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Abstract: Cisplatin is an antineoplastic drug used for the treatment of many solid tumors. Among its
various side effects, nephrotoxicity is the most detrimental. In recent years, epigenetic regulation
has emerged as a modulatory mechanism of cisplatin-induced nephrotoxicity, involving non-coding
RNAs, DNA methylation and histone modifications. These epigenetic marks alter different signaling
pathways leading to damage and cell death. In this review, we describe how different epigenetic
modifications alter different pathways leading to cell death by apoptosis, autophagy, necroptosis,
among others. The study of epigenetic regulation is still under development, and much research
remains to fully determine the epigenetic mechanisms underlying cell death, which will allow leading
new strategies for the diagnosis and therapy of this disease.
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1. Introduction

Globally, cancer is the second leading cause of death. In 2018, 18.1 million peo-
ple worldwide had cancer, and 9.6 million died from this disease [1]. Cisplatin [cis-
diamminedichloroplatinum (II), CDDP] is a well-known chemotherapeutic drug used
for the treatment of numerous human cancer in solid organs, including head and neck [2],
testis [3], small cells [4] and non-small cells [5] lung cancer, ovarian [6], cervical [7] and
bladder [8]. Regarding the treatment of cancer cells, CDDP is potentially accompanied by
some side effects such as ototoxicity, gastrotoxicity, neurotoxicity, myelosuppression, and al-
lergic reactions [9]. Still, the main limiting side effect of CDDP use is nephrotoxicity [10].
Nephrotoxicity is defined as the rapid deterioration in kidney function due to the toxic
effect of drugs, medications, and/or chemicals [11]. Cisplatin-induced-nephrotoxicity can
occur in several ways, but the most severe and common is acute kidney injury, whose inci-
dence after a single dose of CDDP fluctuates between 20–30% in patients who receive an
initial dose of 50–100 mg/m2 [9]. Cisplatin is concentrated and reabsorbed by tubular renal
cells (5 times more than in the blood), which triggers a rapid decrease in renal function [12],
resulting in morphological changes and altered signaling pathways, such as vacuolation,
mitochondrial dysfunction, cell cycle arrest and apoptosis [13,14]. The diagnosis of kidney
damage is carried out using standard biomarkers, such as serum creatinine (sCr) and blood
urea nitrogen (BUN). However, their sensitivity and specificity are very low, and values
are altered when significant kidney damage already exists [15].

In recent years, several studies showed that epigenetic processes are involved in
cisplatin-induced nephrotoxicity. Wu and Morris [16] defined epigenetic as the “study of
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the changes in gene expression, which occur in organisms with differentiated cells, and the
mitotic inheritance of given patterns of gene expression”. These modifications regulate
gene expression without changing the primary DNA sequence, triggering activation of
transcription or gene silencing [17]. The main epigenetic mechanisms are represented by
DNA methylation, histone modifications, and non-coding RNA. In general, epigenetic
modifications are stable and heritable during cell divisions; however, they are potentially
reversible and can be influenced by environmental factors. This review discusses recent
findings in the epigenetics landscape of cisplatin-induced nephrotoxicity, focusing on the
three mechanisms mentioned above.

2. Induction Mechanism Cisplatin-Induced Nephrotoxicity

Despite its therapeutic efficacy, the use of CDDP is limited due to the manifestation of
side effects in normal tissues, mainly nephrotoxicity, whose incidence fluctuates between
20–30% in patients undergoing CDDP chemotherapy [9].

