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This paper explores what the virtual biodiversity e-infrastructure will look

like as it takes advantage of advances in ‘Big Data’ biodiversity informatics

and e-research infrastructure, which allow integration of various taxon-level

data types (genome, morphology, distribution and species interactions)

within a phylogenetic and environmental framework. By overcoming the

data scaling problem in ecology, this integrative framework will provide

richer information and fast learning to enable a deeper understanding of bio-

diversity evolution and dynamics in a rapidly changing world. The Atlas of

Living Australia is used as one example of the advantages of progressing

towards this future. Living in this future will require the adoption of new

ways of integrating scientific knowledge into societal decision making.

This article is part of the themed issue ‘From DNA barcodes to biomes’.
1. Introduction
There is an urgent need to document and understand nature at a rate that will

provide us with an informed system-level response to the accelerating impacts

that humans are having on the world. Major challenges will include food secur-

ity, emerging diseases, managing natural and agricultural landscapes in a

sustainable fashion and interactions with invasive species (native and alien);

coinciding with an era of rapid environmental change [1]. This urgency is evi-

dent at an international level, given the importance of data to achieving the

goals of the Convention on Biological Diversity, expressed through the Aichi

Biodiversity Targets for 2020 and initiatives such as the Intergovernmental

Platform for Biodiversity and Ecosystem Services (IPBES) and research consor-

tiums such as GEO BON (Group on Earth Observations Biodiversity

Observation Network) [2,3]. Essential biodiversity variables (EBVs)—a mini-

mum set of essential measurements for studying, monitoring and reporting

on biodiversity and ecosystem change—are proposed as one mechanism for

addressing this goal [4], although practical implementation remains a challenge

[5,6]. In this context, maintaining investment in biodiversity surveys and

descriptions, including novel applications of predictive spatial modelling,

increased efficiency of phenotyping and (meta)genomics are key. Without

strong, ongoing support for data gap identification, generation and curation,

the most advanced informatics will be an empty shell.

Bringing biodiversity analysis into the digital world will provide all people

and jurisdictions with easy and rapid access to the authoritative and compre-

hensive evidence and knowledge that they need to make informed decisions.

Advances in biodiversity informatics, computer technology and governance

structures allow information to be shared and processed at unprecedented

speed, creating an environment to enable truly rapid biodiversity analysis

[7,8]. As data, information and knowledge become accessible, available and

able to be analysed in new and different ways, new uses for (and value of)

that information are continually being discovered and will increase our ability
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Table 1. Core principles to support e-research infrastructure for biodiversity knowledge generation.

type statement of intent

collaboration we must develop an inclusive model for participation by all stakeholders, from local to national levels, in biodiversity information

sharing we must adopt procedures to prevent duplication of effort, build on past investments and create shared efficiencies to the greater

benefit of all

science we must organize data to provide the best possible sustainable support for excellent, independent research, now and in the

future

learning we must enable novel or alternative approaches to new knowledge generation to be explored

integration we must be able to bring different types of data into a shared environment

quality we must enable users to understand the level of evidence and authority for all data elements and have services to help improve

data quality at source

open access we must promote and facilitate free and open use of data—and infrastructure

acknowledgement we must create an environment where individual and collective endeavours can be recognized and built upon

delivery we must provide comprehensive, stable, authoritative services that meet the needs of stakeholder groups

innovation we must establish a model for continuous modernization and improvement of services. Open infrastructure will support innovative

new uses of infrastructure and data

collect data once—make it freely accessible—use it many times

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150337

2

to inform research and policy [9]. Web-based e-infrastructure

will take advantage of, and further enable, the increasing

involvement of citizen scientists in supporting ecological

and environmental research [10,11].

It is essential that the biodiversity analysis laboratory of the

future can integrate a variety of taxon-level data types (e.g. dis-

tribution, genome, phenome, traits and species interactions)

and enable analysis of that information in an evolutionary

and environmental framework to produce more comprehen-

sive understanding of the drivers of biodiversity and the

potential impact of global change on biodiversity [12]. This

achievement will necessarily require changing some of the

norms of scientific endeavour to allow a new generation of

digital scientists running ‘Big Data’ experiments to push the

boundaries and transform knowledge of ecology [13].

This paper takes a wide view of biodiversity analysis.

