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Abstract: Group II introns are large catalytic RNAs (ribozymes) in the bacteria and organelle genomes
of several lower eukaryotes. Many critical photosynthesis-related genes in the plant chloroplast
genome also contain group II introns, and their splicing is critical for chloroplast biogenesis and
photosynthesis processes. The structure of chloroplast group II introns was altered during evolution,
resulting in the loss of intron self-splicing. Therefore, the assistance of protein factors was required for
their splicing processes. As an increasing number of studies focus on the mechanism of chloroplast
intron splicing; many new nuclear-encoded splicing factors that are involved in the chloroplast intron
splicing process have been reported. This report reviewed the research progress of the updated
splicing factors found to be involved in the splicing of chloroplast group II introns. We discuss the
main problems that remain in this research field and suggest future research directions.

Keywords: group II introns; chloroplast; splicing factors

1. Introduction

Chloroplast originates from the host’s endocytosis of cyanobacteria, meaning it retains
part of the cyanobacterial genome and the gene transcription and translation system [1].
Some introns remain in the chloroplast and even spread after endosymbiosis. After the
transcription of these intron-containing genes, the introns of pre-mRNAs must be removed
and exons should be ligated to become mature mRNAs, which can be subsequently trans-
lated into functional proteins. The expression of chloroplast genes in plants is mainly
regulated at the post-transcriptional level, including at the RNA editing, intron splicing,
and translation processes [2]. The precise splicing of introns is critical for the translation
of chloroplast genes, which in turn plays an important role in the functioning of chloro-
plasts. Splicing defects in chloroplast introns affect the assembly of photosystem complexes,
which in turn affects photosynthesis, along with phenotype defects such as yellowing,
albino, embryo death, and growth retardation [3,4]. Therefore, studying the chloroplast
intron splicing mechanism is an important part of chloroplast gene expression and the
development mechanism research.

According to the splicing mechanism and conserved structural regions, introns in the
chloroplast genome mainly include two categories: group I introns and group II introns [5].
Group II introns are further divided into the IIA and IIB subgroups based on their structural
features. The main structural differences between the two intron subgroups are their exon-
binding sites (EBSs), the internal loop of domain III, and the connection between domains
I-VI [6,7]. The chloroplasts of higher plants contain one group I intron and nearly twenty
group II introns. For example, Arabidopsis and tobacco both contain 20 group II introns,
while maize and rice contain 17 [8]. Protein factors are required for the splicing of group II
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introns in land plant chloroplasts [9]. These proteins that assist intron splicing are referred
to as splicing factors in this review. Since the first splicing factor discovery in the chloroplast
made more than two decades ago, many proteins have been shown to be involved in the
splicing process of one or more introns in the chloroplast [10]. These studies have provided
new insights into the ribonucleic acid-protein complexes and RNA splicing mechanisms in
organelles. This review mainly details the splicing factors involved in chloroplast intron
splicing, specifically focusing on the recent research progress made by the literature in
this field (Figure 1). We also provide suggestions for the remaining questions and future
research directions in this field.
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Figure 1. The updated splicing factors involved in chloroplast group II intron splicing. Splicing
factors are listed from different protein families that are involved in chloroplast intron splicing and
the corresponding references. Blank cells with blue coloring represent the splicing factors that are
involved in the splicing of the introns of the indicated pre-mRNA. Os: Oryza sativa L.; Hv: Hordeum
vulgare L.; At: Arabidopsis thaliana; Zm: Zea mays; Sv: Setaria viridis.