Cisplatin exerts its cytotoxic consequences by reacting with DNA, which ultimately
culminates in irreversible apoptosis. Once CDDP goes through the cytosol, the low con-
centration of chloride present triggers the hydrolysis of the Pt-Cl bonds. One of the Cl
ligands is replaced by H2O to form the first positively charged CDDP derivative [18].
The subsequent hydrolysis results in the replacement of the next Cl ligand, leading to
the formation of the second CDDP derivative [18]. Cisplatin hydrolyzed complexes bind
to negatively charged DNA bases, inducing DNA damage by forming different types of
adducts, resulting in the arrest of the cell cycle. Cisplatin interacts primarily with the N7
sites of purine residues in DNA to form inter-strand DNA crosslinks and intra-strand
crosslinks at 5′-GG-3′ sites of DNA bases. This results in defective DNA strands, causing
the arrest of DNA synthesis and replication [19]. The main molecular sensor of DNA
damage produced by CDPP is ATR (ataxia telangiectasia and Rad3-related), which is re-
cruited to the site of damage and is co-localized with H2AX, forming nuclear foci. This is
continued by the recruitment and activation of protein kinases, such as Chk1 and Chk2,
which phosphorylate p53 [20], activating the signaling cascade that leads to cell death
by apoptosis [21–26] or necrosis [27–29]. Although this way of DNA damage occurs in
all cells, especially those that divide rapidly, such as tumor cells, this is considered the
main mechanism mediating CDDP antitumor activity. CDDP cytotoxicity is not limited
to cancer cells. In normal cells may lead to dangerous adverse effects such as ototoxicity,
gastrotoxicity, myelosuppression, and allergic reactions. However, the major negative
side effect of CDDP corresponds to nephrotoxicity [10]. After a single dose of CDDP
(50–100 mg/m2), approximately 30% of patients develop this pathology [9]. The nephro-
toxic effect is produced by CDDP accumulation in the kidney, mainly in the S3 segment
of the proximal tubules [30]. One of the reasons for its accumulation may be determined
by the high density of negatively charged mitochondria in the proximal tubular cells,
which attracts positively charged CDDP hydrolyzed complexes [31]. Once CDDP enters
the cell, it can induce various mechanisms resulting in cell damage. The intrinsic pathway
is the main apoptotic pathway during CDDP-induced nephrotoxicity. Cisplatin decreases
anti-apoptotic proteins such as Bcl-2, Bcl-XL, and Mcl-1 [32,33]. This triggers external
membrane permeabilization of the mitochondria, releasing apoptotic factors, such as cy-
tochrome c [34]. Once cytochrome c is released, recruitment and activation of caspase-9
occurs, therefore activating caspase-3, initiating the process of caspase-dependent apop-
tosis [35]. Cisplatin treatment also activates p53 [36–39], which phosphorylation results
in the activation of several molecules, such as p53-up-regulated modulator of apoptosis
(PUMA-α) and P53-induced protein with a death domain (PIDD) [21]. PIDD activates
caspase-2, releasing apoptosis-inducing factor (AIF) from the mitochondria, resulting in
caspase-independent activation [19]. On the other hand, PUMA-α translocates into mi-
tochondria and interacts with BCL-XL, while BAX and BAK finally produce the release
of cytochrome c, leading to caspase-dependent apoptosis [32,33]. Additionally, caspase-6
and -7 induction are produced during CDDP treatment [40]. Cisplatin also activates three
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major MAPKs: extracellular signal-regulated kinase (ERK), p38, and c-JUN N-terminal
kinase (JNK) [35,41]. This induces oxidative stress, activating TNF-α and the consequent
inflammatory response during CDDP-induced nephrotoxicity [42]. The augmented expres-
sion of ERK1/2 by CDDP treatment also activates NF-κβ and p53 signaling [43]. TNF-α
increases tumor necrosis factors 1 and 2, TNFR1 and TNFR2, triggering the extrinsic apop-
tosis pathway through the activation of caspase-8, which will eventually lead to caspase-3
activation [9]. Cisplatin also regulates p21; its up-regulation protects from nephrotoxic
damage [21]. Oxidative stress is a key factor contributing to nephrotoxicity since CDDP
can react with glutathione, decreasing non-enzymatic (GSH and NADPH) and enzymatic
(SOD, CAT, GPx, among others) antioxidant defense mechanisms [44]. Cisplatin also affects
the mitochondrial respiratory complexes, leading to the inhibition of complexes I to IV of
the respiratory chain and decreasing intracellular ATP levels [45]. In addition, CDDP also
reduces the number of mitochondria in normal renal cells [43]. Finally, CDDP causes
the activation of an adaptative program in the endoplasmic reticulum (ER) known as un-
folded protein response (UPR), which inositol-requiring enzyme-1 (IRE1), double-stranded
RNA-activated protein kinase-like ER kinase (PERK), and activating transcription factor-6
(ATF6) are dissociated from ER chaperone GRP78, activating signal transduction to inhibit
protein translation [46]. Therefore, cisplatin-induced nephrotoxicity is a multifactorial and
complex process involving multiple signaling pathways that in turn, may also be regulated
by epigenetic mechanisms.

3. DNA Methylation Role in Cisplatin-Induced Renal Dysfunction

DNA methylation is an epigenetic modification involving the covalent addition of a
methyl group to carbon 5 of a cytosine at CpG dinucleotides through the action of DNA
methyltransferase enzymes (DNMTs) [47], which include DNMT1, DNMT2, DNMT3A,
DNMT3B, and DNMT3L, contributing to hypermethylated (high methylation levels) or
hypomethylated (low methylation levels) states of genes or genomic regions containing
CpG residues [48]. In mammals, 70–80% of CpG dinucleotides are methylated, whereas
CpG islands in promoter regions of genes are demethylated, allowing transcription to
proceed [49]. Therefore, the main function of DNA methylation is the regulation of tran-
scription. Thus, hypomethylation in the promoter region correlates with gene activation
by increased access for transcription factors, whereas hypermethylation in the promoter
region results in loss of gene expression. Studies associating different DNA methylation
patterns with CDDP-induced nephrotoxicity are scarce. Reports show that treatment of
tubular cells with 5-aza-2′-deoxycytidine (5-AZA), a DNA methylation inhibitor, increases
CDDP-induced apoptosis [50,51]. In addition, IRF8, a pro-apoptotic factor, is hypomethy-
lated and induced after CDDP treatment, contributing to renal tubular cell apoptosis
(Figure 1) [50]. In conjunction with 5-AZA, cisplatin decreases the expression of DNMT1,
a maintenance DNMT, attenuating CDDP-induced nephrotoxicity [52]. It is recognized
that OCT2, a transporter involved in organic cation transport, can transport CDDP to prox-
imal tubules [53]. Based on this, studies show that methylation of the promoter region of
OCT2 dramatically reduces the transcriptional activity of this transporter [54], which may
contribute to increased toxicity.
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Figure 1. Demethylation of IRF8 gene promoter during cisplatin-induced nephrotoxicity, contributing to renal tubular cell
apoptosis. Created with BioRender.com accessed on 21 May 2021.

4. Cisplatin Nephrotoxicity and Histone Modifications

The dynamic changes in chromatin structure, which allow its decondensation and
remodeling, are processes necessary for gene transcription, DNA repair, and replication,
carried out by post-translational modifications in the different histones [55]. Histones are
the basic structural proteins of nucleosomes, which bind to double-helical DNA, forming
the DNA-histone complex [47]. There are several types of histones, such as linker histones
(H1 and H5) and core histones (H2A, H2B, H3, and H4), whose function is associated with
DNA packaging [49], where CDDP can easily react with H1 at methionine and glutamate
residues, forming tertiary complexes that prevent DNA repair and increase sensitivity to
CDDP [56]. Histone modifications occur predominantly at the N-terminal end, changing
chromatin structure, positively or negatively affecting gene expression [49]. There are
at least 8 histone modifications, but the most studied include histone acetylation and
methylation, mostly in lysine and arginine residues.

