenetic regulation of gene expression includes DNA methylation/acetylation,
pre-transcriptional gene expression with chromatin remodeling by histone modifications, gene
transcription by post-translational non-histone protein modifications, and intracellular and cell-free
ncRNAs for post-transcriptional interference for mRNA expression [62]. The ncRNAs are arbitrarily
divided into microRNAs (miR with 20–24 nucleotides) and long non-coding RNAs (lncRNAs with
>300 nucleotides). These four parts are discussed in detail in the following subsections.

2.2.1. DNA Hypomethylation in SLE-CD4+ T Cells

DNA methylation is a biochemical process involving the addition of a methyl moiety to a
cytosine or adenine residue at repeated CpG dinucleotides (CpG island) in gene promoter regions
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for repressing gene expression, which is part of the epigenetic regulation process of gene expression
(Table 3) [63–74]. The biochemical process is mediated by DNA methyl-transferase (DNMT) 1, 3a,
and 3b. On the contrary, gene transcription restoration by demethylation of the promoter CpG islands
is achieved by ten-eleven translocation (TET) enzymes TET1, TET2, and TET3. The genome-wide
methylation pattern has been studied by many authors and has revealed that in addition to classical
methylation-sensitive related genes in SLE-CD4+ T cells including CD11a (ITGAL), perforin (PRF1),
CD70 (TNFSF7), CD40 ligand (TNFSF5) and PP2Acα, reported by Zhang et al. [63], the tyrosine kinase
gene (TNK2), the phosphatase gene (DUSP5) and type I IFN master regulator gene (IRF7) are also
involved as reported by Coit et al. [64]. Imgenberg-Kreuz et al. [65] further demonstrated that CD45
(PTPRC), MHC-class II, HLA-DQB2, UHRFBP1, IRF5, IRF7, IKZF3, and UBE2L3 are also associated
with SLE pathogenesis. Yeung et al. [66] have found that hypomethylation of genes related to type I IFN
pathway including MX1, IF144L, NLRC5, and PLSCR are also involved in these events, which solidify
the importance of IFN-α in lupus pathogenesis [67]. In clinical regards, Weeding et al. [68] have found
that hypomethylation of IF144L is highly sensitive and highly specific for SLE. The hypomethylation
of transcriptional factor enhancer of Zeste homolog 2 (EZH2) plays an important role in triggering
SLE disease activity. Joseph et al. [69] have reiterated that nine IFN-related genes, including MX,
IFI44L, PARP9, DT3XL, IFIT1, IFI44, RSAD2, PLSCR1, and IRF7 are implicated in type I IFN pathway
activation, and thus are relevant to the disease activity of SLE (SLEDAI). Coit et al. [64] have even
reported that CG10152449 in CHST12 hypomethylation in CD4+ T cells has a very high specificity
(64.3%) to the patients with lupus nephritis. De la Calle-Fabregat [70] concluded that DNA methylation
is essential for immune differentiation, and its derangement is highly implicated in the development
of this autoimmune disease. Zhang et al. [71] found that IFI35 hypomethylation in CD3+ T cells can
enhance the proliferation of mesangial cells relevant to lupus nephritis by deleting the methylation
status of lupus kidneys.

Table 3. Epigenetic regulations of genes in patients with SLE.

[I] DNA hypomethylation in CD4+ T cells [63–70]
• ITGAL (CD11a) • PT PRC (CD45)
• PRF1 (perforin) • UHRF1 BP1
• TNF SF7 (CD70) • IRF5
• TNF SF5 (CD40L) • IKZF3
• PP2A cα • UBE2L3
• IRF7 (IFN-1
master regulatory
gene)

•MHC-class III
• HLA-DQβ2

[II] DNA hypomethylation in lupus nephritis specimen [64,71]
• IFNγR • IFI35
• STAT1 • IRF7

[III] Increased DNA hydroxymethylation in CD4+ T cells [72–74]
• TREX1 • SOCS1
• CDKN1A • NR2F
• CDKN1B • IL15RA

• CTCF

The molecules in ( ) denote the proteins encoded by the respective genes; CD: cluster of differentiation; HLA: human
leukocyte antigen; MHC: major histocompatibility complex; IFN-1: type 1 interferon.

