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Lifestyle adaptation of microbes due to changes in their ecological niches or acquisition of
new environments is a major driving force for genetic changes in their respective genomes.
Moving into more specialized niches often results in the acquisition of new gene sets via
horizontal gene transfer to utilize previously unavailable metabolites, while genetic ballast is
shed by gene loss and/or gene inactivation. In some cases, larger genome rearrangements
can be observed, such as the incorporation of whole genetic islands, providing a range of
new phenotypic capabilities. Until recently these changes could not be comprehensively
followed and identified due to the lack of complete microbial genome sequences. The
advent of high-throughput DNA sequencing has dramatically changed the scientific land-
scape and today microbial genomes have become increasingly abundant. Currently, more
than 2,900 genomes are published and more than 11,000 genome projects are listed in the
Genomes Online Database‡. Although this wealth of information provides many new oppor-
tunities to assess microbial functionality, it also creates a new array of challenges when
a comparison between multiple microbial genomes is required. Here, functional genome
distribution (FGD) is introduced, analyzing the diversity between microbes based on their
predicted ORFeome. FGD is therefore a comparative genomics approach, emphasizing
the assessments of gene complements.To further facilitate the comparison between two
or more genomes, degrees of amino-acid similarities between ORFeomes can be visual-
ized in the Artemis comparison tool, graphically depicting small and large scale genome
rearrangements, insertion and deletion events, and levels of similarity between individual
open reading frames. FGD provides a new tool for comparative microbial genomics and
the interpretation of differences in the genetic makeup of bacteria.
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INTRODUCTION
Microbial genomes range in size from the smallest microbial
genome known to date of Candidatus Tremblaya princeps with
just under 139,000 nt (McCutcheon and von Dohlen, 2011) to
large genomes with over 13,000,000 nt such as Sorangium cellulo-
sum SO ce56 (Schneiker et al., 2007). With an average gene size of
about 1,000 nt, microbial genomes harbor between 140 and 13,000
genes.

Lifestyle adaptation is one of the major driving forces for micro-
bial genome re-arrangement processes such as gene loss and gene
acquisition, genome rearrangements, and the movement of whole
genetic islands. Until recently, such processes could not be mon-
itored comprehensively and observations were limited to either
a few select genes (typing) or the analysis of large scale genome
re-arrangement events.

Typing methods such as multi-locus sequence typing (MLST;
Chan et al., 2001), are based on the selection of a few widely
distributed and conserved house-keeping genes. Today, MLST uti-
lizes whole microbial genome predominantly to identify new select
target regions for amplification, rather than analyzing the whole
nucleotide sequence (Maiden, 2006).

‡http://genomesonline.org/cgi-bin/GOLD/bin/gold.cgi

With the advent of high-throughput DNA sequencing tech-
niques such as automated capillary sequencing, solid-state
sequencing1, or pyrosequencing2 or sequencing by synthesis3,
access to high-quality draft, and complete bacterial genomes
has become feasible and is a commonly used technique. Cur-
rently 2,943 complete genomes (including eukaryotic organisms)
have been reported, with another 184 archeal and 5,490 bacte-
rial genome projects in progress4. The availability of complete
or nearly complete genomes triggered attempts to incorporate
selected larger genetic subsets (Makarova et al., 2006; Makarova
and Koonin, 2007) or complete genomes (Rohwer and Edwards,
2002; Henz et al., 2005) to infer evolutionary lineages, while less
progress has been made in analysis of multiple whole microbial
genomes from functional and comparative genomic perspectives.
One of the most prominent examples of whole genome compara-
tive analyses is based on Blast Score Ratios (Rasko et al., 2005).

Here, we introduce a new analysis tool, functional genome
distribution (FGD). FGD does not attempt to represent the

1http://www.appliedbiosystems.com
2http://454.com/
3http://www.illumina.com
4http://genomesonline.org/cgi-bin/GOLD/bin/gold.cgi
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evolutionary path a genome has taken, since different genes will
have been acquired by different routes. Instead, FGD investigates
the overall levels of similarity between microbial genomes based
on amino-acid sequences of the predicted complete ORFeomes.
This reflects the impact the evolutionary force has had on genome
makeup in the past, resulting in the current level of niche adapta-
tion (Thomson et al., 2003). Thus presence, absence, or modifica-
tion of individual genes or genetic islands defines the phenotypic
potential of a given organism at a given temporal snapshot. The
comparison of these ORFeomes to each other ultimately defines
the level of similarity of the genomes. This approach then also takes
into account important genetic adaptations to specific ecological
niches or even to human made environments such as industrial fer-
mentation processes. Such common genotype adaptations might
render organisms more similar by FGD analyses than their respec-
tive evolutionary heritage would indicate. The presented approach
of a FGD is a BLAST-based ORF-position-independent algorithm,
implemented in the compACTor software. In the context of FGD
analyses the term “functional” is used in the sense of functionality
based on sequence and sequence similarity and is not based on
annotation classification [i.e., such as implied by COG (Tatusov
et al., 2003) or KEGG (Kanehisa, 2002; Kanehisa et al., 2008)
databases].