Histone methylation involves the addition of a methyl group to a basic amino acid
(lysine, arginine, and rarely in histidine) of core histones by a group of enzymes called his-
tone methyltransferases (HMTs) [49]. Generally, methylation at H3 lysine 4 (H3K4), H3K36,
and H3K79 activate gene transcription, whereas methylation at H3K9, H3K27, and H4K20 is
associated with transcriptional repression [47]. CDDP treatment increases H3K27 trimethy-
lation, leading to increased caspase 3 and decreased cell viability (Figure 2) [35]. Addi-
tionally, inhibition of enhancer of zeste homolog 2 (EZH2) -a histone methyltransferase-
with 3-deazaneplanocin A (DZNep) in rat proximal tubular cells aggravates apoptosis by
decreasing mTOR complexes [57].

On the other hand, histone acetylation involves adding an acetyl group to the lysine
residue of core histones by a group of enzymes called histone acetyltransferases (HATs) [47].
This promotes open chromatin because a negative charge is added to the positively charged
lysines, reducing the strong DNA-histone interaction, and thus, gene expression is acti-
vated [58]. One member of HATs is p300. This HAT can directly bind to transcription factors,
such as p53 or NF-κB, and regulate their activities by acetylation [59,60]. Cisplatin induces
p300 activation, acetylating lysines 18, 27, and 9 on H3, triggering functional and histological
injury, increasing oxidative stress, inflammation, and apoptosis (Figure 2) [61]. One strategy
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to decrease CDDP-induced damage has been the inhibition of p300 by garcinol, attenuating
the oxidative stress, inflammation, and apoptosis, by reducing the acetylation of the p65
subunit of NF-κB [61].
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Acetylation is a reversible process catalyzed by enzymes called histone deacetylases
(HDACs) [49]. HDACs are subdivided into four types: class I (HDAC1, 2, 3, and 8),
class IIa (HDAC4, 5, 7, and 9), class IIb (HDAC6 and 10), class III (SIRT1-7), and class
IV (HDAC11) [58]. One of the strategies to decrease CDDP-induced nephrotoxicity has
been the use of HDACs class II inhibitors, as their overexpression is associated with in-
creased apoptosis [62,63]. Studies have reported that the level of acetylated histone H3
is modified after CDDP treatment, but CDDP does not alter the abundance of histone
H4 [64]. However, controversial results have been reported concerning acetylation of
histone H3 with CDDP treatment. On the one hand, CDDP reduces levels of histone H3
acetylation in the injured kidney tissue [46,65]; however, another study demonstrated
an increase in histone H3 acetylation after CDDP treatment in human renal cortical ep-
ithelial (HRCE) cells [66]. Although HDACs inhibitors do not prevent the DNA adducts
formation and the initial damage response, they can interfere with the subsequent signal-
ing [67]. Inhibition of HDAC6 by N-hydroxy-4-(2-methoxy-5-(methyl(2-methylquinazolin-
4-yl)amino)phenoxy)butanamide (23BB) reduces apoptosis and ER stress in the kidney
of cisplatin-injured mice [46]. Additionally, HDAC6 inhibition by trichostatin A (TSA)
reduces the renal pathological damage caused by CDDP treatment [65]. Finally, reduction
of HDAC4 and HDAC5 with LMK-235 blocks the caspase-3 cleavage in HRCE cells [66].
The use of TSA, valproate (VPA) or suberoylanilide hydroxamic acid (SAHA) can con-
fer kidney protection during CDDP treatment by H3K27 acetylation and IL-9 down-
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regulation [62], increase of BMP-7 [63], AMWAP [68,69] and PSTPIP2 [70]; increased
CREB phosphorylation [71], reduction of caspase-3 activation [71] or by autophagy stim-
ulation [72]. Even more, it has been demonstrated that SAHA inhibits and TSA delays
phosphorylation, acetylation, and activation of p53 in rat proximal tubular cells [67]. On the
other hand, overexpression of HDAC class III decreases CDDP-induced damage. Pharma-
cological overexpression of SIRT1 ameliorates the increased acetylation of p65 of NF-κB [73]
and p53 [74] during cisplatin treatment, which decreases apoptosis, oxidative stress, and in-
flammation [64,75]. However, SIRT2 up-regulation increases phosphorylation of p38 and
JNK, inducing apoptosis and renal damage in renal tissue [76]. In the same way, SIRT6 over-
expression attenuates cisplatin-induced damage by repressing the expression of ERK1/2,
thus inhibiting NF-κB and p53 signaling [43]. Finally, SIRT3 activation protects kidney
tubular cells against oxidative stress by PARP1 inhibition [77], and its deficiency augments
CDDP nephrotoxicity by increasing apoptosis and inflammatory response (Figure 2) [78].
However, silencing SIRT5 expression significantly improves kidney function and decreases
tissue damage in mice submitted to CDDP damage [79].

5. Involvement of Non-Coding RNAs in Cisplatin Nephrotoxicity

Less than 2% of the human genome is transcribed into RNA to be translated into
proteins. The remaining 98% is transcribed into a class of RNA that is not translated into
proteins but plays a critical role in epigenetics. These molecules are called non-coding
RNAs (ncRNAs) [47]. They regulate gene expression under physiological and pathological
conditions, acting at various stages in protein synthesis at both transcriptional and post-
transcriptional levels [80]. Non-coding RNAs are further divided into two main groups,
small ncRNAs (shorter than 200 bp) and long ncRNA (lncRNAs; longer than 200 bp).