2.2.2. DNA Hydroxymethylation by miRNA Interference in Patients with SLE

5-hydroxymethylcytosine (5-hmc) is the oxidative derivative of 5-methylcytosine (5-mc) that is
generated by TET1, 2, and 3. The conversion of 5-mc to 5-hmc is associated with DNA demethylation
to facilitate effector T cell differentiation [72]. Sui et al. [73], by genome-wide analysis of 5-hmc in
peripheral blood of SLE patients, found that 5-hmc levels of TREX1, CDKN1A, and CDKN1B are
significantly enhanced in SLE. Furthermore, Zhao et al. [74] analyzed SLE-CD4+ T cells and identified
increased SOCS1, NR2F6, and IL15RA DNA hydroxymethylation, contributing to lupus pathogenesis.
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2.2.3. Alternation of Histone Modifications in Immune-Related Cells in SLE

Gene expression is also controlled by chromatin tightness via complex mechanisms where the
structural changes in histones are one of the mechanisms. The histone modification may include
methylation acetylation, citrullination, phosphorylation, ubiquitination, and SUMOylation, among
which methylation and acetylation are mostly investigated. Histone acetylation transferase (HAT) and
histone deacetylase (HDAC) can effectively catalyze the addition or removal of acetyl moiety on the
lysine (K) residue of histones. Acetylation relaxes the chromatin structure by diminishing the electric
charge between histone and DNA. In contrast, deacetylation tightens the chromatin structure to silence
the gene expression.

Hu et al. [75] detected the global histone H3/H4 acetylation and H3K4/H3K9 methylation in
SLE-CD4+ T cells. They found the global histone H3 and H4 hypoacetylation in active lupus-CD4+ T
cells, whereas the global H3K4 methylation was not different between patients and controls. In addition,
the histone H3 lysine 4 trimethylation (H3K4me3) variants in SLE-peripheral blood mononuclear
cells (PBMCs) were found with significant alteration of H3K4me3 structure associated with lupus
pathogenesis [76]. Zhang et al. [77] demonstrated that H4 acetylation was significantly altered in
monocytes of SLE patients, which is potentially regulated by IRF1. Zhou et al. [78] have demonstrated
again that histone H3 acetylation and H3K4me levels in CD4+ T cells were significantly elevated and
positively correlated with disease activity in SLE. They concluded that aberrant histone modifications
in TNDSF7 (CD70) promotor contribute to the development of SLE by increasing CD70 expression in
CD4+ T cells.

T cells from SLE patients exhibit permissive histone modifications at the IL-17 gene cluster
by increasing H3K18ac and decreasing H3K27me that presumably lead to overexpression of
pro-inflammatory IL-17A [78–81]. Moreover, the silencing of the IL-2 gene is caused by impairing
histone H3K18 deacetylation and H3K27me3 with an increase in methylation [78–81]. As for the immune
regulatory and anti-inflammatory IL-10 gene, authors have demonstrated that H3K18ac (acetylation) is
responsible for its increased expression in SLE [79,80]. Another pro-inflammatory cytokine, TNF-α,
has been reported to be increased in expression as associated with H3ac in SLE-monocytes [79–81].
The increase in H3K4me3 for IRF1 binding site was also reported in SLE-monocytes [82].

2.2.4. Post-Translational Non-Histone Protein Modifications in SLE

Post-translational modifications (PTMs) of proteins are defined as covalent modifications at a
specific amino acid residue in protein in a timely and signaling manner. This biochemical event
can happen in the peripheral tissues, such as at inflammation sites, or in the thymus to modify
a specific protein antigenicity. Consequently, the modified self-antigens can be taken as foreign
molecules and processed by antigen-presenting cells (APCs) to evoke autoantibody production and/or
autoreactive T cells. The PTMs found in patients with SLE include phosphorylation, methylation,
acetylation, isoaspartylation, etc. The proteins susceptible to phosphorylation in SLE are U1 small
nuclear ribonucleoprotein (snRNP) 68K [83], SSA/Ro and SSB/La [84,85], spliceosomal Sm protein that
is vulnerable to methylation in D1 and D3 subunits [86,87], the frequently ubiquitinated proteinase
serine/arginine-rich splicing factor 1 (SKSF1) [88] and myeloperoxidase (MPO) [89,90].

Table 4 lists the histone and non-histone protein modifications in immune-related cells and
post-translational molecules in SLE patients.
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Table 4. Histone and non-histone protein modifications in immune-related cells and intracellular
molecules in patients with SLE.