Research in functional genomics (defined as the investigation
of gene function by gene inactivation, gene complementation, and
in silico analyses) relies heavily on the identification of differ-
ences between two or more genomes, identifying differences in
the presence or absence of individual genes. The compACTor soft-
ware also creates all-vs.-all ORFeome distance data files which,
in combination with the respective GenBank files of the query
microbes and the Artemis comparison tool (ACT; Carver et al.,
2005), facilitate visual qualitative comparative in silico analyses
of complete and draft phase microbial genomes for the sub-
sequent analysis of changes to gene synteny and operon struc-
tures. Furthermore, to identify genes shared and unique between
selected clusters a mining tool, FGDfinder, is provided, facilitat-
ing rapid identification of relevant gene sets for further in vitro
analyses.

MATERIALS AND METHODS
GENERAL WORKFLOW OF THE compACTor SOFTWARE
A pool of genomes in GenBank format represents the query space
for compACTor (Figure 1). Gene models embedded and subse-
quently retrieved from the GenBank files of each query genome
are parsed and the resulting ORFeome is translated into individual
amino-acid sequences. The parsing algorithm considers both gene
and CDS features for any given start position, while giving pref-
erence to CDS entries. Nucleotide sequences are retrieved from
the genome sequence and translated into amino-acid sequence.
Gene model errors such as unbalanced number of nucleotides,
unrecognized amino-acid codons, or multiple stop-codons are
reported but treated as non-critical. The translated ORFeome is
then used to build query-specific amino-acid BLAST databases
(DBs) using formatdb (Altschul et al., 1990). In subsequent runs
previously build BLAST databases can be re-used (Figure 1),
reducing the overall runtime of the compactor software. The
pooled ORFeomes of all query entries are hashed for subsequent

all-vs.-all analyses. Levels of similarities are inferred for each pre-
dicted query ORF by an all-vs.-all analysis, submitting sequence-
database combinations to a non-filtered gapped BLASTP (Altschul
et al., 1997) pipeline. Briefly, the deduced amino-acid sequence for
each open reading frame (ORF) of each query entry is compared
to all subject databases generated from the entry pool. Individ-
ual BLAST results are parsed and collated in ORF-specific ASCII
result files. The total number of BLAST analyses performed is a
direct function of the number of individual ORFeomes and the
pool size.

The collated flatfile database is the basis for all subsequent cal-
culations such as the generation of ACT (Carver et al.,2005) pMSP-
datafiles, the prediction of putative strain-specific genes, and the
generation of FGD trees. It is also possible to add new query entries
to existing analyses. The compACTor software tests for the pres-
ence of respective ORF-database BLAST results and omits the
BLAST pipeline where possible. This significantly reduces run-
time requirements and facilitates future expansions of existing
comparative analyses.

GENERATION OF ACT COMPARISON DATA FILES (pMSP)
Based on the all-vs.-all principle, all genome–genome pair com-
binations are analyzed. A bi-directional BLASTP approach was
implemented for the creation of ORF-specific ACT comparison
files. Genome pairs analyzed in respective comparison files are
reflected within the filename which features both filenames in
the order query-to-subject. Each predicted ORF of the query
genome was allowed a maximum of 20 similarity hits to ORFs
present in the respective subject genome. ACT allows two qual-
ity parameters, namely “Score cutoff” and “Percent ID cutoff”
in its comparison file format. These two cutoffs determine the
stringency of sequence similarities, and were replaced in the com-
pACTor software output by the alternative parameters of “e-value”
(“Percent ID”) and “weighted score” (“Score”). The parameter “e-
value” is derived from individual e-values which are grouped into
empirically determined trust level ranges (Table A1 in Appendix).
Similarly, for the second parameter, a weighted score is calcu-
lated, placing additional emphasis on alignment quality and length
(Eq. 1). Briefly, the initial alignment-centric local BLAST score is
reflecting the maximum level of sequence similarity between a
given ORF pair (ς, Eq. 1). To account for changes outside the local
alignment and to further assess the alignment quality, the score
is then subjected to three penalty blocks, assessing the quality of
amino-acid similarity [(P − Id/2) + Id/λ, Eq. 1], the size of gaps
(1 − G/A, Eq. 1), and the length of the BLAST alignment in rela-
tion to the query ORF length (A − G/λ, Eq. 1). These penalty
parameters take into account differences in amino-acids sequence
alignments which are not or insufficiently covered by the regular
BLAST score. This process effectively reduces the level of simi-
larity between both ORFs when the BLAST alignment covers only
partial ORF sequences and/or the alignments show significant lev-
els of insertions or deletions and results in a weighted BLAST
score ψ.

The weighted score is a sub-parameter of the distance calcu-
lation between two genomes (see Eq. 2) and allows for strin-
gency shifting in ACT while maintaining continuity to the FGD
algorithm.
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FIGURE 1 | Graphical workflow of the compACTor software. Schematic
representation of the algorithm structure. Symbols used are consistent with
standard flowchart icons. Abbreviations: DB, database; pMSPs, ORFeome
based MSPcrunch comparison format (Sonnhammer and Durbin, 1994) data

files. Oval symbol: data pools, diamond symbol: internal decision points,
square boxes: internal processes and functions, hourglass symbol: central
parsing algorithm, Multidocument symbol: external flatfile databases created
by compACTor.
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Weighted BLAST score
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with: ψ = weighted score, ς = BLAST score between query
sequence and respective BLAST hit, λ = length of deduced amino-
acid in query sequence, P = identified positives in BLAST align-
ment, Id = identified identities in BLAST alignment, A = length of
BLAST alignment, G = number of gaps in BLAST alignment

Artemis comparison tool compatible comparison files (pMSP)
created with the compACTor software adhere to the MSPcrunch
(Sonnhammer and Durbin, 1994) format. An example dataset
of a two-way genome-to-genome comparison is provided in the
Appendix.