Well-governed interoperable e-infrastructure and work

flows should support biodiversity discovery and documen-

tation, environmental monitoring, reporting and decision

making, as well as the capacity to run fundamental scientific

modelling experiments to build understanding of biodiver-

sity evolution, biogeography and dynamics in a changing

world [14,15].

For the most part, the key components of this e-research

infrastructure already exist. The digital transformation is pro-

viding a suite of emerging and disruptive technologies,

which are changing the way we think about managing, disco-

vering and delivering biodiversity and environmental data

[16]. These have been embraced by a wide range of global

initiatives, which are producing remarkable results for

specific elements of biodiversity information (e.g. spatially

explicit distributional data, species trait and other profile

information). It is now time to coordinate the sharing of

information in an integrated way to facilitate rapid biodiver-

sity analysis, novel knowledge and its timely use in

decisions [5,13]. Although this outcome may appear challen-

ging on a global scale, the Atlas of Living Australia (ALA,

www.ala.org.au) shows that such a digital platform for
knowledge sharing can be created on a continental/national

scale [17]. Examples of outcomes from this integration are

used to illustrate the benefits of such e-infrastructure,

although global level implementation will require coordi-

nation of both e-infrastructure efforts and data standards

[5,7,18,19].
2. Key components of a virtual biodiversity
analysis e-research infrastructure

Truly integrated biodiversity e-infrastructure will bring

together computable data about taxa which, when placed in

an environmental and evolutionary context, will enable

rapid biodiversity analysis and facilitate informed decision-

making. As important as the data and analysis tools are, so

too is improved capacity to visualize and share the knowl-

edge derived from these analyses with a broad audience.

Finally, we acknowledge the need for data aggregators

and servers to strive to develop tools to enable data quality

to be improved at source, such as by the natural history

collections that curate the original data [20].

Key elements in this web-based e-infrastructure include

taxon-level information, environmental and other contextual

layers, the ability to incorporate evolutionary and functional

perspectives, informatics and analysis tools supporting appli-

cations, all of which must operate under an agreed set

of principles promoting data discovery and sharing, open

infrastructure and collaboration (table 1).

(a) Taxon information
Incorporating a range of taxon-level attributes will enhance

efforts informing effective management of sustainable

environments into the future. In particular, we need data sys-

tems that enable us to move from ‘what is where’ questions

to ‘why is it there’, ‘what does it do’ and ‘what can we do

about it’. A list of the types of taxon data that we should

http://www.ala.org.au
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be able to integrate in an e-research environment would

include the following:

(i) Distribution
Spatially explicit biodiversity data for taxa are the mainstay of

many biodiversity analyses and provide a form of computable

data that enable a great many uses. The Global Biodiversity

Information Facility (GBIF—www.gbif.org) currently aggre-

gates and provides over 577 million occurrence records

(October 2015), and their science review [21] provides numerous

examples and over 200 references to the use of GBIF mediated

occurrence data to support research activities in the areas of

invasive alien species, impacts of climate change, species

conservation and protected areas, biodiversity and human

health, food, farming and biofuels, ecosystem services and

advancing biodiversity science. An example of e-infrastructure

that leverages GBIF records is Map of Life (www.mol.org),

which connects spatially explicit point data with layers of

expert geographical ranges, conservation reserves and values

of evolutionary distinctness and IUCN (International Union

for the Conservation of Nature) status [22].

(ii) Genetic/genomic information
Over recent decades, various DNA barcoding initiatives

have yielded broad-scale coverage of species and continents

for a few standardized reference genes. Hebert et al. [23]

showed that continent-wide DNA barcode libraries (and by

extension, other types of genomic information) could be

generated quite rapidly through targeting well-curated and

identified material in natural history collections to link sequence

records to authoritative voucher specimens. Now, with the

capacity to efficiently generate sequence data for hundreds to

thousands of genes from populations to entire clades [24,25],

we are set to transform molecular systematics yet again.

Further, the burgeoning field of environmental genomics—

including metabarcoding and metagenomics—will add yet

more capacity for biodiversity analyses and monitoring

[13,14]. It may not be practical to combine all these types of

information within a single e-infrastructure in the near future;

however, discovery of relevant data across platforms can be

enabled through use of uniform metadata standards and the

ability to import molecular analysis products (e.g. phylogenetic

trees and trait suites; see the following sections).