[I] Histone modifications in SLE

• Global histone H3 and H4 hyperacetylation in active lupus CD4+ T cells [75,76]
• H3K4me variants in PBMC of SLE [76]
• Increased H4 acetylation in SLE-monocytes [77]
• Elevated histone H3 acetylation and dimethylated H3 lysine 4 (H3K4me2) levels in
lupus CD4+ T cells [78]
• Increased H3K18ac and reduced H3K27me3 of IL-17 gene cluster in SLE-T cells [79]
• H3K18 deacetylation and H3K27 trimethylation of IL-2 in CD3+ T, CD4+ T and
effector (CD4+) T cells in SLE [79–81]
• H3K18ac elevation for IL-10 in CD3+ and CD4+ T cells in SLE [79–81]
• H3ac elevation for TNF-α in SLE-monocytes [79–81]
• H3K4me elevation for IRF1 in SLE-monocytes [82]

[II] Non-histone protein modifications in patients with SLE

• U1 small nuclear ribonucleoprotein 68 k [83]
•MAPK signaling molecules [84]
• Complex ribonuclear proteins SSA/Ro and SSB/La [84,85]
• Spliceosomal Sm protein [86,87]
• Serine/arginine rich splicing factor 1 (SRSF1) [88]
• Neutrophilic myeloperoxidase

H: histidine; K: lysine; R: arginine; ac: acetylation; me: methylation; CD: cluster of differentiation; PBMC: peripheral
blood mononuclear cell; me: methylation; ac acetylation; MAPK: mitogen activated protein kinase; Sm: Smith.

2.3. Aberrant Expression of ncRNAs in Patients with SLE

The most recently discovered epigenetic mechanisms for gene expression are dependent on
ncRNAs. These non-translatable small nucleotides, including microRNAs (miRs, with 20–24 bp in
size) and long non-coding RNAs (lncRNAs <300 bp in size), were initially regarded as housekeeping
molecules. However, these ncRNAs not only act as post-transcriptional regulators for mRNA
expression but can interact mutually between themselves (miRNAs and lncRNAs) to further modulate
the epigenetic, transcriptional, translational, and peptide localization modifications [91,92]. In addition
to the intracellular ncRNAs, more and more aberrant extracellular cell-free ncRNA expression in
plasma, saliva, urine, or tissues has been identified as associated with autoimmune and inflammatory
diseases [93,94].

2.3.1. Aberrant Intracellular ncRNA Expression Associated with Pathogenesis and as
Biomarkers/Biosignatures in SLE Patients

Fan et al. [95] identified that microRNA (miR)-31 is a novel enhancer for IL-2 production during
T cell activation, and decreased expression of miR-31 is now considered to be a unique molecular
mechanism underlying IL-2 deficiency in SLE. Lu et al. [96] demonstrated that under-expressed miR-145
and over-expressed miR-224 accelerate T cells to undergo activation-induced cell death (AICD) in SLE
since STAT1 mRNA is targeted by miR-145 and apoptosis inhibitory protein 5 (AIP5) is targeted by
miR-224. These aberrant enhancement events would be associated with lupus nephritis by stimulating
STAT1 expression in SLE-T cells. The same group further demonstrated that Ca++ influx-regulated
miRNAs, miR-524-5p and miR-449b, are overexpressed in SLE-T cells. These findings may explain the
enhanced INF-γ production and are in parallel with SLE disease activity (SLEDAI) [97]. Khoshmirsafa
et al. [98] proved that miR-21 and miR-155 levels in PBMC are significantly greater in patients with
active lupus nephritis and can be used as biomarkers for SLE patients.