Out of small ncRNAs, microRNAs (miRs) have been by far the most extensively
studied. They are a class of short-chain, linear, approximately 21–25 nucleotides long that
negatively regulate gene targets at the post-transcriptional level by perfect complementarity
of their “seed” region to 3′-UTR of its target mRNA, inducing their degradation. If there is a
mismatch or imperfect complementarity, it results in translational repression [49]. The latest
release of the miRbase database (v22) contains 2654 human mature miRs sequences [81],
ratifying their importance on gene expression regulation.

Evidence shows that miRs mediate CDDP-induced nephrotoxicity in renal tubular
cells through modulation of several molecules involved in a wide array of human (Table 1)
and rodents (Table 2) signaling pathways, activating mechanisms such as DNA damage
response, oxidative stress, autophagy, necroptosis, cell cycle arrest, apoptosis and inflam-
matory response (Figure 3). Cisplatin induces apoptosis in renal tubular cells [21–26],
resulting in p53 activation. However, the epigenetic mechanism regulating cellular death
is not well defined. Bhatt et al. demonstrated that induction of miR-34a in vitro during
CDDP treatment in BLUMPT cells and in vivo during CDDP-induced nephrotoxicity in
C57BL/6 mice were generated by p53. Still, this induction was abrogated in p53-deficient
mice [21]. However, other studies showed that CDDP treatment down-regulates miR-
122 expression, causing FOXO3 acetylation and activation [36]; simultaneously, miR-34a
expression is induced, causing SIRT1 repression [36,37] together with triggering p53 activa-
tion [36]. FOXO3 activation also increases BNIP3L expression, a process that is mediated by
miR-30c repression [22]. SIRT1 repression is also preceded by miR-449 up-regulation [32].
Upon CDDP-induced damage and consequent p53 activation, BAX is translocated into
the mitochondria causing BCL-2 down-regulation, a process mediated by miR-181a [33],
miR-449 [32], miR-21-5p and miR-200c [82]; and miR-107 [83]. CDDP treatment has also
shown JNK induction [84], which promotes the apoptotic process. The decrease in mito-
chondrial membrane potential as a consequence of the increased BAX/BCL-2 ratio leads
to the release of cytochrome c into the cytosol, binding to other molecules to form the
apoptosome and initiating the caspase activation cascade, which is modulated by miRs
such as miR-26a [25], -30c [22], -34a [21], -375 [85] and -709 [23].
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Although autophagy is generally activated under conditions of nutrient deprivation,
it has also been implicated in physiological (development, differentiation) and pathological
(neurodegenerative diseases, stress, infection, cancer) processes [86]. Based on this, it has
been proven that CDDP also modulates the autophagy process in renal tubular cells [87,88],
although the epigenetic mechanisms underlying its occurrence have been poorly studied.
However, it is known that CDDP modulates MAPK/ERK1/2 signaling pathway through
miR-146b up-regulation [89]. Enhanced mir-146b levels directly impact the expression
of mTOR, an autophagy initiation regulatory kinase, which is in turn mediated by miR-
199a up-regulation [38] and miR-26b down-regulation [90]. This allows the interaction of
Atg13, FIPP200, and ULK1/2 [91], the last one being regulated by miR-141 repression [92].
The Atg13/FIPP200/ULK composite interacts with the PI3K class III complex, composed
of several molecules, including Beclin-1, which recruit several ATG proteins, allowing the
phagophore formation [91], and thus, starting the autophagy process.

Cisplatin also modulates cellular oxidative stress by regulating NRF2 [93], a transcrip-
tion factor that regulates the expression of genes encoding antioxidant, anti-inflammatory,
and detoxifying proteins [94]. Under normal conditions, NRF2 is located in the cyto-
plasm, negatively controlled by KEAP1; whereas, under oxidative stress conditions, KEAP1
releases NRF2, which can be translocated to the nucleus and, in this way, binds to antiox-
idant response elements (ARE), resulting in the transcription of antioxidant genes [95].
Some miRs have been shown to modulate KEAP1/NRF2 interaction, such as miR-192-
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5p [24] and miR-140-5p [93]. In addition to this, CDDP also alters the redox state, by de-
creasing the antioxidant activity of GSH, GSH-Px, and SOD [37].

Necroptosis is a programmed form of necrotic cell death considered passive cell
death through regulated cell signaling pathways [96]. RIPK1, RIPK3, and MLKL are
the main molecules involved in the necroptosis process. Necroptosis is triggered when
TNFR1 is activated by TNF-α, resulting in complex I formation. Subsequently, RIPK1,
TRADD, and FADD are recruited. Once RIPK1 is activated, its interaction with RIPK3
occurs, forming complex IIb/necrosome, which mediates the phosphorylation of MLKL,
whose translocation to the plasma membrane promotes necroptosis by disrupting plasma
membrane integrity [97]. Some studies in renal tubular cells have demonstrated the
involvement of miR-500a-3p in RIPK1, RIPK3, and MLKL regulation when these cells are
treated with CDDP [98,99]. On the other hand, RIPK1 ubiquitination results in NF-κB
activation, mediating the survival and production of multiple inflammatory cytokines,
which are also regulated by several miRs when these cells are exposed to CDDP. Thus, IL-6
is mediated by miR-494 [15] and miR-34a [37]; IL-8 by miR-500a-3p [99]; and finally, IL-1β
by miR-155 [100] and miR-34a [37].

