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Abstract: Glioblastoma is a heterogeneous glial cell malignancy with extremely high morbidity and
mortality. Current treatment is limited and provide minimal therapeutic efficacy. Previous studies
were reliant on cell lines that do not accurately reflect the heterogeneity of the glioma microenvironment.
Developing reliable models of human glioblastoma is therefore essential. Direct culture of human
brain tumours is often difficult and there is a limited number of protocols available. Hence, we have
developed an effective method for the primary culture of human glioblastoma samples obtained
during surgical resection. Culturing tumour tissue direct from human brain is advantageous in that
cultures (1) more closely resemble true human disease, relative to the use of cell lines; (2) comprise a
range of cellular components present in the natural tumour microenvironment; and (3) are free of
added antibodies and reagents. Additionally, primary glioblastoma cultures are valuable in studies
examining the effects of anti-cancer pharmaceuticals and therapeutic agents, and can be further
used in live cell imaging, immunocytochemistry, flow cytometry and immunoassay experiments.
Via this protocol, cells are maintained in supplemented medium at 37 ◦C (5% CO2) and are expected
to achieve sufficient confluency within 7 days of initial culture.

Keywords: brain tumour; glioma; glioblastoma; cell culture; tissue culture; primary cell culture

1. Introduction

Glioblastoma is the most predominant and aggressive central nervous system malignancy,
accounting for over 60% of all brain tumours in adults [1]. Current treatments are limited in range
and efficacy, with patients surviving for a median of only 14 to 15 months post-diagnosis [1]. Hence,
a deeper understanding of glioblastoma pathology and the mechanisms of tumour pathogenesis is
pivotal for research progression. The heterogeneity of glioblastoma is reflected by the crosstalk between
tumour cells, microglia and a multitude of invading immune cells and cytokines [2,3]. This presents as
a hurdle to overcome when developing reliable models of glioblastoma.

Conventionally, glioblastoma research has been based on data obtained from homogeneous,
murine and patient-derived cell lines. While cell lines provide a rapid and reproducible means
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of in vitro experimentation [4], they do not accurately mimic the heterogeneity of tumours in vivo.
Glioblastoma cell lines have been demonstrated to express markedly different gene expression profiles
when compared to primary tumours [5,6] and are susceptible to genetic drift across passages that alter
experimental reproducibility [4].

Importantly, surgically resected human glioblastoma tissue retains the molecular and cellular
characteristics of the original tumour mass. These samples have also been demonstrated to express
microglia, the largest immune cell infiltrates of the glioblastoma microenvironment [7,8]. Other immune
cells present may include lymphocytes, neutrophils, monocytes/macrophages and myeloid-derived
suppressor cells [9–12]. Cellular infiltrates serve a range of functions that disparately affect tumour
growth. Hence, relative to cell lines, the culturing of samples directly from surgically resected
glioblastoma more closely resembles true disease and takes into account the effect of infiltrating
immune cells. Existing protocols for the culture of primary glioblastoma tissue are limited and have
limited growth efficacy [13]. In light of this, we demonstrate a simple, reliable and efficient protocol
for the direct culture of human glioblastoma tissue. Importantly, this protocol processes tumour
samples for culturing immediately after surgical resection, which minimizes potential environmental
disruptions that may significantly affect the tumour microenvironment. This method is particularly
useful for drug testing in vitro, and can be used to assess the presence of various cell populations
and biomarkers within the tumour microenvironment via immunocytochemistry, flow cytometry
and immunoassays.

2. Experimental Design
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2.1. Materials

2.1.1. Poly-D-Lysine Plate Coating Solution

• Poly-D-lysine hydrobromide powder, 5 mg (Merck, Australia; Cat. no.: P6407)
• Sterile distilled water

2.1.2. Enzymatic Tissue Dissociation Solution

• Papain from papaya latex (Merck, Australia; Cat. no.: P3125)
• Earle’s Balanced Salt Solution (EBSS; Thermo Fisher Scientific, Australia; Cat. no.: 14155063)

2.1.3. Culture Medium

• Minimum Essential Medium, 1X, 500 mL (Thermo Fisher Scientific, Australia; Cat. no.: 10370021)
• D-glucose (Merck, Australia; Cat. no.: G7021)
• L-glutamine (Thermo Fisher Scientific, Australia; Cat. no.: 25030081)
• Penicillin-streptomycin (Thermo Fisher Scientific, Australia; Cat. no.: 15070063)
• Heat-inactivated fetal bovine serum (Thermo Fisher Scientific, Australia; Cat. no.: 10100147)
• Corning®MITO+ Serum Extender (Merck, Australia; Cat. no.: DLW355006)