2. Splicing Factors of Chloroplast Group II Introns

In recent years, more and more splicing factors have been identified that are involved
in chloroplast group II intron splicing. It was found that these splicing factors are mainly
distributed in the pentatricopeptide repeat (PPR), chloroplast RNA splicing and ribosome
maturation (CRM), RNA DEAD-box helicases, and accumulation of photosystem (APO)
protein families. Members within the same family may also participate in the splicing of
different introns [11–13]. Additionally, it has been shown that some single proteins are also
involved in the splicing of chloroplast group II introns [14].
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2.1. Maturase

Chloroplast group II introns often require the help of specific factors such as maturase
for folding and efficient splicing in vivo. The only known gene encoding that uses maturase
in the chloroplast of higher plants is MATURASE K (matK), which is located in the intron
of the lysine tRNA-KUUU gene (trnK). MatK is similar to the fungal maturation enzyme-
like protein MatK [14]. It has been suggested that MatK is involved in splicing its own
transcripts in vivo. Deletion of the matK gene product was found to be associated with the
accumulation of tRNALysUUU-matK precursor transcripts in plastids, which lack functional
ribosomes and mature tRNA molecules [15]. Furthermore, MatK has been shown to
specifically coimmunoprecipitate with seven group IIA introns, including the introns of
pre-mRNA for tRNAs (trnA, trnI, trnV and trnK), ribosomal proteins (rpl2 and the second
intron of rps12), and one subunit of the ATP synthase (atpF) [9]. The suggested MatK
substrates are consistent with the reduced introns’ excision in the chloroplast ribosomal
mutant, which lacked the ability for the translation of all chloroplast proteins [15–17].
Recently, MatK has been demonstrated to catalyze group IIA intron self-splicing for the
second intron of rps12, but not the intron of rpl2 in an in vitro activity assay [18]. In the
future, it is worth examining the maturase activity of MatK on other group IIA introns.

2.2. PPR Protein

The PPR family is a large family of proteins encoded by nuclear genes that are involved
in the chloroplast RNA splicing process. PPR proteins are common in most eukaryotes,
especially in terrestrial plants [19]. There are more than 450 PPR genes in the Arabidopsis
genome [20,21]. PPR proteins are a class of proteins that contain the PPR motif, about 35
amino acids that serve as a repeating motif. PPR proteins have been previously divided into
P- and PLS-types according to the number of amino acids contained in the PPR motif [22].
The P-type PPR protein only contains the P-type of the PPR motif. PLS-like PPR proteins
have three different types of PPR motifs: the P, L, and S motifs, which are arranged in
tandem. PPR proteins are RNA sequence-specific binding proteins, of which almost all
are located in the mitochondria or plastids, and can participate in the post-transcriptional
processing of RNA, such as in the editing, splicing, and maturation processes, which is
possible through its binding to specific nucleotides [20].

Many P-type PPR proteins are involved in the splicing of chloroplast group II introns.
For example, HCF152 is a well-studied PPR in plants. In Arabidopsis, HCF152 binds at
the site between psbH and psbB and participates in petB intron splicing [23]. The decreased
splicing products of petB and reduced accumulation of the petB and psbH mRNAs in hcf152
mutants are believed to be the direct evidence that supports HCF152’s involvement in
the splicing of petB transcripts or its indirect effect on the degradation of mature mRNAs
of petB and psbH [24]. Interestingly, a mutant allele in the conserved P residue of the C
domain of HCF152 caused an impairment of petB splicing; however, the psbH 3′ and petB
5′ ends were almost fully protected [25]. Nakamura et al. demonstrated that the point
mutation weakened the dimer formation in comparison to the wild–type HCF152 [23].
Another P-type of the PPR protein EMB1270 has become the focus of recent studies [26].
The splicing efficiencies of the clpP1-2, ycf3-1, ndhA, and ndhB introns were sharply reduced
in emb1270 mutants. An RNA immunoprecipitation (RIP)-PCR assay showed that EMB1270
specifically associated with the introns of clpP1-2, ycf3-1, ndhA, and ndhB in vivo. Moreover,
an RNA electrophoretic mobility shift (REMSA) assay revealed that a truncated EMB1270
protein bound to the clpP1-2, ycf3-1, and ndhA introns in vitro. Finally, it was discovered
that EMB1270 specifically interacted with another chloroplast splicing factor named CRM
Family Member 2 (CFM2). Similar to EMB1270, several P-type PPR proteins that function
as splicing factors were revealed by both genetic analysis and through their protein–RNA
and/or protein–protein interaction, such as PPR4 [27], EMB2654 [4,27], PBF2 [28], Os-
CDE4 [29], and PDM4 [30]. However, most of the P-type PPR proteins that were found
to be involved in chloroplast group II introns splicing were only revealed by comparison
analyses of the abundance of pre-mRNA and spliced mature mRNA within ppr mutants
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and wild-types, such as OTP51 [31,32], PDM3 [33], ECD2 [34], OsSLC1 [35], OsWSL5 [36],
OsWSL4 [37], and ZmEMB-7L [38].