(iii) Genome to phenome
To move from mapping diversity to understanding how it

evolved and functions, it is imperative that we combine dis-

tribution data with a range of genomic and phenomic data.

Integrating genetic and morphological attributes, as well as

other forms of trait data such as behaviour, life history and

chemical composition and gene expression, informs and

improves species discrimination, taxonomy, phylogenetic

analysis and a range of other biodiversity data integration

applications [26].

Differences in data types and standards have hindered the

ability to bring all these types of ancillary data into a single

analysis platform. Researchers often adopt short-term indi-

vidual approaches to solve a data integration problem to

meet their analysis requirements. These are key challenges

that will need to be addressed to create the e-infrastructure

necessary for collaborative, comprehensive and efficient

biodiversity analysis.
(iv) Trait data
There are a variety of forms of data that can be considered as

species traits, including morphology, chemical, habitat and

life history characters. One important set is morphological

characters, and there needs to be the ability to capture geo-

referenced character information in a fashion that enables

understanding of variation within and between species and

provides sets of characters that can be used (and re-used) in

identification keys and phylogenetic, evolutionary and

macroecological analyses [27,28]. Global examples of trait

banks include the Encyclopedia of Life Trait Bank (www.

eol.org/traitbank) [29] that delivers 11 million records for

over 330 attributes for 1.7 million taxa, and the TRY Plant

Trait Database (www.try-db.org) [30] that delivers 5.6 million

trait records from 100 000 plant species.

Image libraries are a way of depicting morphological

characters (as well as spatial distribution of characters) and

images can come in a variety of forms: specimen images,

scanning electron micrographs, CT/MicroCT scans [31,32],

three-dimensional images [33,34] and whole drawer images

[35]. However, image libraries are only a starting point and

there remains the need to extract character information

from them in such a way that the information can be

shared, made freely available and re-used. Methods to extract

information might include experts, crowdsourcing through

digitization portals [36] or even automated extraction by

machines [37].

(v) Species/trophic interactions
Interactions between species are key components of maintain-

ing ecosystem stability and are central to the diversification

and organization of life [38]. Global environmental change

can produce adverse impacts on species interactions to the

detriment of ecosystem stability [39]; thus, being able to

record and track species interactions can inform policy, oper-

ational and research direction. In the simplest form, a single

species interaction could be recorded as a species trait; how-

ever, complex food webs are common in nature, contain

multiple interactions and are living laboratories for ecological

research [40,41]. Clearly, the ability to convey this information

as an integrated component of a future biodiversity-analysis

laboratory will have immense value, but will require some

quite sophisticated infrastructure. GloBI (Global Biotic Inter-

actions: www.globalbioticinteractions.org/about.html) [42]

is an example of such a database, delivering over 1.3 million

interactions for 113 000 distinct taxa.

(b) Taxonomic framework
Any attempt at documenting biodiversity has to be placed in

a taxonomic framework to give it credibility and ensure that

information can be universally shared and associated with

the correct taxon. A ‘standard’ taxonomic framework might

consist of scientific names, species concepts and classification.

There is a great deal of complexity with handling names,

including synonymy, homonymy, misidentifications and a

variety of common names in use for any given organism.

Life science identifiers (LSIDs) are unique identifiers that

could be applied to each name, or species concept, to avoid

confusion and ensure stability [43].

Species concepts are biological concepts, fluid and often

subjective in interpretation [44]. Each species concept will

encompass one-to-many scientific names, with one being
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Figure 1. The ALA’s phylogenetics tool integrates phylogenetic trees and spatial mapping so that phylogenies can be represented spatially, for example by species
occurrence or character. Here, the occurrence of Acacia species from the clade highlighted by the blue node to the left is mapped and coloured by species.
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the senior, valid name, although there can be disagreement

on which name or combination to use. Classifications arrange

species into higher taxa, such as genera, subfamilies and

families. They can be even more subjective than species

concepts, with often several different classifications being

used at any given time. A modern informatics infrastructure

must be able to display differing views of species and

higher classifications to be of optimal value to the user

community.