The functional and pathological roles of lncRNAs also have been implicated in CDDP-
induced nephrotoxicity. The lncRNA XLOC_032768 can attenuate CDDP-induced apoptosis
through TNF-α up-regulation [101]. Similarly, PRNCR1 lncRNA also attenuates CDDP-
induced damage in HK-2 cells through up-regulation of EZH1 expression [102]. However,
some lncRNAs have been implicated in nephrotoxic damage. Thus, during CDDP-induced
damage, lncRNA LRNA9884 increases NF-κB-mediated inflammatory cytokines, especially
MIF [103]. Likewise, lncRNA GAS5 can increase CDDP-induced apoptosis of HK-2 cells by
modulating miR-205-5p [104].

Circular RNAs (circRNAs) are single-stranded, covalently locked transcripts produced
from a precursor mRNA [105]. These circRNAs can act as sponges for miRs, resulting in
increased expression [49]. In this way, circ-0114427 attracts miR-494 and interacts with
it, increasing ATF3 expression and reducing inflammatory cytokines, thus exerting a
nephroprotective role against CDDP damage [15].
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Table 1. In vitro and in vivo evidence of microRNAs involved in cisplatin-induced nephrotoxicity in humans.

miRNA Assay Model/Cell Line Source CDDP Dose Time Effect Exp. Induced by Gene Target Ref.

miR-9-3p in vitro HK-2 cell line PTECs 2, 10 or 50 µM 24 h Toxic Down - CASK [84]
miR-18a-5p in vitro HPTEC cell line PTECs 40 µM 6 and 24 h Toxic Down - - [106]

miR-21
in vivo Patients with malignant

mesothelioma Urine and kidney CDDP
chemotherapy 4–144 h

Toxic
Up - P21, BCL2 [82]

in vitro HPTEC cell line PTECs 85 µM 24 h Down - P21, BCL2 [82]
in vitro ciPTEC-OAT1 Cell culture media 5 to 30 µM 48 h Toxic Down - - [39]

miR-26a in vitro HK-2 cell line PTECs 4 µmol/L 24 h Toxic Down - TRPC6, DRP1 [25]
miR-29a in vitro ciPTEC-OAT1 Cell culture media 5–30 µM 48 h Toxic Up - - [39]
miR-30c in vitro HK-2 cell line PTECs 10 µM 24–72 h Toxic Down - BNIP3L, HSPA5 [22]

miR-31-5p in vitro HK-2 cell line PTECs 40 µM 0–48 h Toxic Up - NUMB [107]

miR-34a
in vitro HK-2 cell line PTECs 9 µg/mL 24 h Toxic Up - SIRT1 [37]
in vitro ciPTEC-OAT1 Cell culture media 5–30 µM 48 h Toxic Up - - [39]

miR-107 in vitro HK-2 cell line PTECs 7.5 mM 6 h Toxic Up - RPS19 [83]
miR-125b in vitro HepG2, HEK-293 cell line PTECs 30 µM 24 h Protective Up NRF2 AhRR, MDM2 [108]

miR-140-5p in vitro HK-2 and 293T cell lines PTECs 1.5–12 µM 24 h Toxic Up - NRF2, MnSOD,
LDH [93]

miR-146b-5p in vitro HPTEC cell line PTECs 40 µM 6 and 24 h Toxic Down - - [106]
miR-181a in vitro HK-2 cell line PTECs 50 µmol/L 24 h Toxic Up - BCL2, BAX [33]
miR-182 in vitro HK-2 and 293T cell line PTECs 20 µmol/L 24 h Toxic Down - FOXO1 [15]
miR-192 in vitro ciPTEC-OAT1 Cell culture media 5–30 µM 48 h Toxic Up - - [39]

miR-194-5p in vitro HK-2 cell line PTECs 20 µM 24 h Toxic Up - - [99]
miR-199a-3p in vitro HK-2 cell line PTECs 100 µM 24 h Toxic Up p53 mTOR [38]

miR-200c
in vivo Patients with malignant

mesothelioma Urine and kidney CDDP
chemotherapy 4–144 h

Toxic
Up - P21, BCL2 [82]

in vitro HPTEC cell line PTECs 85 µM 24 h Down - P21, BCL2 [82]
miR-203 in vitro HK-2 and 293T cell line PTECs 20 µmol/L 24 h Toxic Down - GSK-3β [15]
miR-205 in vitro HK-2 and HEK-293 cells PTECs 100 µg/mL 6 h Toxic Down - CMTM4 [109]

miR-371b-5p in vitro HK-2 cell line PTECs 2, 10 or 50 µM 24 h Toxic Down - CDK6 [84]

miR-423
in vivo Patients with malignant

mesothelioma Urine and kidney CDDP
chemotherapy 4–144 h

Toxic
Up - P21, BCL2 [82]

in vitro HPTEC cell line PTECs 85 µM 24 h Down - P21, BCL2 [82]
miR-494 in vitro HK-2 and 293T cell line PTECs 20 µmol/L 24 h Toxic Down - ATF3 [15]

miR-500a-3p in vitro HK-2 cell line PTECs 20 µM 24 h Toxic Down - MLKL, RIPK1,
RIPK3 [99]

in vitro HK-2 cell line PTECs 15 µM 6–48 h Toxic Down - MLKL, RIPK3 [98]
miR-577 in vitro HK-2 cell line PTECs 20 µM 24 h Toxic Up - - [99]
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Table 1. Cont.

miRNA Assay Model/Cell Line Source CDDP Dose Time Effect Exp. Induced by Gene Target Ref.

miR-3168 in vivo
Patients with primary

squamous cell carcinoma of
the head and neck

Blood CDDP
chemotherapy - Toxic Up - PRKAB2, TOP2A [110]

miR-4718 in vivo
Patients with primary

squamous cell carcinoma of
the head and neck

Blood CDDP
chemotherapy - Toxic Down - PRKAB2, ERCC1 [110]

miR-6125 in vivo
Patients with primary

squamous cell carcinoma of
the head and neck

Blood CDDP
chemotherapy - Toxic Up - ERCC1 [110]

PTECs: Proximal Tubular Epithelial Cells; OAT1: Organic Anion Transporter 1.