FUNCTIONAL GENOME DISTRIBUTION
In prokaryotes, genome plasticity (re-arrangement of genomic
regions between species), the presence of metabolic islands (clus-
ters of genes with defined and specific metabolic functions),
gene acquisition via horizontal gene transfer (HGT), and varied
distribution of mobile genetic elements are well described and
contribute significantly to phenotypic differences (Desiere et al.,
2001; Makarova et al., 2006; Berger et al., 2007; Nicolas et al.,
2007). Also, adaptation to new ecological niches and the result-
ing genetic drift can lead to rapid acquisition or the shedding of
genetic elements without changes in selected sequence or gene
subsets used in typing analyses (Makarova et al., 2006). Organ-
isms, virtually indistinguishable based on selected individual gene
(set) evolutionary analyses, may be markedly different in their
complete genetic blueprint. To reflect this widespread diversity,
a new algorithm, FGD, was empirically developed to distinguish
organisms in the multi-dimensional genome space. Here, the focus
distinctly lies on a snapshot picture of a current genome and
how the genotype relates to other organisms. From a functional
genomics perspective, the presence, absence, or modification of a
gene determines a potential metabolic capability, while the respec-
tive position with the genome may influence the respective levels
of gene expression (Sousa et al., 1997). Therefore, a position inde-
pendent approach was embraced that investigates the phenotypic
potential (absence/presence/similarity of genes) at the cost of loci
dependent modulations of gene expression.

Each predicted ORF of a given query genome is analyzed
via gapped BLASTP to a subject organism specific BLAST data-
base. Result parameters of the best BLAST hit are applied to the
following equations (Eqs 2 and 3).

Distance between two genomes

δGquery → Gsubject = T ORFquery(
T ORFquery∑

n=1

ψ
λ(n)

)
× ρORF

(2)

with:δ = final similarity score between two genomes,ψ = weighted
BLAST score as described in Eq. 1, λ = length of deduced amino-
acid query sequence, T ORFquery = total number of ORFs in query

genome, n = current query ORF, and ρORF = ORF number ratio
as described in Eq. 3.

ORFeome ratio between query and subject genome

ρORF =
(

T ORFquery

T ORFsubject
�� 1

)
∨
(

T ORFsubject

T ORFquery

)
(3)

with: ρORF = ORF number ratio between query and subject
genome, always ≤ 1, T ORFquery = total number of ORFs in query
genome, T ORFsubject = total number of ORFs in subject genome.

MOTIVATION OF THE FGD ALGORITHM
The FGD algorithm initially investigates the level of similarity for
each predicted ORF in a query genome to a subject ORF and is
based on the BLAST score. This score describes the overall qual-
ity of the best local alignment found for a given query–subject
sequence alignment. However, the score alone does not necessarily
reflect the overall level of similarity between two sequences outside
the local alignment. Also, from a functional genomics perspective,
insertion, and deletion events in individual amino-acid sequences
may change the properties of the gene product, thus decreasing the
level of similarity. Furthermore, the relation of the local alignment
to the overall sequence is an important factor. While stretches of
highly conserved sequence contribute to a higher BLAST score, the
presence of unique sequence outside the local alignment is likely
to contribute to changing the properties of respective gene prod-
ucts. Therefore, the maximum level of similarity as described by
the BLAST score will be decreased by the FGD algorithm if inser-
tion/deletion events and imbalanced alignment/deduced sequence
ratios are detected.

The FGD analysis then summarizes individual similarity scores
determined for each ORF in the ORFeome. The presence of unique
strain-specific genes and differences in the overall number of pre-
dicted ORFs in respective microbial genome pairs contribute to
different genotypes and consequently decrease the level of overall
functional similarity between genome pairs.

The initial alignment BLAST score is subjected to quality assess-
ments as described above for Eq. 1. In Eq. 2 the resulting weighted
score is normalized by the number of deduced amino-acids of the
query ORF, resulting in a score per amino-acid [ψ/λ(n)]. Indi-
vidual similarity scores are then are summed up over the query
ORFeome and normalized over total number of predicted ORFs,
resulting in a weighted score per ORF. Assessing differences in
ORFeome sizes by calculating the ratio between query and subject
ORFeomes (Eq. 3), the similarity score is adjusted to result in a
final genome similarity score (δGquery → Gsubject ).

Genome similarity scores for each query–subject combination
are entered into a distance matrix. A symmetrical distance matrix,
based on the geometrical means of each genome–genome pair
combination is calculated according to Eq. 4.

Symmetrical distance matrix

Δsym = δGquery → Gsubject + δGsubject → Gquery

2
(4)
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with:Δsym = final score for symmetrical distance matrix between a
given genome–genome pair and δGquery → Gsubject = similarity
score between a given genome–genome combination.