On the other hand, it is believed that lncRNAs mediate “sponge-like” effects on different miRs and
consequently suppress miR-mediated activities. Li et al. [99] showed that downregulated uc001ykl.1
and ENST00000448942 in SLE-CD3+ T cells. The expression of uc001ykl.1 is correlated with ESR and
CRP, whereas ENST00000448942 level is correlated with ESR and anti-Sm antibodies. Wang et al. [100]
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demonstrated that lncRNAs, ENST00000604411.1, and ENST00000501122.2, were upregulated,
and lncRNAs, lnc-HSFY2-33, and lnc-SERPINB9-1:2, were down-regulated in SLE-monocytes/dendritic
cells. They concluded that the expression levels of ENST00000604411-1 and ENST00000501122.2 were
positively correlated with SLEDAI scores, respectively. Cao et al. [101] found that low complement C3
levels were positively correlated with decreased TUG1 expression in PBMCs in SLE with nephritis.
Geng et al. [102] revealed that NONHSA087499.2 level correlated with anti-RNA antibody and
ENST00000356215 level correlated with olfactory thresholds and oral ulcers. NONHSAT208182.1
correlated with the presence of fever or unstable gait. NONHSAT106801.2 correlated with B cell
and fever. NONHSAT024353.2 correlated with serum IgG level and the presence of anti-SSA.
NONHSAT039491.2 was associated with lupus activity and the presence of anti-dsDNA, anti-RNP,
and other neuropsychiatric manifestations. Gao et al. [103] have found that MALTAT1 is involved in
type 1 IFN-mediated SLE by up-regulating OAS2, OAS3, and OASL, confirming further the report by
Ye et al. [104] claiming that full high-throughput sequencing analysis of lncRNA expression profile in
SLE-PBMCs could reveal a robust “IFN signature”. A comprehensive review of ncRNA in SLE-CD4+ T
cells with new insights into lupus pathogenesis has been published by Gao et al. [105]. Figure 1 depicts
the involvement of intracellular ncRNAs in the pathogenesis, use as biomarkers/biosignatures, and
disease activity monitoring indicators in patients with SLE.
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2.3.2. Abnormal Cell-Free ncRNA Expression as Biomarkers/Biosignatures and in the Pathogenesis
of SLE

The extracellular vesicles (EVs) carry nucleic acids, proteins, and lipids, and play essential roles in
many intercellular communications and intracellular functions. The size of EV ranges from 30 nm to
5 µm, including exosomes of 30–100 nm, microvesicles/microparticles of 100–1000 nm, and apoptotic
bodies of ~5000 nm. The nucleic acids contained in EVs may include DNAs, mRNAs, and ncRNAs [106].
These small lipid-bilayered spherical vesicles are released by different kinds of cells and can be found in
different biofluids such as plasma, urine, saliva, CSF, synovial fluid, and breast milk [107]. When EVs
are transferred to remote recipient cells, the carried-on epigenetic signals can be transferred as important
commands in cell-cell communications [108]. Recent investigations have revealed that the EV-derived
ncRNAs and cell-free lncRNAs in the body fluid play crucial roles in autoimmune and inflammatory
diseases and thus may not only serve as biomarkers but as therapeutic agents or targets, especially for
SLE [106,109]. In this review, we focus on the aberrant expression of cell-free ncRNAs in the plasma,
urine, and nephritic tissues of SLE patients in the following discussion.

2.3.3. An Abnormal Cell-Free ncRNA Expression in SLE

Wang et al. [110] firstly reported that serum and urinary cell-free miR-146a and miR-155 participated
in the pathophysiology and could serve as biomarkers for SLE. Carlsen et al. [111] demonstrated
that seven circulating miRs are involved in the pathogenesis of SLE in which miR-142-30 and
miR-181a are increased, but miR-106a, miR-17, miR-20a, miR-203, and miR-92a are decreased in
the plasma. In addition, the expression of miR-342-3p, miR-223, and miR-20a was significantly
decreased in SLE patients with active nephritis. Among these seven miRs, four can target transforming
growth factor (TGF)-β1 signaling pathways, and the other three modulate the regulation of cell
apoptosis, interactions between cytokine receptors, T cell development, and cytoskeletal organization.
Furthermore, Wang et al. [112] demonstrated that the up-regulation of serum miR-130b-3p could
negatively influence 3′-UTR of ERBB2IP to suppress its expression and play an important role in the
early stages of lupus nephritis.

Amr et al. [113] have attempted to investigate the regulatory biomarkers in T cell activation in
SLE patients. They found that miR-31 was expressed lower while miR-21 is expressed higher in SLE,
suggesting a significant association between miR-21/miR-31 balance and their impact on tuning the
IL-2 pathway of T cell activation in SLE. Kay et al. [114] reported three decreased cell-free circulatory
miRs, miR-125b, miR-101, and miR-375, which were indicative of atherosclerosis.