Table 2. In vitro and in vivo evidence of microRNAs involved in cisplatin-induced nephrotoxicity in rodents.

miRNA Specie Assay Model/Cell Line Source CDDP Dose Time Effect Exp. Induced by Gene Target Ref.

miR-9-3p Rat in vitro NRK52E cell line PTECs 2, 10 or 50
µM 24 h Toxic Down - CASK, CDK6,

JNK [84]

miR-15 Rat in vivo Male Han Wistar rat Blood, urine and
kidney 1 or 3 mg/kg 0–26 d Toxic Up - - [111]

miR-16 Rat in vivo Male Han Wistar rat Blood, urine and
kidney 1 or 3 mg/kg 0–26 d Toxic Up - BTG2, PHLD3A [111]

miR-20a Rat in vivo Male Han Wistar rat Blood, urine and
kidney 1 or 3 mg/kg 0–26 d Toxic Up - p21 [111]

miR-21 Mouse
in vivo Adult C57BL/6 mice Urine, blood and

kidney 15 mg/kg 4 d
Toxic Up - - [92]

in vitro MM55.K tubular cells PTECs 8 µg/mL 48 h
miR-22 Rat in vivo Male Sprague-Dawley rats Urine 2 or 5 mg/kg 72 h Toxic Up - - [112]

miR-26a Mouse in vivo Male C57BL/6 mice Kidney 20 mg/kg 3 d Toxic Down - TRPC6, DRP1 [25]

miR-26b Rat in vivo
Male Sprague-Dawley rats Urine 2 or 5 mg/kg 72 h Toxic Up - - [112]

Male Wistar rats Blood and kidney 5 mg/kg 3 d Toxic Down - TGFβR-1, TAK1,
mTOR, LC3-II [90]

miR-30c Rat
in vivo Wistar rat Kidney 10 mg/kg 1, 3 or 7 d

Toxic Down - BNIP3L, HSPA5 [22]in vitro NRK-52E cell line PTECs 10 µM 24–72 h

miR-31-5p Rat in vivo Female Sprague-Dawley
rats Blood and kidney 20 mg/kg 14 d Toxic Up - NUMB [107]
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Table 2. Cont.

miRNA Specie Assay Model/Cell Line Source CDDP Dose Time Effect Exp. Induced by Gene Target Ref.

miR-34a

Mouse in vitro BUMPT-306 cell line PTECs 40 µmol/L 0–20 h
Toxic Up - p53 [21]

Mouse in vivo Wild-type and
p53-deficientC57BL/6 mice Blood and kidney 30 mg/kg 0–3 d

Mouse in vivo Male C57BL/6 mice Kidney 15 mg/kg 3 d Toxic Up - SIRT1, p53,
PHLDA3 [36]

Rat in vitro NRK-52E cell line PTECs 9 µg/mL 24 h
Toxic Up - SIRT1 [37]

RatMouse in vivo Male Wistar ratsMale
C57BL-6J mice Blood and kidney 7 mg/kg25 mg/kg 12 d - - [37]

Rat in vivo Male Sprague-Dawley rats Kidney and plasma 2 or 5 mg/kg 72 h Toxic Up - - [112]

Rat in vivo Male Wistar rats Blood and kidney 5 mg/kg 3 d Toxic Down - TGFβR-1, TAK1,
mTOR, LC3-II [90]

miR-34c Rat in vivo Male Sprague-Dawley rats Kidney and plasma 2 or 5 mg/kg 72 h Toxic Up - - [112]
miR-34c-5p Rat in vivo Male Hannover Wistar rats Kidney and urine 2.5 mg/kg 0–27 d Toxic Down - - [113]

miR-92a Mouse
in vivo Adult C57BL/6 mice Urine, blood and

kidney 15 mg/kg 4 d
Toxic Down

- - [92]
in vitro MM55.K tubular cells PTECs 8 µg/mL 48 h -

miR-92b Rat in vivo Male Sprague-Dawley rats Plasma 2 or 5 mg/kg 72 h Toxic Up - - [112]

miR-93-5p Rat in vivo Male Sprague-Dawley rats Kidney and urine 1, 3 or
6 mg/kg 1–7 d Toxic Up - - [114]

miR-107 Rat in vivo Male Sprague-Dawley rats Kidney and blood 6 mg/kg 3 d Toxic Up - RPS19 [83]

miR-122 Mouse in vivo Male C57BL/6 mice Kidney 15 mg/kg 3 d Toxic Down - FOXO3, p53,
PHLDA3 [36]

miR-122-5p Rat in vivo Male Sprague-Dawley rats Blood and kidney 6 mg/kg 1–5 d Toxic Down - - [115]

miR-125b Mouse in vivo Male C57BL/6 mice and
Nrf2 KO Blood and kidney 15 mg/kg 3 d Protective Up NRF2 AhRR, MDM2 [108]

miR-128 Rat in vivo Male Sprague-Dawley rats Plasma 2 or 5 mg/kg 72 h Toxic Up - - [112]
miR-130b Rat in vivo Male Sprague-Dawley rats Plasma 2 or 5 mg/kg 72 h Toxic Up - - [112]
miR-134 Rat in vivo Male Sprague-Dawley rats Plasma 2 or 5 mg/kg 72 h Toxic Up - - [112]

miR-138 Mouse in vivo Female Diversity Outbred
mice Urine and kidney 5 mg/kg 3 d Toxic Up - - [26]

miR-140 Rat in vivo Male Sprague-Dawley rats Urine 2 or 5 mg/kg 72 h Toxic Up - - [112]

miR-140-5p Mouse
in vivo Adult male mice Blood and kidney 20 mg/kg 1–14 d Toxic Up - NRF2, MnSOD,