In addition to a standard Linnaean taxonomic frame-

work, a variety of biodiversity analyses might need the use

of interim taxonomic nomenclature. Operational taxonomic

units (OTUs) [45] might represent candidate species that

can be recognized (morphologically or genetically) but are

yet to be formally named. An example of a DNA-based deli-

neation would be a barcode index number (BIN) [46]. It is

important to be able to integrate information associated

with BINs with information about closely related species

that have been formally named (and that may also have an

associated BIN).

There must also be the ability to import a list of (often intra-

specific) OTUs along with associated data (genomic, trait and

distribution) for analyses within the e-research laboratory,

even if this information does not (yet) have a persistent home

within the research infrastructure. To address this need and

the fluidity of species and higher taxon concepts, there is

value in representing current knowledge via the phylogenetic

trees below and above the species level. Analyses of spatial

genetic diversity within described species—phylogeogra-

phy—frequently reveal high levels of lineage diversity that

often remains invisible to taxonomy, and hence, inaccessible

to most data infrastructure. Yet, using phylogenetic represen-

tations of diversity, this rich source of information can be

effectively visualized for scientific and conservation purposes

(e.g. [47]).
(c) Phylogeny
Adding a phylogenetic component to biodiversity informatics

is crucial to understanding how evolutionary responses to past

environmental change have shaped current biodiversity.

A phylogenetic framework for the biodiversity analysis labora-

tory allows us to develop new tools to integrate and analyse big

data across taxa, regions and timescales. The results will yield

unparalleled understanding of the distribution of genetic,

taxonomic and functional diversity over space and time. In

turn, this will provide novel insights into the potential futures

of biodiversity and enhance strategies to protect it [28,48,49].

This will serve to bridge the current void between conservation

policy and practice by showing how knowledge of evolution-

ary processes can improve large-scale planning, and it will

deploy this know-how to predict and improve management

of biodiversity. Initial efforts towards this are being developed

in the ALA (http://phylolink.ala.org.au/) and allow for the

import of phylogenetic trees into the Atlas e-infrastructure

environment where they can be combined with mapping

and analysis tools and contextual layers [50,51] (figure 1).

(d) Environmental information
Environmental information is fundamental to understand-

ing in ecology. A wide variety of environmental factors

play a role in the distribution, health and maintenance of

biodiversity. The ability to analyse spatially explicit and

temporally varying biodiversity data in respect to these

environmental (or other contextual) variables provides tre-

mendous power to the study of biodiversity and predictive

analyses based on biodiversity data. New initiatives in

environmental modelling and remote sensing are rapidly

advancing the spatial and temporal resolution and three-

dimensional detail by which environmental attributes such

as soil can be mapped [52,53], with potential to overwhelm

http://phylolink.ala.org.au/
http://phylolink.ala.org.au/
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storage and analysis capacity of e-infrastructures. Yet this

example belies the general dearth of information on edapho-

logical data and the multiple layers of missing habitat

information, requiring concerted efforts to bring together

and harmonize relevant data regionally and globally. The

digital laboratory of the future will need to provide guidance

and a portal to an array of environmental variables of poten-

tial relevance in biodiversity research—helping integrate

knowledge across realms, from terrestrial and freshwater to

coastal and marine toward a realization of the digital Earth

concept [54,55].

Finding and organizing the diverse sources of spatial

environmental data needed for biodiversity analysis is not tri-

vial [17]. The ALA started tackling this problem in 2010. The

Spatial Portal [56] (http://spatial.ala.org.au/) presently inte-

grates multiple types of biological data (collection records,

survey observations, checklists and range maps) with over

450 remotely derived abiotic and biotic contextual layers

(such as climate, terrain, soils, vegetation, land cover, land

use, jurisdiction boundaries) and is reaching capacity using

current technology. A new distributed approach is needed,

one that supports discovery, access and manipulation of

data to derive biologically meaningful predictor variables

[57]. DataOne is an example of collaborative e-infrastructure

heading in this direction [55] and in this context, the concept

of a KLAS—knowledge, learning and analysis system—is

visionary [13]. The BCCVL (Biodiversity and Climate Change

Virtual Laboratory) [58] provides a sandpit of environment

variables for analysis that are pre-selected from easily accessed

sources and can be easily updated when appropriate. New

spatial analysis technologies and information standards may

in the future negate the need to locally aggregate spatial data

in a common format like a cube and instead allow flexible

interrogation at source via Web services, combined in a

model, with predictions visually represented at appropriate

resolutions. Open geospatial data standards and application

programming interfaces (APIs) are essential to this vision of

interoperability, with the Open Geospatial Consortium leading

on these developments [59].