Although PLS-type PPR proteins mainly act as site-specific editing factors, there are
also some special PLS-type proteins that are responsible for group II intron splicing. For
example, Thylakoid assembly 8 (THA8) is a member of a subfamily of plant small PPR
proteins, with only four PPR motifs and not much else [11]. The splicing of ycf3-2 and trnA
were eliminated and strongly compromised in maize tha8 mutants. In addition, a similar
reduction of the splicing processes for ycf3-2 and trnA was shown in the tha8 mutant in Ara-
bidopsis. ZmTHA8 coimmunoprecipitates with WTF1 and RNC1, splicing factors for trnA
splicing [11]. In vitro gel mobility-shift assays showed that a recombination of ZmTHA8
bound five overlapping fragments of ycf3-2, although the binding was weak [11,39]. The
crystal structures of Brachypodium distachyon THA8 are either free of RNA or bound to two
RNA sites, revealing that RNA binding induces BdTHA8 dimerization, with a conserved
G nucleotide of the bound RNAs, creating extensive contacts with both monomers [39].
PDM1/SEL1 is another PLS-type PPR protein that was found to affect the edition of accD-1
and the splicing of group II introns in trnK and ndhA in Arabidopsis [40]. Coimmunopre-
cipitation mass spectrometry experiments, yeast two-hybrid, and pull-down assays have
shown that PDM1 interacts with MORF9, MORF2, and MORF8, three RNA editors found in
chloroplasts. In addition, an RIP assay showed that PDM1 associated with trnK and ndhA.
OTP70 [41], OsWSL [42], OsPGL12 [43], OsPPR6 [44], and OsSLA4 [45] were all involved
in group II intron splicing, but there is only genetic evidence through the analysis of the
abundance of pre-mRNA in the related mutants. All of the known PPR proteins that were
found to be involved in the splicing process of chloroplast group II introns are summarized
in Figure 1.