For diagnostic purposes, authors have reported a number of circulating miRs as novel biomarkers
associated with clinical parameters. Kim et al. [115] showed that hsa-miR-30e-5p, hsa-miR-92a-3p,
and hsa-miR-223-3p were significantly up-regulated and present in SLE plasma, among which
hsa-miR-223-3p was significantly related to oral ulcers and lupus anti-coagulant. Zeng et al. [116]
confirmed that elevated miR-271b-5p and miR-5100 expression in SLE serum could be used as
biomarkers associated with clinical parameters. In addition, Navarro-Quiroz et al. [117], by analyzing
profiles of miRs in peripheral blood from patients with class IV lupus nephritis, identified 14 miRs to be
associated with lupus nephritis. Zhang et al. [118] confirmed that 14 B cell-related circulating cell-free
miRs (miR-103, miR-150, miR-20, miR-223, miR-27a, miR-15b, miR-16, miR-181a, miR-19b, miR-22,
miR-23a, miR-25, miR-92a, and miR-93) are significantly decreased in SLE-plasma. Furthermore, the
down-regulated expression of miR-19b, miR-25, miR-93, and miR-15b is associated with lupus disease
activity. The lower expression of miR-15b and miR-22 is related to lupus nephritis with low eGFR.
Zhang et al. [119] confirmed the positive correlation of plasma miR-200c-5p with SLEDAI scores and
proteinuria, and that of miR-200b-3p with proteinuria, and negative correlation of miR-141 with serum
creatinine and SLEDAI scores. Nakhjavani et al. [120] demonstrated that plasma levels of miR-21,
miR-150, and miR-423 are associated with lupus nephritis with renal fibrosis.

The role of cell-free lncRNAs as biomarkers for disease or disease activity has also been explored.
Abd-Elmawla et al. [121] identified the roles of plasma cell-free lncRNA, ANRIL (antisense non-coding
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RNA in the INK4 locus), NOS3-AS, and APOA1-AS expression in the development of vasculopathy and
inflammation in SLE patients. They found increased plasma levels of ANRIL were positively associated
with menopause and SLEDAI and negatively correlated with C3 levels. NOS3-AS had a negative
correlation with NOX and HDL but a positive correlation with LDL-C, hypertension, and metabolic
syndrome. APOA1-AS had a negative correlation with HDL-C and a positive correlation with LDL-C
as well as metabolic syndrome, adhesion molecule expression, and oxidized low-density lipoprotein,
OXLDL. They have concluded that the three lncRNAs play a pivotal role in the development of
atherosclerosis via their atherogenic and inflammatory effects. Besides, Wu et al. [122] confirmed
that decreased lncRNAs, GAS5, lnc7074 and increased lnc0597, lnc0640, and lnc5150 in plasma could
be used as SLE biomarkers. The co-expression analysis showed that GAS5, lnc0640, and lnc5150
might participate in the lupus pathogenesis via the signaling pathway. Despite the above-mentioned
observation, Xu et al. [123] provided a novel mitogen activated protein kinase (MAPK) signaling
pathway study of lncRNA-related and miR-related competing endogenous RNAs (ceRNAs) networks
for the exploration of lupus pathogenesis. They deduced that the differentially expressed lncRNAs (DE
lncRNAs), myocardial infarction associated transcript (MIAT) and nuclear enriched abundant transcript
-1 (NEAT1), and three novel miRs (hsa-miR-145, hsa-miR-17, and hsa-miR-143) play crucial roles in
lupus pathogenesis. It is worthy to note that some of the same cell-free lncRNAs may be implicated
in different autoimmune or rheumatic inflammatory diseases, among which a decreased expression
of lncRNA growth arrest-specific 5 (GAS5) has been found in SLE, pediatric inflammatory bowel
disease [124,125], and rheumatoid arthritis [126]. Lucafò et al. [125] unveiled that down-regulation
of GAS5 can up-regulate both MMP2 and MMP9 production to induce tissue inflammation and
destruction. Another lncRNA, NEAT1, is up-regulated in the serum of both SLE and multiple sclerosis
patients [127]. Ma et al. [128] have reported that down-regulation of lncRNA NEAT1 can inhibit mouse
renal mesangial cell proliferation, tissue fibrosis, and inflammation, whereas cell apoptosis is, on
the contrary, promoted in diabetic nephropathy. Recently, Dong et al. [129] have demonstrated that
lncRNA NEAT1 is overexpressed in the granulocytic myeloid-derived suppressor cells in autoimmune
MRL/lpr mice. These cells can induce IFN-1 signaling activation of B cell via B cell-activating factor,
BAFF, to promote autoantibodies production. These findings may support the hypothesis that a
common etiologic factor exists in different autoimmune and inflammatory diseases.