Distance matrices of larger datasets become increasingly com-
plex to read directly. Therefore a traditional tree representation
was used as a visual aid to the underlying data structure. The
resulting symmetrical distance matrix can be imported into soft-
ware packages such as Mega4 (Tamura et al., 2007). Genome
clusters are approximated using the Unweighted Pair Group
Method with Arithmetic mean (UPGMA) algorithm (Sneath
and Sokal, 1962). Approximated branch lengths, representing
the level of similarity between genomes are depicted by dis-
tance units (du). Although similar in appearance to phylogenetic
trees, the resulting functional distribution tree (FDT) depicts
a different concept, clustering organisms by their respective
ORFeome similarities rather than by their inferred evolutionary
line.

IDENTIFICATION OF PUTATIVE STRAIN-SPECIFIC GENES
A key interest in comparative functional genomics is the identi-
fication of strain and cluster specific and shared gene sets, iden-
tifying the genetic differences, and similarities between selected
microbial genomes. These gene sets can then be used to inves-
tigate potentially unique metabolic capabilities of microbes and
may reveal specific genome adaptation to lifestyle changes. Clus-
ter specific genes or genes shared between clusters are identified
using the flatfile BLAST database created by compACTor. Query
ORFs exhibiting a minimum e-value threshold with respect to
a given subject genome are identified and stored if they fulfill
the stringency restriction. Stringency between selected clusters
can be set by selecting the number of allowable mismatches. A
mismatch is defined as an ORF in the query cluster that has at
least one ORF–ORF pairing above the minimum e-value thresh-
old to the subject cluster. Objects implemented in the output
are: name of the query GenBank file, respective ORF identi-
fier, the name of the subject GenBank file, annotation of the
subject ORF, and the corresponding e-value, query ORF length,
score, query ORF start and stop positions, and gene, locus_tag,
product, and note annotation. Data for each query ORFeome –
subject genome combination are collated and summarized in a
tab-delimited ASCII file. The individual data files can easily be
imported into spreadsheet programs such as MS Excel or OpenOf-
fice Calc and then be further re-grouped and analyzed. For exam-
ple, grouping by query ORF number quickly identifies the degree
to which a respective ORF is unique among the pool of genome
entries.

IMPLEMENTATION
The compACTor and FGDfinder software has been realized as
PERL scripts (ActivePerl version 5.8.8.822), using the official
NCBI BLAST distribution5. The software is freely available for
non-commercial use (commercial use requires a license).

The algorithms and BLAST utilities used in compACTor render
the application CPU intensive. compACTor is multi-threaded and

5ftp://ftp.ncbi.nih.gov/blast/executables/LATEST

support multiple CPUs/cores to reduce runtime in a near linear
fashion. For the analysis depicted in Figure 2, 39 genomes, ranging
from ∼1.7 to ∼6.6 Mbp, were analyzed. A total number of 113,397
ORFs resulted in ∼4,300,000 individual BLAST queries. Artemis
Comparison Files, the prediction of putative strain-specific ORFs
and the phylogenetic tree were calculated using a collated and
parsed BLAST flatfile database of >11 Gb. 1,560 Artemis compar-
ison files were generated, reflecting all possible genome–genome
combinations (a datapool of >2.5 Gb).

KNOWN LIMITATIONS
Known limitations of the algorithm at this time are the lack of
integrated support for extrachromosomal genetic elements such
as plasmids and additional chromosomes. A workaround exists by
concatenating DNA sequences of all genetic information present
in the respective organism and then performing an automated
annotation using pipelines such as GAMOLA (Altermann and
Klaenhammer,2003). The implemented GenBank parser currently
ignores joined features. In prokaryotes, joined features such as
introns [e.g., the mobilization protein MobA E1 (genome posi-
tion 1344187.0.1345428, 1347858.0.1348370) in Lactococcus lactis
subsp. cremoris MG1363 (GI:124491690)] are very rare and usu-
ally do not interfere with the analyses. Also, identical genomes still
incur a distance to each other, resulting in a small branching when
visualizing the dissimilarity matrix. A normalization algorithm
will be implemented in the next release to address this issue. com-
pACTor and FGDfinder are actively developed and future releases
will resolve those issues.

RESULTS AND DISCUSSION
EVALUATION OF FUNCTIONAL DISTRIBUTION TREES
To assess the FGD concept 35 completed and four draft phase
genomes from different phyla, including several archeal genomes,
were selected (Table A2 in Appendix). The purpose of this
diverse taxonomy is to investigate how FGD places individual
genomes into clusters and how similar these genomes are to
each other on a functional level. The majority of the genomes
selected are members of the family Lactobacillaceae in the order
Lactobacillales (12 genomes). To investigate the discriminatory
power of the FGD algorithm, the range was expanded and five
genomes of the family Bacillaceae (order Bacillales), three genomes
of the family Streptococcaceae (order Lactobacillales) and two
genomes of the family Leuconostocaceae (order Lactobacillales)
were added. Eight more distantly related genomes of the order
Clostridiales (class Clostridia) were chosen to broaden the tax-
onomic selection to different classes. All of these genomes are
members of the phylum Firmicutes. Three representatives of
the class Gammaproteobacteria, (phylum Proteobacteria) were
included to investigate inter-phylum relationships. As a final out-
lier, six genomes of archeal Euryarchaeota were included in the
analysis.