2.3. CRM

The CRM domain protein originates from the prokaryotic ribosome precursor binding
protein. It is homologous to the bacteria YhbY protein, and is named for its involvement
in chloroplast intron splicing and the ribosome large subunit-catalyzed ribonucleoprotein
assembly [46]. In eukaryotes, CRM domain proteins are only found in plants. According
to their signal peptides, most of them are predicted to be localized in the plastid, and a
few in the mitochondria or nuclei. The number of CRM domain proteins varies in different
plants, with 16 in Arabidopsis and 14 in rice. They contain between one and four repeating
CFM domains [47]. The CRM domain is an RNA recognition and binding domain, and its
recognition and binding characteristics are similar to the RRM (RNA recognition motif) [48].
Studies have found that the CRM domain proteins can bind to the chloroplast intron
RNA and participate in its splicing. To the best of our knowledge, six chloroplast CRM
domain proteins were characterized, and they are involved in intron splicing. ZmCRS1 was
the earliest defined CRM domain protein and contains three CRM domains [49,50]. The
splicing of the atpF intron is strongly reduced in the zmcrs1 mutant [50]. CRS1 is specifically
associated with the atpF intron in vivo, and specifically binds the atpF intron RNA with
a high affinity in vitro [46,49,51]. There are three orthologous CRS1 proteins in rice, one
of which was characterized as Albino Leaf 2 (OsAL2, Os09g19850) [52]. Surprisingly, the
expression of ndhA, ndhB, petD, ycf3, and trnL was also significantly reduced in the osal2
mutant, suggesting that OsCRS1 may be involved in the splicing of introns that differ from
the AtCRS1 and ZmCRS1, such as the above-mentioned examples. CFM1–CFM3 are closely
related paralogs with CRS1. CFM2, which harbors four CRM domains, is required for
the splicing of the group I intron trnL and group II intron ndhA, ycf3-1, and clpP-2 [53].
ZmCFM2 is associated with the introns of pre-trnL-UAA, ndhA, and ycf3, while Arabidopsis
CFM2 is additionally required for the splicing of clpP-2. Moreover, CFM2 was found in
large ribonucleoprotein particle complexes that contain CAF1 and/or CAF2, another two
CRM domain proteins that are required for intron splicing [53]. CFM3, a close relative
of CFM2, is dual-localized to the chloroplast and mitochondria [54]. In chloroplasts, it
associates with RNAs from the petB, petD, ndhB, rpl16, rps16, and trnG–UCC loci, and the
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genetic data reveal that CFM3 is required for their splicing [54]. Again, it was found that
CFM3 is associated with CAF1, CAF2, and RNC1 in vivo. CFM1 has been very recently
characterized [55]. Three chloroplast tRNAs: trnI, trnV, and trnA were strongly disrupted
in a Setaria viridis cfm1 mutant. An RIP assay showed that ZmCFM1 was associated with
multiple group II introns, more than the genetic data revealed the introns of trnI, trnV, and
trnA. Finally, it was found that four chloroplast splicing factors, RNC1, THA8, mTERF4 and
WTF1, overlap with intron subsets of CFM1, and coimmunoprecipitates with CFM1 [55]. It
may be of interest to examine whether CAF1 and CAF2 are associated with CFM3.

CAF1 and CAF2 are closely related paralogs; each contain two CRM domains. Zm-
CAF1 and ZmCAF2 can also interact with ZmCRS2, respectively, to form ZmCRS2–
ZmCAF1 and ZmCRS2–ZmCAF2 complexes, participating in the splicing of chloroplast
group II introns and regulating chloroplast development [56]. The splicing function and in-
tron specificities of CAF1 and CAF2 are largely conserved between maize and Arabidopsis,
as was revealed by an analysis of the splicing status of chloroplast introns in caf1 and caf2
mutants [57]. There was an exception: the Arabidopsis CAF1–CRS2 complex additionally
participated in the splicing of rpoC1 and clpP, which were absent in maize chloroplasts [57].
The introns of atpF, rpl2, and rps12 could not be spliced, and the un-spliced pre-mRNAs
of ndhA, ndhB, and ycf3 increased in oscaf1 mutants [58]. The results suggest that OsCAF1
possesses different intron subsets because of the orthologous proteins in maize and Ara-
bidopsis. Interestingly, an analysis of the intron splicing status in oscaf2 mutants revealed
that OsCAF2 and OsCAF1 share the same intron subsets [59].

2.4. DEAD-Box RNA Helicases

DEAD-box RNA helicases belong to the helicase II family and contain conserved
ATP-binding domains, hydrolysis domains, RNA-binding domains, and a DEAD (Asp-Glu-
Ala-Asp) sequence. DEAD-box RNA helicases are ubiquitous in all eukaryotes and many
prokaryotes; they are mainly involved in ATP-dependent intramolecular and intermolec-
ular RNA structural rearrangements, as well as in the reassembly of ribonucleoprotein
complexes. Some studies have also found that DEAD-box RNA helicases are involved in
RNA synthesis, modification, cleavage, degradation, ribosome biosynthesis, and translation
initiation [60]. About 60 DEAD-box RNA helicases were discovered in higher plants [61],
but their functions are still largely unknown. The RH3 (RNA helicase 3) of maize and
Arabidopsis are conserved splicing factors. Arabidopsis rh3 mutants have shown a reduc-
tion in the splicing of trnI, trnA, rps12-1, rps12-2, and rpl2 [62]. In addition, an RIP assay
revealed that ZmRH3 associates with these introns and with the ycf3 intron in vivo. ISE2
was demonstrated to be another splicing factor in this family. In Arabidopsis ise2 mutants,
the splicing of rpl2, atpF, rps12, and clpP is affected, and RIP assay results have suggested
that AtISE2 interacts with its RNA targets in vivo [63,64].