Figure 2 summarizes the roles of the aberrant cell-free miR and lncRNA expressions in the lupus
pathogenesis and as biomarkers/biosignatures of SLE disease activity and lupus nephritis.

Although some EV-associated miRs have been regarded as biomarkers for kidney damage in
SLE, some authors in recent years have confirmed that urinary exosomes are the stable source of miR
biomarkers in lupus nephritis.
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Figure 2. Aberrant cell-free ncRNA expression implicated in the pathogenesis, disease
biomarkers/biosignatures, and different clinical parameters in patients with SLE. APOA1: apoprotein
A1; AS: atherosclerosis; hsa: Homo sapiens; ANRIL: antisense non-coding RNA in the INK4 locus; MIAT:
myocardial infarction associated transcript; NEAT: nuclear enriched abundant transcript; OS3: nitric
oxide synthase 3; NOX: nitric oxide. See the other abbreviations in the main text.

2.3.4. Imbalanced Urinary Cell-Free ncRNA Expression in SLE Patients with Nephritis

A number of recent studies revealed that imbalanced expression of many miR’s is present in the
PBMCs and kidney tissue of SLE patients. Therefore, the eligibility for the detection of miR expression
in urine as a liquid biopsy and useful biomarkers for lupus nephritis (LN) was fervently debated.
Wang et al. [130] demonstrated decreased urinary cell-free miR-200a, miR-200c, miR-141, miR-409,
and miR-192 in SLE patients. Later, the same group reported that urinary miR-146a and miR-155
would play important roles in lupus pathophysiology and could become potential biomarkers for
diagnosis, a disease activity monitoring tool, and therapeutic agents or targets in SLE [131]. In regards
to correlating urinary miR expression and kidney inflammation, Ichii et al. [132] explored epigenetics
and found that decreased miR-26a expression correlated with the progression of podocyte injury
in autoimmune glomerulonephritis. Perez-Hernandez et al. [133] detected urinary cell-free miRs
and concluded that increased miR-146a discriminates out the presence of active LN and can be a
potential non-invasive disease biomarker. Sole et al. [134] found miR-29c in urine correlates with
the degree of nephritis chronicity and could be used as a novel non-invasive biomarker to indicate
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the early progression of LN to renal fibrosis in SLE patients. Cardenas-Gondalez et al. [135] profiled
2401 urinary cell-free miRs and demonstrated that down-regulation of miR-3201 and miR-1273e
correlated with endocapillary inflammation in LN. Sole et al. [136] studied the biopsy-proven LN
patients and concluded that cell-free urinary miR (miR-21, miR-150, and miR-29c) signatures could
be used for early diagnosis of renal fibrosis in LN. Tangtanatakul et al. [137] further confirmed that
down-regulation of let-7a and miR-21 in urine exosomes obtained from LN could predict disease flare.
Interestingly, Li et al. [138] studied the relationships between polyomavirus BK infection (BKV) and
lupus pathogenesis. They have concluded that an elevated urinary BKV viral load with a decreased
miR-B1 level implies the presence of LN. From a therapeutic point of view, hypoxia-inducible factor
(HIF)-1α is regarded as a potential common target for LN treatment. HIF-1α inhibitor, miR-206, can
reduce nonspecific mesangial proliferation as well as IL-8, C-C chemokine ligand (CCL)2, CCL3,
and C-X-C chemokine ligand (CXCL)1-induced mesangial cell proliferation, and IL-6/vascular cell
adhesion molecule (VCAM)-1 expression in endothelial cells [139]. Garcia-Vives et al. [140] proved that
urinary exosomal miR-135g-5p, miR-107, and miR-31 are effective novel markers for HIF-1α inhibition
to predict clinical outcomes and LN recovery. Figure 3 summarizes the urinary cell-free miR expression
in the pathogenesis, or as biomarkers/biosignatures and kidney fibrosis in patients with LN.Biomolecules 2020, 10, x 12 of 23 
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A critical review of aberrant expression of intracellular, circulating, and urinary exosomal miRs to
target mRNAs and their pathological effects in patients with SLE have been made [62].