Furthermore, there are some significant initiatives under-

way that we would want a virtual biodiversity e-infrastructure

to connect to in due course. It will be critical to engage with com-

munities of practice such as the OBO (Open Biomedical

Ontologies) ontology foundry—a collective of developers com-

mitted to interoperable ontologies (common controlled

vocabularies) that are both logically well formed and scientifi-

cally accurate [60]. The wider biodiversity data community

will need to increase its awareness of, for example, existing

ontologies for contextualizing biological entities such as

ENVO (Environmental Ontology; http://www.environmen-

tontology.org/) [61] and avoid ‘silos and reinvented wheels’

[62] by adopting shared principles (e.g. http://www.obofoun-

dry.org/) and participate in established networks (e.g. see

resources and projects on http://bioportal.bioontology.org).

The Ocean Data Interoperability Platform (ODIP) is an example

of a community of practice developing a common framework

for marine data management. ODIP’s initial focus on cruise

information is now extending to observation data [63]. Other

initiatives to be aware of that may soon interface with the bio-

diversity science community or provide examples of how to

advance collaborative infrastructures are the US-based Earth-

Cube, http://earthcube.org/ (mostly solid Earth sciences) and

the community effort called Earth Science Information Partners
(ESIP). EarthCube is considering ‘Collaborative Resource Incu-

bators’ to increase science community-driven innovation for

infrastructure solutions [64]. The Research Data Alliance,

which promotes open sharing of data (https://rd-alliance.

org/), and INSPIRE—Spatial Information in the European

Community (http://inspire.ec.europa.eu/)—and the common

principles upon which they are founded are also relevant.

An important emerging project for the biodiversity

community is GLOBIS-B (http://www.globis-b.eu), which

aims to foster global cooperation of biodiversity research

infrastructures and biodiversity scientists to advance the

implementation and calculation of EBVs [5]. GLOBIS-B

(GLOBal Infrastructures for Supporting Biodiversity research)

builds on the roadmap for interoperability developed by the

preceding CReATIVE-B project (Coordination of Research

e-infrastructures Activities Toward an International Virtual

Environment for Biodiversity, 2011–2014). Another EU initiat-

ive is LifeWatch (http://www.lifewatch.eu/)—European

infrastructure for biodiversity and ecosystem research—aimed

at providing researchers with access to virtual laboratories of

biodiversity data with advanced biodiversity-informatics tools

[65]. A challenge for the future will be addressing global inter-

operability among the different architectures across a rapidly

emerging plethora of eResearch platforms.
(e) Tools
An e-research environment should include tools for data

discovery, access, integration, filtering, visualization, analy-

sis, mapping and annotation. Currently, the spatial portal

within the ALA links biological and environmental data to

a limited suite of visualization and modelling tools—ranging

from simple graphing and tabulation functions (e.g. figure 2)

through to ecological classification (e.g. figure 3), species- and

community-level biodiversity modelling techniques [17].

These tools enable a variety of exploratory analyses and

assessments, including predicting threatened species ranges

and/or helping to identify species climatic requirements

[57,67,68]. This open software architecture, including a stan-

dard set of tools embedded in the spatial analysis portal,

is being adopted by other countries (e.g. Atlas of Living

Scotland, http://www.als.scot/).

There is a balance between creating a wide range of specific

tools for biodiversity analysis and giving users the ability to

develop or adapt their own tools. To facilitate user flexibility,

the ALA supported the development of an R programming

language package for researchers (ALA4R) [69] enabling direct

access to hosted data resources using APIs. Perhaps, one critical

tool missing from the ALA platform is a means of routinely iden-

tifying gaps in biological data collections using multivariate

environmental space [70,71]. An early Web-based implemen-

tation of the survey gap-analysis method using the

environmental diversity concept [72], under the auspices of

GBIF [73], is no longer available. The addition of this tool is

one example of an easily achieved task with high added value

to support biodiversity discovery and data acquisition priorities.