2.5. APO Family

The APO family is a new gene family discovered in recent years, which exists in both
monocotyledonous and dicotyledonous plants [65]. The APO gene family members contain
two conserved APO motifs separated by a less-conserved spacer sequence. Arabidopsis
contains four APO proteins, APO1–APO4 [65]. APO1–APO4 share much less similarity
at the N-terminus than at the C-terminus, suggesting different localizations or functions.
APO1 and APO2 were predicted to be localized in the chloroplast, while APO3 and APO4
were predicted to be localized in the mitochondria [66]. ZmAPO1 was found in a coim-
munoprecipitate with the splicing factor CAF1 [66]. Furthermore, AtAPO1 has been found
to be involved in the splicing of the chloroplast introns petD, ndhB, ndhA, ycf3-int2, and
clpP-int1 because of the decrease in the ratio of spliced to un-spliced pre-RNA in apo1
mutants, compared with the wild-type [66]. Moreover, recombinant ZmAPO1 and AtAPO1
bind RNA with high affinity in vitro, and the binding domain is DUF794 [66]. Aside from
APO1, the functions of other members of the APO gene family have not yet been reported.
The molecular mechanism of how these APOs work in vivo is still not understood.
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2.6. PORR Family

In addition to the above-mentioned splicing factors, the members of some protein
families have also been reported to be involved in chloroplast RNA splicing. The plant
organellar RNA recognition (PORR) protein family has been found to be indirectly involved
in RNA splicing. PORR domain proteins are nuclear-encoded, RNA-binding proteins that
acquire specific functions that are involved in chloroplast RNA splicing during terres-
trial plant colonization. For example, ZmWTF1 is specifically involved in the splicing of
petB, petD, ndhB, rpl2, rpl16, and rps16 introns [67]; in addition, ZmWTF1 interacts with
RNC1 to splice the petD, petB, ndhB, rps12-int2, trnI, trnA, trnG, trnV, and trnK and in-
trons [68]. LEFKOTHEA, another nuclear-encoded protein with a PORR domain, promotes
the splicing of chloroplast group II introns in Arabidopsis. The LEFKOTHEA protein is
also required for rpl2 and petB intron splicing [69].

2.7. mTERF Family

In maize chloroplasts, Zm-mTERF4, a member of the mitochondrial transcription
termination factor (mTERF) protein family, is involved in the splicing of the chloroplast
trnI, trnA, rpl2, ndhB, atpF, and ycf3-2 introns [70]. This conclusion was supported by the
genetic data and the RIP assay that was conducted in vivo [70]. In addition, Zm-mTERF4 is
found in high molecular weight complexes that contain known chloroplast splicing factors,
including CAF2, CFM2, CFM3, CRS1, WHY1, RNC1, THA8, and WTF1 [70]. Additionally,
it was suggested that the Zm-mTERF4 ortholog in Arabidopsis plays the conserved role of
RNA splicing based on the similar physiological defects of mutants [70].

2.8. Whirly Family

‘Whirly’ proteins comprise a plant-specific protein family whose members have
been described as DNA-binding proteins. A coimmunoprecipitation assay showed that
ZmWHY1 is associated with CRS1, DNA and a subset of plastid RNAs that include atpF
transcripts [71]. Furthermore, ZmWHY1 binds RNA and DNA in vitro as well [71]. More
detailed experiments are required to show whether ZmWHY1 directly binds atpF tran-
scripts in vitro. The splicing of the atpF intron and the content of plastid ribosomes are
reduced in zmwhy1 (Whirly) mutants [71].