Figure 2 represents the functional distribution of the selected
taxa within an FDT. To test the influence of early, incomplete
draft phase genomes on functional placement, the draft phase
sequence of Anaerostipes caccae DSM14662 (Schwiertz et al.,
2002) which consisted of ∼1.69 Mbp at the time of analysis was
included. FGD penalized the missing genetic information and
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FIGURE 2 | Functional genome distribution of 39 taxa. Publicly available
complete genomes were downloaded in GenBank format from the NCBI
genome database. Publicly available draft phase genomes were downloaded
in FASTA format, concatenated using a universal spacer-stop-spacer sequence
and automatically annotated using GAMOLA (Altermann and Klaenhammer,
2003). The in-house draft phase genome of Butyrivibrio proteoclasticus was
assembled into an artificial genome and annotated using GAMOLA

(publication in preparation). Predicted ORFeomes of all genomes were
subjected to an FGD analysis and the resulting distance matrix was imported
into MEGA4. The functional distribution was visualized using the UPGMA
method (Sneath and Sokal, 1962). The optimal tree with the sum of branch
length = 133.1 is shown. The tree is drawn to scale, with branch lengths in the
same units as those of the functional distances used to infer the distribution
tree.

set A. caccae apart from the Clostridiales as a separate cluster.
When the updated genome sequence of A. caccae encompassing

∼3.6 Mbp was included instead, A. caccae shifted its position and
clustered with Ruminococcus obeum and Ruminococcus gnavus
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(branch length 1.99 du), while showing a deeper branching
to Butyrivibrio proteoclasticus (branch length 3.13 du; data not
shown). This clearly highlights the necessity of obtaining high-
coverage genome sequence data for FGD analyses. However, with
high-throughput genome sequencing techniques currently avail-
able, initial draft phase genomes usually encompass 85–95% of
the genome, thus allowing an initial representative functional
placement.

Subsequent analysis of complete genomes included in the
FDT revealed the deepest branching (20.6 du) for euryarcheal
genomes. The selected methanogens form two distinct genome
clusters (node at 5.3 du), separating Methanococcoides burtonii
and Methanosarcina mazei (Deppenmeier et al., 2002) from the
remaining four taxa. Initial comparisons of habitat, growth tem-
perature, and GC content did not indicate a consistently shared
denominator between the two groups. Further analyses will be nec-
essary to determine the imminent functional similarities indicated
by the FGD approach.

Interestingly, Clostridiaceae, Bacillaceae, and a subcluster com-
prised of Rumincocci and B. proteoclasticus B316 formed a new
functional node within the FDT (branch depth from node to
Lactobacillales was 7.8 du), combining the taxonomic families
into one genome cluster. Although the genomes of members of
Clostridiaceae and Bacillaceae are still placed into distinct func-
tional groups (internal cluster branch depth was 4 du) and no
taxon shuffling was observed between both sub-clusters, it appears
that lifestyle adaptation has led to similar genome content, poten-
tially indicative of a high level of HGT between both families or
from one family to the other.

A survey of the nine ORFeomes of the Bacillus and Clostrid-
ium clusters revealed 154 ORFs that are highly conserved in both
groups (e-value threshold 1e-100). As expected, most ORFs could
be assigned to central house-keeping functions such as DNA syn-
thesis and repair (21%), tRNA genes and related processes (12%),
central metabolism (35%), transcription and translation (6%),
cellular processes (9%), and molecule transport (8%). However,
besides these central functions, a significant number of ORFs
related to sporulation were present and highly conserved in both
clusters (8%). Based on the algorithms used, it is reasonable to
hypothesize that the presence of these highly conserved sporula-
tion genes may be one of the key drivers for the observed clustering
of bacilli and true clostridia.

When compared to the Ruminococcus subcluster a similar
conserved gene set was found with the notable absence of
most sporulation genes (e-value threshold 1e-60). This is in
agreement with the observed non-sporulating phenotype. It is
noteworthy, that two conserved genes involved in sporulation
(stage V sporulation protein D, spoVD, and Sporulation initi-
ation inhibitor protein, soj) were identified in the Ruminococ-
cus and Butyrivibrio genomes. This may indicate an ongo-
ing genetic loss in response to adaptation to a new envi-
ronment (rumen) where sporulation is no longer offering an
advantage in fitness. The other identified shared genes are
likely to be present in most of the other microbial genomes
analyzed, and thus would contribute to higher-level genome
clustering.

In addition, the ORFeomes were analyzed for predicted genes
which are conserved in one genome cluster but not in the other –
and vice versa (threshold conserved: 1e-100; threshold unique:
1e-10). Overall, 84 ORFs were identified to be group specific. Sev-
enty of these were found only in genomes assigned to the Bacillus
cluster and 14 in genomes in the Clostridium group. Remark-
ably, genes involved in heme and cytochrome biogenesis (hemE,
hemH, hemY, resB, and resC), cytochrome reduction (gcrB, gcrC,
cypD), and cytochrome oxidation (qoxB, cydA, ctaB, ctaD, cydA)
were identified, indicating a Bacillus-specific electron transport
chain. It is thus tempting to speculate that, functionally, Bacilli
are aerobic Clostridia, having acquired the capability of oxidative
phosphorylation. Furthermore, a subset of the propionate metab-
olism pathways identified to be Bacillus-specific. This subset is
involved in the conversion of propanoyl-CoA to succinate and
succinyl-CoA (prpD, prpB, pccB, sucD, sucC) and might present
an additional energy conversion option for Bacilli which is absent
in Clostridia.