Data availability and quality are important aspects of

e-infrastructure, which must enable data capture, discovery,

visualization and analysis for a range of purposes—not all of

which are known at the outset. It will be equally important

to develop sets of tools and services for data checking

and revision, with feedback mechanisms between data custo-

dians/providers and users, to capture their annotations about

http://spatial.ala.org.au/
http://spatial.ala.org.au/
http://www.environmentontology.org/
http://www.environmentontology.org/
http://www.environmentontology.org/
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http://bioportal.bioontology.org
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http://earthcube.org/
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https://rd-alliance.org/
https://rd-alliance.org/
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Figure 2. The ALA scatterplot analysis maps distribution points (right) in two-dimensional environmental space; here, we show a grid of rainfall versus temperature
(left). Placing the small box around the ‘hottest, driest’ points on the left produces the red circles for those points on the distribution map (for advanced examples
see http://www.ala.org.au/spatial-portal-help/scatterplot/). The ‘cool, wet’ outliers on the plot are spurious locations in eastern Australia where the species does not
occur naturally.
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data quality and improve fitness for use for all practitioners [74].

As one example, VertNET (www.vertnet.org), an aggregated

database of museum records for vertebrate species, enables

users to submit annotation on individual records directly to

the contributing collection, thereby correcting errors at the

source [20].

It is important to note however, that there have been sig-

nificant architectural shifts in recent years, which could

challenge some of the existing biodiversity infrastructures.

E-research will increasingly depend on Web-architectures

with persistent URIs (uniform resource identifiers) being

the default expectation by which data are linked. A URI is

a string of characters to identify a name or a Web resource

and can be classified as locators (URLs), as names (Uniform

Resource Names—URNs) or as both. LSIDs are represented

as URNs—for example, see [75]. The exact location of a

URN may change, but the owner of the URN can expect

that the resource can always be able found somehow. There

is also a shift towards URI-based APIs, rather than query-

based services (this is referred to as REST). Representational

state transfer (REST) is a set of software architecture prin-

ciples [76] that have become the default for most Web and

mobile apps. Web service APIs that adhere to the REST
architectural constraints are called RESTful APIs and allow

higher-performing, more easily maintained software for

Web services [77].
3. Discussion
(a) Benefits
The wish list for e-infrastructure outlined in this paper is not an

end in itself. It is needed to inform a range of outcomes, includ-

ing conservation, environmental monitoring and reporting,

area management, ecosystem modelling, sustainable food

and health, biosecurity, biodiversity discovery and documen-

tation, as well as supporting community engagement and

research across a range of biodiversity science activities.

As mentioned above, access to GBIF-mediated spatially

explicit biodiversity data resulted in over 200 publications

across a range of activities [21] and these are in addition to

grey literature, government reporting and directly informing

environmental management decisions and policy. Adding an

environmental and/or evolutionary context expands the

usage of cases to include a much wider range of activities

within a single environment, such as developing sustainable

http://www.vertnet.org
http://www.ala.org.au/spatial-portal-help/scatterplot/
http://www.ala.org.au/spatial-portal-help/scatterplot/


Figure 3. The ALA classify tool enables a selection of (ideally) relatively uncorrelated environmental layers for a predefined area to be classified into characteristic
domains for a given number of groups, shown here for Tasmania—a large continental island off south-eastern Australia (image credit: http://www.ala.org.au/
spatial-portal-help/classify/). The classification uses the ALOC algorithm [66].
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revegetation strategies under climate change [67], under-

standing climatic envelopes and adaptability of tree species

[68], understanding environmental variables for biodiversity

modelling [57] or predicting the evolution of tolerance to

other environmental factors such as salinity [78].

Such a digital infrastructure will see gains in efficiencies

by greatly reducing the amount of time necessary to perform

biodiversity analysis, meaning that we can respond to threats

to ecosystems and biodiversity in a much more meaningful

time frame [13,79]. As much as 90% of a research project

can be in data discovery, collation and integration. Effective

e-research infrastructure means that the majority of research

time is spent on research [58].