3. Conclusions

In conclusion, the splicing of group II introns in higher plant chloroplasts requires
the participation of many nuclear-encoded factors and one plastid-encoded splicing factor;
both play a very important role in the regulation of chloroplast gene expression. Nucleus-
encoded chloroplast intron splicing factors mostly consist of RNA binding proteins, and
some can participate in the splicing of multiple group II introns in chloroplasts (Figure 1).
It was suggested that splicing factors usually form splicing complexes by recruiting other
protein factors. For example, CRS2 participates in the splicing process by interacting with
CAF1 and CAF2, and CFM2 and CFM3 form a complex with CRS2/CAF to participate in
chloroplast intron splicing. The splicing of some introns involves more than ten splicing
factors (Figure 1). Further studies are needed to determine whether the splicing factors
involved in the splicing of the same intron are coordinated and form a large complex to
splice the introns. On the other hand, the splicing of some introns has only been found to be
related to a few splicing factors, and it is unknown whether there are other splicing factors
involved in their splicing that have not yet been discovered, or if their splicing requires
only a small number of splicing factors. Future research is required to continuously explore
new chloroplast splicing factors to update the list of splicing factors of chloroplast introns.
Although more and more splicing factors have been reported for chloroplast group II
introns, little is known about their working mechanisms. Recently, Yan et al. systematically
identified the corresponding recognition relationship between the PPR code and the four
RNA bases, providing important information about how PPR proteins recognize specific
RNA sequences [72]. Until now, the splicing mechanism of chloroplast introns have seemed
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to be very complicated due to the multiple splicing factors that are involved in the splicing
of each intron (Figure 1). The splicing of different introns is regulated by different splicing
factors, and these splicing factors also belong to different protein families. It is possible that
the splicing complexes are specific for each intron, and therefore many different splicing
complexes are required within the chloroplast. On the other hand, the splicing complexes
share some of the subunits, such as CAF1. The splicing mechanism of each chloroplast
group II intron can be clarified in the future by isolating and purifying various splicing
complexes and investigating the physical structure of these complexes. It is, however,
gratifying that previous research groups have tried to resolve the structure of the complex
that is formed by a single splicing factor and RNA; for example, the physical structure of
maize ZmPPR10 and the corresponding RNA complex has been uncovered [73,74].
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Abbreviations

APO ACCUMULATION OF PHOTOSYSTEM
At Arabidopsis thaliana
CRM Chloroplast RNA splicing and ribosome maturation
CRS Chloroplast RNA splicing
CRS1 Chloroplast RNA splicing 1
CRS2 Chloroplast RNA splicing 2
CAF1 CRS2 associated factor 1
CAF2 CRS2 associated factor 2
CFM CRM family member
CFM3A CRM Family Member 3A
CFM3 CRM Family Member 3
CFM2 CRM Family Member 2
CFM1 CRM Family Member 1
CDE4 Chlorophyll deficient-4
EBS Exon-binding site
EMB-7L Embryo-specific Chromosome 7L
ECD2 Early Chloroplast Development 2
EMB1270 Embryo Defective 1270
EMB2279 Embryo Defective 2279
HCF152 High Chlorophyll Fluorescence 152
ISE2 Increased Size Exclusion Limit 2
MatK MATURASE K
mTERF mitochondrial transcription termination factor
Os Oryza sativa
OTP51 Organelle Transcript Processing 51
OTP70 Organelle Transcript Processing 70
ORF Open reading frame
PPR Pentatricopeptide repeat
PORR Plant organellar RNA recognition
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PBF2 Photosystem I Biogenesis Factor 2
PDM3 Pigment-defective Mutant 3
PDM4 Pigment-defective Mutant 4
PGL12 Pale-green leaf 12
RRM RNA recognition motif
RH3 RNA helicase 3
RNC1 RNase III-domain protein
Sv Setaria viridis
SEL1 Seedling Lethal 1
SLC1 Seedling lethal chlorosis 1
SLA4 Seedling lethal albino 4
THA8 Thylakoid Assembly 8
WSL5 White-stripe leaf 5
WSL White-stripe leaf
WSL4 White-stripe leaf 4
Zm Zea mays
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