Only a few ORFs were identified to be Clostridium cluster spe-
cific. Among those a cobyric acid synthase cobQ was identified to
be Clostridium specific. CobQ is part of the porphyrin metabolic
pathway, involved in converting cobyrinic acid into coenzyme vit-
amin B12. Notably, a central branching point in this pathway leads
to the synthesis of hemes and cytochromes found in Bacilli (see
above). Interestingly, CobQ is also absent in the Ruminococcus
subcluster, providing further support for the proposed ongo-
ing adaptation to the new rumen environment. In contrast, the
Ruminococcus subcluster acquired a number of membrane and
sugar utilization (e.g., beta-glucosidases bgl3A, bgl3B, and bgl3D
and an l-fucose isomerase) which may aid in the adhesion to and
degradation of plant fibers in the rumen (threshold conserved:
1e-60; threshold unique: 1e-10; Kelly et al., 2010).

While the function of these genes has been well described in
the past, they deliver the proof-of-concept that FGD analyses are
able to identify gene sets involved in lifestyle adaptation processes.
Because the initial similarity analysis does not rely on existing
gene annotation, uncharacterized ORFs (e.g., genes annotated as
“conserved hypothetical”) can be identified as potential targets to
contributing to respective phenotypes. This is particular impor-
tant for poorly annotated microbial genomes with a high level of
conserved hypothetical ORFs.

In summary, results obtained from the test dataset provide
strong support for the usefulness of FGD analyses, by illustrating
the ability of the method to draw together groups into common
nodes based on shared core (shared by all genomes in a specific
cluster) and lifestyle elements, yet distinguishing them into distinct
sub-clusters based on relevant genotypic differences and lifestyle
adaptation processes. Importantly, FGD subsequently allows iden-
tifying gene sets likely to be responsible for the observed clus-
tering, providing meaningful new target selections for functional
genomics analyses independent of other means of classification or
prior annotation.

Furthermore, distinct placements in genome clustering of Leu-
conostoc mesenteroides and Oenococcus oeni (Ze-Ze et al., 2000;
Makarova et al., 2006; Leuconostocaceae) were observed in the
FDT. Both genera can be found epiphytically on fruits, fruit
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mashes, and vegetables and are used in industrial and food fer-
mentation processes. Interestingly, Functional Distribution placed
L. casei and L. plantarum into a separate cluster, branching deeply
within the Bacilli (Figure A1 in Appendix). Both genomes are
significantly larger than the average Lactobacillus genome of 1.8–
2.0 Mbp with 2.8 and 3.3 Mbp, respectively. The significantly
increased genome size likely reflects a more generalized lifestyle,
capable of thriving in a variety of habitats such as raw and fer-
mented dairy products, plants, and the intestinal and reproductive
tracts of animals and humans. In contrast, the smaller genomes
of other lactobacilli often reflect the more specialized lifestyle to
one habitat such as the human or animal gastrointestinal system
or specific fermentation processes.

These results may indicate that lifestyle adaptation can lead
to a similar genetic makeup of taxa defined as being distinctively
different by heritage based phylogeny.

LIMITS OF THE FGD RESOLUTION
In the previous example microbial genomes from a wider range of
species were investigated. To determine if the algorithm can dis-
criminate strains from the same species, 23 Chlamydia trachomatis
genomes (host: human), three Chlamydia muridarum genomes
(host: members of the family Muridae), and one Chlamydia pneu-
moniae genome (host: varied; see Table A3 in Appendix) were
subjected to an FGD analysis. It is interesting to note that until
1999 C. muridarum, infecting only members of the family Muri-
dae, was designated as C. trachomatis (Everett et al., 1999). C.
pneumoniae, which can infect a wide variety of different hosts and
causes atypical pneumonia, clusters away from both C. trachomatis
and C. muridarum genomes, indicating a different – and possible
more flexible – genome makeup (Figure A2 in Appendix). In con-
trast to the other Chlamydia genomes, C. pneumoniae harbors an
additional ∼200 kb of genetic information, and a more detailed
analysis will be necessary to determine whether gene loss or gene
acquisition is the major driving force. Similarly, the C. muridarum
group is clearly forming its own cluster, albeit indicating a higher-
level of similarity to C. trachomatis than to C. pneumoniae. On this
high level, FGD can clearly resolve genomic differences and sup-
port observed host specificities (varied hosts – Muridae – human).
Within the C. trachomatis cluster, three distinct sub-clusters could
be identified with little reshuffling observed. Cluster 1 comprises
serotypes E, F, G, and J (and C. trachomatis Ds2923), Cluster 2 har-
bors serotypes A, B, D, and L (and C. trachomatis E Sweden2), and
Cluster 3 groups two serotype L and one serotype A (Figure A2
in Appendix). The observed positioning of the serovar D strain C.
trachomatis Ds2923 into Cluster 1 supports the pairwise alignment
of several chlamydial isolates (Jeffrey et al., 2010) which identified
the least number of nucleotide substitutions between Ds/2926 and
E/11023. In contrast, different major groups were identified in this
nucleotide based analysis; two major clades (D/G/J and E/F; Jeffrey
et al., 2010) are contrasted by three clusters (E/F/G/J, A/B/D/L, and
L/A).