Experience from the ALA demonstrates that provision of

robust and open infrastructure with Web services enables a

variety of activities. For example, both the Biodiversity and

Climate Change Virtual Laboratory (www.bccvl.org.au) [58]

and Edgar (http://spatialecology.jcu.edu.au/Edgar/) are

separate ventures that draw in ALA data to support

analyses of the impact of climate change on biodiversity.
(b) Future opportunities
Presently, there is no single e-research infrastructure that

provides all the components described in this paper. At

the global level, many of the data types mentioned are handled

by separate initiatives, and the list of these initiatives provides

examples of forward vision and advanced biodiversity infor-

matics capabilities. These include (as a mere sample and

with apologies for omissions): the Global Biodiversity
Information Facility (GBIF—www.gbif.org), the Encyclopedia

of Life (EOL—www.eol.org), Catalogue of Life (www.catalo-

gueoflife.org), Map of Life (www.mappinglife.org), the

International Barcode of Life (iBOL—www.ibol.org), Genbank

(www.ncbi.nlm.nih.gov/genbank/), Open Tree of Life

(http://opentreeoflife.org/) and iDigBio (www.idigbio.org).

It is clear that any future model for biodiversity infrastructure

must build on the strengths and collaboration of these global

initiatives rather than try to duplicate or replace them. How-

ever, now there is a need for these initiatives to provide a

clear vision and strategy as to how they will work together to

create true global infrastructure, which is bringing together

(and building on) the current capabilities to deliver integrated

biodiversity information in a seamless manner. Ensuring data

consistency in this landscape will allow big data biodiversity

analytics to inform all aspects of biodiversity analysis and

assessment to provide an informed response to global change.

Meaningful thinking about the future of biodiversity

analysis needs to go past a discussion of current technology

and platforms and focus on what we need to achieve to

attain the environmental sustainability necessary for our

future. This means identifying major gaps in e-infrastructure,

agreeing on a set of priority goals and working together to

accomplish them.

We must create an order of magnitude increase in the rate

at which we capture biological and environmental data. This

means that biologists across a range of disciplines can no

longer justify non-digital data capture. ‘Born digital’ data

will come from field observations as well as imaging biologi-

cal collections, which are repositories of big data and hold

http://www.bccvl.org.au
http://spatialecology.jcu.edu.au/Edgar/
http://spatialecology.jcu.edu.au/Edgar/
http://www.gbif.org
http://www.eol.org
http://www.catalogueoflife.org
http://www.catalogueoflife.org
http://www.mappinglife.org
http://www.ibol.org
http://www.ncbi.nlm.nih.gov/genbank/
http://opentreeoflife.org/
http://opentreeoflife.org/
http://www.idigbio.org
http://www.ala.org.au/spatial-portal-help/classify/
http://www.ala.org.au/spatial-portal-help/classify/
http://www.ala.org.au/spatial-portal-help/classify/
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longitudinal data through time that cannot be found any-

where else. We need to embrace a range of computer

vision, machine learning and remote sensing techniques as

well as robotics platforms to achieve our goals [80]. Crowd-

sourcing of data capture is an increasingly viable option,

and we have to work with citizen science communities to

enable the process and provide feedback to continually

improve the quality of our citizen scientists and the data

they produce.

We have to provide an infrastructure framework for

managing these data in a way that they can be mobilized, dis-

covered, searched, integrated and analysed and made freely

and openly available to the wider research and policy com-

munity. The community has to come together to develop

this vision and sell it with a common voice, as highlighted

by the Belmont Forum’s survey on open data [81]. We can

no longer afford to have informatics initiatives that do not

use Web services to share data, services and analysis tools,

or that want to do everything themselves and duplicate

scarce resources in their efforts.

We cannot hold on to technology. The rate of technologi-

cal advance is so rapid that anything that we are planning or

doing today will be out of date in 5 years. However, the dri-

vers for what we need to accomplish will remain the same, so

we have to embrace emerging technology and update our

thinking as we go.

The already overstretched taxonomy community has to

invent new practices and norms that will allow a step increase

in the rate of species discovery and description [82,83]. An

inventory of life on Earth is critical to environmental
management, yet we are centuries away from achieving this

at our current rate of progress. To date we have described

something close to two million species. What will it take to

describe the next million in 10 years? That is the rate of

species discovery that is consistent with the needs we are

facing and it will require some radical changes in thinking

and work practices.

And finally, we must remember that the largest impedi-

ments we will face in creating true global infrastructure are

not technical. We need to encourage workers to welcome

and use open data, open infrastructure and services, and

shared, virtual environments to truly accelerate biodiversity

discovery and documentation to the level at which it can sup-

port timely and meaningful responses to the global

challenges we will be facing.
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