2.2. Equipment

• Class II biological safety cabinet
• 12-well cell culture plates (Merck, Australia; Cat. no.: SIAL0512)
• 18 mm glass coverslips (Thermo Fisher Scientific, Australia; Cat. no.: CB00180RA020MNT0)
• Paraffin
• Surgical tweezer
• 50 mL syringe (Merck, Australia; Cat. no.: Z683698)
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• Syringe filter, 0.2 µm pore (Merck, Australia; Cat. no.: CLS431229)
• 50 mL centrifuge tubes (Merck, Australia; Cat. no.: CLS430828)
• Petri dish (Merck, Australia; Cat. no.: P5481)
• Surgical scalpel
• Pipette Boy (Eppendorf, Australia; Cat. no.: 4430000018)
• 10 mL pipettes (Sterilin, Australia; Cat. no.: 47510)
• Pasteur pipette with rubber bulb
• Bunsen burner
• Water bath set at 37 ◦C
• Automated cell counter
• Humidified 5% CO2/95% O2 incubator, 37 ◦C (Panasonic; Model no.: MCO-170AICUV-PE)

3. Procedure
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Figure 1. Fresh surgically resected human glioblastoma tissue (a) prior to and (b) after fragmentation 

with a surgical scalpel. 

9. Transfer fragmented sample into the warm EBSS and papain solution and place in a water bath 

at 37 °C for 40 min. 

10. Gently aspirate sample with a 10 mL pipette and transfer into a new 50 mL centrifuge tube with 

3 mL culture medium. Wash in triplicate with culture medium, topping up with new culture 

medium after each wash. 

Ensure ALL experiments are completed under sterile conditions with appropriate aseptic
techniques to minimize sample contamination and exposure to human tissue.

3.1. Poly-D-Lysine Plate Coating Time for Completion: 3 Days

1. Add 50 mL of autoclaved distilled water into 5 mg stock poly-D-lysine powder using a 50 mL
syringe with a 0.2 µm pore syringe filter. Re-cap the stock bottle and shake lightly.

2. Transfer one 18 mm glass coverslip per well onto 12-well cell culture plates. NOTE: A single
50 mL poly-D-lysine solution can be used to prepare approximately thirteen poly-D-lysine-coated
12-well cell culture plates.

3. Add 300 µL of poly-D-lysine solution per well and leave at room temperature (25 ◦C) for 2 h.
4. Aspirate residual poly-D-lysine solution in each well and leave in sterile conditions at room

temperature for 48 h or until the wells have dried.

5.
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Figure 1. Fresh surgically resected human glioblastoma tissue (a) prior to and (b) after fragmentation 

with a surgical scalpel. 

9. Transfer fragmented sample into the warm EBSS and papain solution and place in a water bath 

at 37 °C for 40 min. 

10. Gently aspirate sample with a 10 mL pipette and transfer into a new 50 mL centrifuge tube with 

3 mL culture medium. Wash in triplicate with culture medium, topping up with new culture 

medium after each wash. 

PAUSE STEP: Seal plates with paraffin and store at 2–8 ◦C until usage.

3.2. Sample Preparation and Tissue Culture. Time for Completion: 75 Min for Sample Preparation. 7 Days to
Reach 80% Confluency

6. Pre-warm 10 mL of EBSS in a 50 mL centrifuge tube and culture medium at 37 ◦C.
7. Immediately after collection of the fresh sample, add 200 units of papain from papaya latex into

warm EBSS. NOTE: This concentration of papain applies to a sample of approximately 5 mm2.
Increase concentration with larger samples.

8.
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Figure 1. Fresh surgically resected human glioblastoma tissue (a) prior to and (b) after fragmentation 

with a surgical scalpel. 

9. Transfer fragmented sample into the warm EBSS and papain solution and place in a water bath 

at 37 °C for 40 min. 

10. Gently aspirate sample with a 10 mL pipette and transfer into a new 50 mL centrifuge tube with 

3 mL culture medium. Wash in triplicate with culture medium, topping up with new culture 

medium after each wash. 

CRITICAL STEP: Transfer the tumour tissue into a petri dish and gently fragment the tissue
with a surgical scalpel (Figure 1).
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Figure 1. Fresh surgically resected human glioblastoma tissue (a) prior to and (b) after fragmentation
with a surgical scalpel.
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9. Transfer fragmented sample into the warm EBSS and papain solution and place in a water bath at
37 ◦C for 40 min.

10. Gently aspirate sample with a 10 mL pipette and transfer into a new 50 mL centrifuge tube with
3 mL culture medium. Wash in triplicate with culture medium, topping up with new culture
medium after each wash.