2.3.5. Aberrant ncRNA Expression in the Kidney Tissues of Patients with LN

It is conceivable that differential expression of miRNAs in peripheral blood, urine, and kidney
tissues occurs in patients with LN. Lu et al. [141] studied the intra-renal expression of miRNAs that
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included glomerular and tubular interstitial tissues in LN. They found lower glomerular and higher
tubulointerstitial (TI) expression of miR-638. Both glomerular and TI expression of miR-198 was higher
than in normal kidney, whereas higher miR-146a was only found in lupus glomeruli. For clinical
correlation, the group noted that higher miR-638 expression in TI was significantly correlated with
proteinuria and disease activity, while higher glomerular miR-146a expression was correlated with
estimated GFR and histological activity index. In addition to kidney inflammation, some miRs
also show profibrotic or anti-fibrotic effects. Zhou et al. [142] have compared miR expression in
biopsied renal tissues from LN and found that miR-150 positively correlated to chronicity scores and
profibrotic protein expression in both proximal tubules and mesangial cells through downregulation
of SOCS1. Furthermore, Krasoudaki et al. [143] have demonstrated 24 miRs were dysregulated in
human LN tissues, among which miR-422a showed the highest upregulation (17 fold) in active LN with
fibrinoid necrosis. Their transfection studies showed that miR-422a directly targets kallikrein-related
peptidylase 4 (KLK4) mRNA, a serine esterase with putative renal protective activity. On the contrary,
Costa-Reis et al. [144] showed that miR-76a and miR-30b were decreased in kidney and urine of LN
patients. These two miRs may control IFN-α induced human epidermal growth factor receptor 2
(HER-2) mediated mesangial cell proliferation. The lack of these two miRs may lead to proliferative
LN. In the same regard, Yao et al. [145] demonstrated that down-regulated hsa-miR-371-5p in human
mesangial cells from LN might promote proliferation and decrease the apoptosis of glomerular
mesangial cells. The group also identified HIF-1α as the direct target gene of hsa-miR-371-5p in
mesangial cells. The overexpression of this miR would ameliorate mesangial cell proliferation in
LN. In an animal experiment, Liu et al. [146] found that the expression of miR-410 in kidney tissue
of MRL/lpr mice was decreased compared to that in BALB/C mice, whereas IL-6 was overexpressed
in the same model of MRL/lpr. Luciferase assay also showed miR-410 could directly bind to the
3′-UTR region of IL-6 gene to suppress IL-6 production. The over-expression of miR-410 significantly
suppressed TGF-β1 and collagen I/III gene expression in a cell model. These results have suggested
that miR-410 can be used to indicate suppressed renal fibrosis in LN. Another animal study led
by Leiss et al. [147], by using pristane-induced miR-155 deficient mice, demonstrated that miR-155
deficient mice had significantly less pulmonary and renal diseases associated with lower serum
autoantibodies and decreased Th2, Th17, and CD4+CD25+(FoxP3−) cells. A similar study conducted by
Kong et al. [148] showed that transfection of the miR-155 into the cultured cells might create a condition
mimicking CXCL-13-treated human glomerular mesangial cells and result in a significantly reduced
proliferation rate due to decreased phosphorylation of the CXCR5-extracellular signal- regulated
kinase (ERK) signaling pathway as well as TGF-β1 production. Li et al. [149] injected miR-183 into
MRL/lpr mice and found that the procedure could result in a reduction of anti-DNA autoantibodies
and immune complexes in the autoimmune lupus mice associated with restoration of their Treg and
Th17 cell populations and prolonged their survival via targeting of the mammalian target of rapamycin
(mTOR) pathway.

In contrast, Cui et al. [150] observed that higher expression of miR-198 in lupus renal tissue
was correlated with disease activity. In addition, miR-198 could directly bind to phosphatase and
a tensin homolog deleted on chromosome ten (PTEN) 3′-untranslated region. Thus, miR-198 may
promote the proliferation of glomerular mesangial cells to contribute to SLE progression by targeting
PTEN. Zheng et al. [151] reported that down-regulated miR-152 expression in LN tissue was inversely
correlated to 24 h urine protein excretion and serum creatinine and could directly target macrophage
migration inhibitory factor (MIF). Transfection of miR-152 may alleviate LN severity and chronicity
index through down-regulation of MIF-induced COL1A1. By studying juvenile LN, Cai et al. [152] have
demonstrated that decreased expression of miR-145 in renal vascular smooth muscle cells increased
the vascular damage in LN. A functional study revealed miR-145 can suppress PDGF-BB induced cell
proliferation, migration, and phenotypic differentiation of human vascular smooth muscle cells and
may become a new target for treating renal vascular lesions in LN. Figure 4 depicts the crucial ncRNAs
expression in kidney tissues to reflect their pathogenetic roles in patients with LN.
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tensin homolog deleted on chromosome ten; MIF: Macrophage migration inhibitory factor; SOCS:
Suppressor of cell signaling; HIF: Hypoxia-inducible factor; Mϕ: macrophage; RVSMC: rat vascular
smooth muscle cell.