Overall, the FGD analysis was able to resolve strains from the
same species to a similar level and with similar results as other
whole genome comparative approaches. However, one of the lim-
itations seen in the analysis of very similar genomes from the

same species was the difficulty in identifying cluster specific gene
sets based on e-value using FGDfinder [only three hypothetical
ORFs were found to be cluster specific to Cluster 3 (see Figure A2
in Appendix, threshold conserved: 1e-20; threshold unique: 1e-
10)]. In its current version FGDfinder uses calculated e-values
to determine respective conserved or cluster specific gene sets. A
future version of the software will incorporate the FGD scoring
algorithm, increasing the power of resolution when very similar
ORFeome sets are compared.

TOPOGRAPHICAL STABILITY OF FUNCTIONAL DISTRIBUTION TREES
The overall stability of inferred trees and respective genome clus-
ters was tested by a Jackknife analysis (James and McCulloch,
1990). Individual observations (genome entries) from the cal-
culated distance matrix were removed sequentially and resulting
UPGMA-based FDTs were approximated. This was done for each
genome in the dataset, resulting in 39 subset trees. Respective
topologies were assessed individually. To investigate the impact
of whole genome clusters on tree robustness, a Jackknife analysis
was performed defining observed genome clusters as individual
observations. Again, FDTs were approximated and evaluated for
each resulting subset (data not shown). In summary, tree topology
remained stable and only a swapping of neighboring branches was
observed while in no instance shuffling was found for individual
genome entries between genome clusters in either Jackknife analy-
sis. This strongly supports the overall stability and discriminatory
power of the FGD analysis.

Similarly, a Jackknife analysis was performed for the narrow
strain FGD analysis (Figure A2 in Appendix). Individual entries,
individual clusters, and complete serotypes were removed and the
resulting tree topology investigated. Removal of individual entries
and complete clusters did not change the topology of the FGD tree.
Only minor reshuffling was observed within a respective cluster
when complete serotypes were removed from the analyses (e.g.,
removal of serotype L caused a repositioning of C. trachomatis D
UW3 CX into the serotype D subcluster within Cluster 2.

As expected, the removal of individual entries reduces discrim-
inatory power, resulting in grouping together previously more
separated genome clusters, without any entry-reshuffling.

COMPARATIVE ANALYSIS USING THE ARTEMIS COMPARISON TOOL
Comparison of the degree of genome similarity between two or
more genomes relies on analyses of presence/absence of genes
and their respective syntenies in an operon or genome-wide
context. In combination with ORFeome based (ORF-to-ORF
comparison on amino-acid level, a maximum of 20 similar-
ity hits per ORF is permitted) MSPcrunch (Sonnhammer and
Durbin, 1994) comparison format data files (pMSPs) created
by the compACTor software and annotated GenBank files, the
ACT (Carver et al., 2005) provides an excellent visualization plat-
form for mobility through the entire genome. Figure 3 illustrates
the differences and similarities found between closely related
strains such as between members of the acidophilus-complex
of the Lactobacilli or between subspecies as well as between
less similar genomes of more distantly related microbes. For
example, small scale [inversion of a specific gene locus between
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FIGURE 3 | ORFeome based comparative ACT visualization of 11

Lactobacillus genomes. Based on the distribution observed in Figure 2, 11
Lactobacillus genomes and their ORFeome similarities were visualized in ACT
using pMSP-datafiles. Respective genome designations are indicated on the
left hand side of each genome line. Genomes are shown in full and drawn to
scale. Genomic nucleotide sequences are represented by gray lines indicating
sense and anti-sense strands and position markers are shown in between.

Predicted ORFs are shown on each strand in their respective orientation as
arrowed boxes. Direct amino-acid similarity between individual ORFs of
neighboring genomes are shown as red lines, inverted similarities are
indicated by blue lines. Color shadings indicate the level of similarity, the more
saturated a similarity line the more conserved are two ORF-pairs. A trust level
value of 40 was employed as display threshold to visualize similarity hits
below an e-value of 1e-60.

both L. delbrueckii ssp. bulgaricus genomes (Makarova et al.,
2006; van de Guchte et al., 2006)] and large scale (double

inversion ∼700 and ∼150 kb, respectively) of the terminus of
DNA replication between L. gasseri (Azcarate-Peril et al., 2008)
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and L. johnsonii (Pridmore et al., 2004) genome inversions,
deletion, and insertion events [between L. acidophilus (Altermann
et al., 2005) and L. delbrueckii ssp. bulgaricus], localized gene
synteny (between L. delbrueckii ssp. bulgaricus and L. brevis),
general presence/absence of individual genes and larger synteny
trends (between L. casei and L. plantarum) can be immediately
identified.