LDH [93]

in vivo Male C57BL/6J mice Blood and kidney 20 mg/kg 19 d Toxic Down - NRF2, p53 [24]
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Table 2. Cont.

miRNA Specie Assay Model/Cell Line Source CDDP Dose Time Effect Exp. Induced by Gene Target Ref.

miR-141 Mouse
in vivo Adult C57BL/6 mice Urine, blood and

kidney 15 mg/kg 4 d
Toxic Down

-
ULK2 [92]

in vitro MM55.K tubular cells PTECs 8 µg/mL 48 h -
miR-143-3p Rat in vivo Male Sprague-Dawley rats Blood and kidney 6 mg/kg 1–5 d Toxic Down - - [115]

miR-144
Mouse in vivo Male C57BL/6 mice Blood and kidney 20 mg/kg 6 h Toxic Down - PTEN, ATK,

GSk3β [116]

Rat in vivo Male Sprague-Dawley rats Kidney 2 or 5 mg/kg 72 h Toxic Down - - [112]
miR-146a Mouse in vivo Male Balb/C mice Blood and kidney 10 mg/kg 24 h Toxic Up - - [117]

miR-146b Rat
in vivo Sprague-Dawley rats Serum and kidney 6 mg/kg 5 d

Toxic Up -
ERBB4 [89]in vitro NRK-52E cell line PTECs 7.5 µM 48 h -

in vivo Male Sprague-Dawley rats Kidney 2 or 5 mg/kg 72 h Toxic Up - - [112]
miR-151 Rat in vivo Male Sprague-Dawley rats Plasma 2 or 5 mg/kg 72 h Toxic Up - - [112]

miR-155 Mouse in vivo miR-155−/− and C57BL/6
mice

Blood and kidney 20 mg/kg 72 h Toxic Down - c-FOS, TNF-α,
IL-1β [100]

miR-181a Mouse in vivo Male C57BL/6 mice Blood and kidney 20 mg/kg 3 d Toxic Up - PTEN [118]
miR-181b Rat in vivo Male Sprague-Dawley rats Plasma 2 or 5 mg/kg 72 h Toxic Up - - [112]
miR-182 Mouse in vivo Male C57BL/6 mice Blood and kidney 30 mg/kg 72 h Toxic Down - FOXO1 [15]
miR-191a Rat in vivo Male Sprague-Dawley rats Plasma 2 or 5 mg/kg 72 h Toxic Up - - [112]

miR-191a-5p Rat in vivo Male Sprague-Dawley rats Kidney and urine 1, 3 or
6 mg/kg 1–7 d Toxic Up - - [114]

miR-192 Rat in vivo Male Han Wistar rat Blood, urine and
kidney 1 or 3 mg/kg 0–26 d Toxic Up - - [111]

miR-192-5p Rat in vivo Male Sprague-Dawley rats Kidney and urine 1, 3 or
6 mg/kg 1–7 d Toxic Up - - [114]

Mouse in vivo Male C57BL/6J mice Kidney and blood 20 mg/kg 19 d Toxic Down - NRF2, p53 [24]

miR-193 Rat in vivo Male Han Wistar rat Blood, urine and
kidney 1 or 3 mg/kg 0–26 d Toxic Up - - [111]

miR-199a-3p Mouse in vivo Male C57/BL mice Kidney 20 mg/kg 3 d Toxic Up p53 mTOR [38]
miR-203 Mouse in vivo Male C57BL/6 mice Blood and kidney 30 mg/kg 72 h Toxic Down - GSK-3β [15]

miR-208a Mouse
in vivo Adult C57BL/6 mice Urine, blood and

kidney 15 mg/kg 4 d
Toxic Down

- - [92]
in vitro MM55.K tubular cells PTECs 8 µg/mL 48 h -

miR-210 Rat in vivo Male Han Wistar rat Blood, urine and
kidney 1 or 3 mg/kg 0–26 d Toxic Up - - [111]
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Table 2. Cont.

miRNA Specie Assay Model/Cell Line Source CDDP Dose Time Effect Exp. Induced by Gene Target Ref.

miR-218 Mouse in vivo Female Diversity Outbred
mice Urine and kidney 5 mg/kg 3 d Toxic Up - - [26]

miR-292-3p Mouse
in vivo Adult C57BL/6 mice Urine, blood and

kidney 15 mg/kg 4 d
Toxic Down

- - [92]
in vitro MM55.K tubular cells PTECs 8 µg/mL 48 h -

miR-293* Mouse
in vivo Adult C57BL/6 mice Urine, blood and

kidney 15 mg/kg 4 d
Toxic Up - - [92]

in vitro MM55.K tubular cells PTECs 8 µg/mL 48 h -

miR-371b-5p Rat in vitro NRK52E cell line PTECs 2, 10 or 50
µM 24 h Toxic Down - CASK, CDK6,