2.3.6. Circular RNAs Expression Profile in SLE

Circular RNAs (circRNAs) are a group of ncRNAs forming covalently closed RNA circles that
are derived from exon, intron, untranslated or intergenic regions of the genome in mammals [153].
circRNAs can regulate gene expression by acting as competitive endogenous RNAs (ceRNAs) to serve
as miRNA sponges for the sequestration of miRNAs from modulating gene transcription. Although
accumulating data have supported the involvement of circRNAs in a number of human cancers such
as hepatocellular, esophageal, and gastrointestinal carcinomas [154–157], only a few reports have
identified abnormal circRNA expression in patients with SLE.

Li et al. [158] were the first group to speculate the roles of circRNAs in wiping up miRs in the
initiation and progression of SLE. Later, the group revealed that down-regulation of hsa-circ-0045272 in
SLE-T cells potentially enhances cell apoptosis and IL-2 production [159]. Zhang et al. [160] have isolated
CD4+ T cells from SLE patients and conducted circRNA microarray analysis. They identified that
down-regulated hsa-circ-0012919 increased DNMT1 expression, reduced CD70 and CD11a expression,
and reversed the DNA hypomethylation of CD11a and CD70 in SLE-CD4+T cells. The molecular
mechanism of hsa-circ-0012919 relied on the regulation of KLF13 and RANTES by sponging (absorbing)
miR-125a. It was suggested that hsa-circ-0012919 could be used as a biomarker for SLE. Furthermore,
Quyang et al. [161] analyzed the plasma from patients with LN and demonstrated that upregulation of
plasma circRN002453 in LN patients was related to nephritis severity and could become a potential
biomarker for LN diagnosis. Li et al. [162] have even suggested that comprehensive circRNA profiling
of plasma could be used as novel biosignatures for SLE. Cortes et al. [163] concluded that circRNAs
are not only involved in the physiology and pathophysiology of acute and chronic inflammation but
can serve as novel biomarkers/biosignatures for the disease activity of SLE. Figure 5 summarizes the
possible acting mechanisms of circRNAs in pathogenesis and as biomarkers in SLE.
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3. Conclusions

Recent investigations have revealed that intracellular and extracellular ncRNAs, including miRs,
lncRNAs, and circRNAs, are the key molecules for post-transcriptional regulation of mRNA expression.
The extracellular ncRNAs include free and exosomal ncRNAs, which are distributed in plasma, urine,
saliva, and other body fluids to mediate remote cell-cell or cell-tissue communication. The aberrant
ncRNA expression may derange the immune-related cell functions and lead to autoimmunity. SLE,
as an archetype of systemic autoimmune disease, is found to have multi-organ damages with a diversely
deranged ncRNA expression associated with a wide spectrum of immune dysfunctions. However, only
a bunch of ncRNA expression profiling data has been reported in the literature without consistency.
Moreover, the cause-effective relationships between deranged ncRNA expression and functional
abnormalities remain largely uncertain. It is expected that unified microarray analysis kits can probably
solve this problem. Since lncRNAs and circRNAs may serve as sponges for miRs, the interactions
between lncRNA and miR and between circRNA and miR are interesting issues for unraveling
post-transcriptional regulation in the future. It is expected that more lncRNAs and circRNAs will be
identified for understanding the pathophysiological roles or for taking as biomarkers/biosignatures in
patients with SLE and LN. To utilize ncRNA mimics or inhibitors as tools for targeting the lesional
focus will also become a novel therapeutic strategy in the treatment of SLE.

4. Prospective

LN is one of the severe complications in patients with SLE. It is expected that urinary exosomal and
cell-free ncRNAs may directly reflect the pathophysiology and represent as pathological biomarkers
in LN. In conjunction with ncRNA expression in LN tissues in situ, the urinary stable exosomal
ncRNA expression would become more specific and reliable biomarkers for the diagnosis, monitoring,
and finally therapeutic effectiveness in patients with LN.

The intrinsic and environmental factors such as mental stresses, hormones, infections, and other
random speculative factors in the initiation of ncRNA dysregulation in SLE need further investigation.
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