11.
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CRITICAL STEP: With a gentle up and down pipetting motion, use a Pasteur pipette with a
rubber bulb to disassociate the cells, creating a single cell suspension. TIP: Soften the edges of the
Pasteur pipette with a Bunsen burner to minimize disruption to cellular integrity.

12. Count the cells using an automated cell counter and top up accordingly with culture medium to
make up 5 × 105 viable (live) cells/mL. Alternatively, a haemocytometer can be used.

13. Homogenize the cell solution by pipetting up and down and transfer 1 mL per well onto 12-well
cell culture plates pre-coated with poly-D-lysine. Maintain cells in a humidified incubator at
37 ◦C with 5% CO2 for 7 days or until cells are 80% confluent. NOTE: For optimal growth, replace
the culture medium every 3–4 days.

4. Expected Results

It is important to note that due to existing heterogeneity between each tumour, there may be a
difference in proliferation rate per culture. The time taken to reach 80% confluency might vary between
each culture; we have previously cultured 20 tumours using this protocol, of which 17 (85%) reached
80% confluency within a time span of 7 days.

Surgically resected human glioblastoma tissue cultured via this protocol closely reflect the cellular
heterogeneity of the original tumour. In particular, glioma cells as well as microglia and other immune
cells are expected to contribute to the vast majority of the cellular architecture [7,8]. In Figure 2, we show
the presence of glioma cells marked by glial fibrillary acidic protein (GFAP), as well as CD11b-positive
immune cell infiltrates in culture. CD11b is known to be expressed on the surface of many immune
cells, including tumour-associated microglia/macrophages, monocytes, neutrophils and natural killer
cells [14–16]. Cells in culture were fixed at 80% confluency, stained via immunocytochemistry and
visualized using fluorescence confocal microscopy.
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Figure 2. Immunocytochemical staining and fluorescence confocal microscopy of primary human
glioblastoma culture fixed at 80% confluency. Glioma cells were stained with a primary anti-glial
fibrillary acidic protein (GFAP) antibody and secondary Texas Red X. Cell nuclei were stained with
DAPI. (a) Stained cultures at 40 × objective. (b) Stained cultures at 63 × objective. (c) Immune cell
stained with anti-CD11b (red) present within a glioblastoma culture imaged with a 40X objective.

Troubleshooting

Potential issues arising and their respective troubleshooting solutions are presented in Table 1.
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Table 1. Potential issues arising and respective troubleshooting.

Step Issue Causes Suggestions

11 Tissue does not easily
dissociate when pipetted

1. The tissue sample was
not sufficiently
fragmented in Step 8

2. The quality/strength of
the papain enzyme
solution might
be compromised

3. The tissue was not left in
papain solution for
long enough

1. Ensure the tissue is
fragmented into smaller
(<2 mm) pieces in Step 8

2. Ensure proper storage of
papain solution when not
in use. Ensure that the
papain solution has not
expired. Increase the
concentration of papain
with larger samples.

3. Leave sample in papain
solution for an additional
5–10 min

13

Larger chunks of tissue
are present in

homogenized cell
solution

Tissue was not properly
dissociated in Step 11

1. Follow the suggestions for
Step 11 (above) to ensure
tissue is
properly dissociated.

2. Use a 10 mL pipette to mix
cell solution and allow
larger pieces of tissue to
settle at the bottom.
Exclude the larger pieces
of tissue when transferring
onto 12-well culture plates.
Change culture medium
after 3 days.

13 Cells are not becoming
confluent

1. The tissue was damaged
by over-fragmentation in
Step 8

2. The tip of the Pasteur
pipette was broken or
too sharp, which
damaged cellular
integrity when pipetted

3. The quality of the
culture medium has
been compromised

1. Ensure tissue is
fragmented gently in
Step 8

2. Smoothen the tip of the
Pasteur pipette with a
Bunsen burner prior to
usage. Ensure tip is
not damaged.

3. Ensure proper storage of
culture medium when not
in use and that the
medium or any
component of the medium
has not expired.

5. Reagents Setup

5.1. Poly-D-Lysine Plate Coating Solution

• Poly-D-lysine hydrobromide powder, 5 mg
• 50 mL sterile distilled water

5.2. Enzymatic Tissue Dissociation Solution

• 200 units papain from papaya latex (approximately 155 µL in 10 mL EBSS)
• 10 mL EBSS

5.3. Culture Medium

• Minimum Essential Medium, 1 ×, 500 mL
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• 1 mM D-glucose
• 2 mM L-glutamine
• 50 units/mL penicillin-streptomycin
• 10% heat-inactivated foetal bovine serum
• Corning®MITO+ Serum Extender (Merck, Australia; Cat. no.: DLW355006)
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