JNK [84]

miR-375
Mouse in vivo Wild-type and PT-Dicer−/−

mice
Kidney 30 mg/kg 3 d

Toxic Up p53, NF-κB HNF-1β [85]
Rat in vitro RPTC cell line PTECs 20 µM 16 h

miR-377 Mouse
in vivo Adult C57BL/6 mice Urine, blood and

kidney 15 mg/kg 4 d
Toxic Up -

CUL1 [92]
in vitro MM55.K tubular cells PTECs 8 µg/mL 48 h -

miR-378a Rat in vivo Male Sprague-Dawley rats Urine 2 or 5 mg/kg 72 h Toxic Up - - [112]
miR-431 Rat in vivo Male Sprague-Dawley rats Plasma 2 or 5 mg/kg 72 h Toxic Up - - [112]
miR-449 Rat in vitro NRK-52E cell line PTECs 20 µg/mL 24 h Toxic Up - SIRT1, P53, BAX [32]
miR-451 Rat in vivo Male Sprague-Dawley rats Kidney 2 or 5 mg/kg 72 h Toxic Down - - [112]

miR-463 Mouse
in vivo Adult C57BL/6 mice Urine, blood and

kidney 15 mg/kg 4 d
Toxic Up - - [92]

in vitro MM55.K tubular cells PTECs 8 µg/mL 48 h -
miR-484 Rat in vivo Male Sprague-Dawley rats Plasma 2 or 5 mg/kg 72 h Toxic Up - - [112]
miR-494 Mouse in vivo Male C57BL/6 mice Blood and kidney 30 mg/kg 72 h Toxic Down - ATF3, IL6 [15]

miR-673-5p Mouse
in vivo Adult C57BL/6 mice Urine, blood and

kidney 15 mg/kg 4 d
Toxic Down

- - [92]
in vitro MM55.K tubular cells PTECs 8 µg/mL 48 h -

miR-675-3p Mouse
in vivo Adult C57BL/6 mice Urine, blood and

kidney 15 mg/kg 4 d
Toxic Up - - [92]

in vitro MM55.K tubular cells PTECs 8 µg/mL 48 h -

miR-685 Mouse in vivo Female Diversity Outbred
mice Urine and kidney 5 mg/kg 3 d Toxic Up - - [26]

miR-702 Rat in vivo Male Sprague-Dawley rats Plasma 2 or 5 mg/kg 72 h Toxic Up - - [112]
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Table 2. Cont.

miRNA Specie Assay Model/Cell Line Source CDDP Dose Time Effect Exp. Induced by Gene Target Ref.

miR-709 Mouse
in vivo C57BL/6 mice Blood and kidney 20 mg/kg 72 h

Toxic Up -
TFAM [23]in vitro mPTC cell line PTECs 1–20 µM 2–24 h -

miR-741 Mouse
in vivo Adult C57BL/6 mice Urine, blood and

kidney 15 mg/kg 4 d
Toxic Up - - [92]

in vitro MM55.K tubular cells PTECs 8 µg/mL 48 h -

miR-1190 Mouse
in vivo Adult C57BL/6 mice Urine, blood and

kidney 15 mg/kg 4 d
Toxic Down

- - [92]
in vitro MM55.K tubular cells PTECs 8 µg/mL 48 h -

miR-1839 Rat in vivo Male Sprague-Dawley rats Urine 2 or 5 mg/kg 72 h Toxic Up - - [112]
miR-6215 Rat in vivo Male Sprague-Dawley rats Plasma 2 or 5 mg/kg 72 h Toxic Up - - [112]

miR-let-7b Rat in vivo Male Wistar rats Blood and kidney 5 mg/kg 3 d Toxic Down - TGFβR-1, TAK1,
mTOR, LC3-II [90]

miR-let-7e Rat in vivo Male Sprague-Dawley rats Plasma 2 or 5 mg/kg 72 h Toxic Up - - [112]
miR-let-7g Rat in vivo Male Sprague-Dawley rats Urine 2 or 5 mg/kg 72 h Toxic Up - - [112]
miR-let-7g-

5p Rat in vivo Male Sprague-Dawley rats Kidney and urine 1, 3 or
6 mg/kg 1–7 d Toxic Up - - [114]

PTECs: Proximal Tubular Epithelial Cells.
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6. Potential Challenges and Future Directions

Epigenetics is an active research field concerning cisplatin-induced nephrotoxicity.
So far, studies show that the mechanisms involved play a significant role in the pathogen-
esis of this condition. However, little is known about the interaction between different
epigenetic marks. Nonetheless, crosstalk between epigenetic modifications does exist in
this pathology. For example, during CDDP-induced nephrotoxicity, lncRNA LRNA9884
increases NF-κB expression [103]. On the other hand, miR-34 [21,36], miR-192-5p [24]
and, miR-449 [32] activate p53. Both NF-κB and p53 up-regulate miR-375 [85], inducing
apoptosis in renal proximal tubular cells. However, inhibiting p300 attenuates this adverse
effect due to reduced acetylation of NF-κB [61]. In the same way, overexpression of SIRT1
and SIRT6 inhibits p53 signaling, reducing cisplatin-induced damage [43,74]. Clearly,
there are many gaps regarding epigenetic modulation in the pathogenesis of this condition,
especially in the cross-talking for these mechanisms. Understanding the way that DNA
methylation, histone modifications, and ncRNAs underlie this disease will provide us with
the opportunity to discover new biomarkers for early diagnosis, as well as the establish-
ment of novel therapies or treatments aiming to decrease the incidence of cisplatin-induced
nephrotoxicity.

7. Conclusions

Nephrotoxicity is the most lethal side effect of cisplatin treatment. During the last
few years, rapid progress has been made in understanding the contribution of epigenetic
mechanisms underlying nephrotoxicity to be used as potential biomarkers for early diag-
nosis and/or to employ different therapeutic strategies. These studies demonstrate the
complexity of the interactions of epigenetic modifications, which have provided a better
understanding of the epigenetic regulation of CDDP-induced nephrotoxicity. Continued
research in this area will provide new therapeutic targets and early, sensitive, and specific
diagnostic biomarkers to detect CDDP-induced nephrotoxicity.
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