COMPARISON OF THE FGD ALGORITHM TO ALTERNATIVE METHODS
Although similar algorithms exist to investigate phylogenetic rela-
tionships based on whole (or partial) genomes sequences (Snel
et al., 1999; Wolf et al., 2001; Henz et al., 2005; Khiripet, 2005; Can-
chaya et al., 2006; Fuchsman and Rocap, 2006; Berger et al., 2007;
Felis and Dellaglio, 2007; Blaiotta et al., 2008), their focus remains
mostly to infer a heritage based phylogeny. Furthermore, often
only subsets of ORFeomes are chosen for these analyses. These are
then analyzed individually (with or without weighting) or as con-
catenated sequences. Thus an artificial restriction is introduced
that may bias the analysis. An example of such a method has been
published by Konstantinidis and Tiedje (2005). There, genome
information to infer taxonomy of prokaryotes is used, calculating
an average amino-acid identity of shared gene subsets. Only few
publications investigate the functional relationship of microbial
genomes, such as the development of the Blast Score Ratio which
analyzes the complete ORFeome but is limited to three genomes at
a time (Rasko et al., 2005). Other methods investigating the func-
tional relationship and similarities between gene clusters have been
used to address the problem of genomes with different sizes. One
example of such a method, GRAST, explores the ongoing genome
reductions and rearrangements by identifying clusters of function-
ally related genes (Toft and Fares, 2006). Subsets of orthologous
gene pairs are identified to determine conserved genetic loci. Sim-
ilar to Blast Score Ratio analyses, the number of input genomes is
limited to two at a time. While the output in part shows similar-
ity to FGD analyses (visual representation of a genome plot and
the determination of common and non-common genes), the pur-
pose of this method is distinctly different in specifically identifying
genome plasticity trends. A combination of genome analysis and
visualization tool, GeneComp, has been published earlier (Yang
et al., 2003). GeneComp is able to use different BLAST flavors
and then visualize the textual output with varying levels of align-
ment length stringencies. While this solution offers the advantage
of providing a combined analysis and visualization package, a
number of limitations exist when compared to FGD. Like BSR
and GRAST, GeneComp is restricted to a maximum number of
three genomes. Furthermore, the algorithm is sequence based,
highlighting genome variations such as repeat regions, insertions,
deletions, and rearrangements rather than specific similarities to
predicted ORFs.

Non-sequence based methods such as MLST use only a rela-
tively small number of conserved genome loci with the primary
aim to establish a highly discriminating (microbial) typing system
(Chan et al., 2001; Maiden, 2006; Diancourt et al., 2007). Notewor-
thy, the ability of FGD analyses to identify cluster-conserved gene
sets may provide a high-quality starting point for the selection of
MLST targets.

CONCLUSION
16S rRNA and other gene subset analyses mainly focus on the
determination of the line of descendants of a given gene or organ-
ism (Zhang et al., 2009) or on the identification of protein families
(Enright and Ouzounis,2000; Enright et al., 2002; Kelil et al., 2007).
Such phylogenetic studies aim to reconstruct the relationship
between organisms and are paramount to analyze the (changing)
community structures of complex biological ecosystems. While
this type of phylogenetic analysis is well accepted and widely
used, it does not reflect the respective comprehensive genotypes.
In contrast, FGD provides a different view of microbial similari-
ties to each other. The example data set demonstrated the effects
of lifestyle adaptation on genome content. FGD has shown the
potential to provide new insights into the relationships between
microbes from a comparative genomics perspective. The algo-
rithm has already been used in a variety of analyses ranging
from microbial (Goh et al., 2011) and archeal (Leahy et al., 2010)
genomes to bacteriophage (Lu et al., 2010) which describe the
impact of FGD analyses in more detail within their respective
scopes.

Functional genome distribution in combination with the
graphical visualization in ACT using ORFeome distance files
(pMSPs) and functionally annotated GenBank files offers a pow-
erful tool for comparative genomics that allows comparisons
of whole genomes within genome space, encompassing heritage
based (vertical transmission), lateral gene transfer (HGT), and
lifestyle-driven change (adaptation) in a single analysis. There-
fore, rather than attempting to reconstruct the evolution of the
core genome with its set of commonly shared genes, FGD allows a
representation of whole genome similarity at the functional level.

It will be possible to add further functionality to the algorithm,
such as the ability to mask defined or dynamically created gene
clusters within groups of organisms, thus identifying potentially
important genetic elements independent from otherwise over-
powering gene sets, such as central house-keeping or metabolism
genes.

AVAILABILITY
The complete software suite consisting of the compACTor and
the FGDfinder software is freely available upon email request for
academic use. Commercial use is subject to a license agreement.
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APPENDIX

FIGURE A1 | Functional distribution tree of 17 closely related taxa

within the class Bacilli. The tree represents a subset of the one shown
in Figure 2. Predicted ORFeomes of all genomes were subjected to an
FGD analysis and the resulting distance matrix was imported into

MEGA4. The functional distribution was visualized using the UPGMA
method (32). The tree is drawn to scale, with branch lengths in the same
units as those of the functional distances used to infer the distribution
tree.
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FIGURE A2 | A functional distribution tree comprising of 23 Chlamydia

trachomatis genomes (host: human), three C. maridarum genomes

(host: members of the family Muridae), and one C. pneumoniae genome

were used to investigate genome similarities and the

FGD-power-of-resolution on strain level. Entries in red depict Chlamydia

trachomatis serotypes A–C (trachoma), entries in black represent serotypes
D–K (sexually transmitted pathovars) and entries in green show serotype LGV
(L1–L3; lymphogranuloma venereum). Chlamydia muridarum entries are
shown in blue and Chalmydia pneumoniae is depicted in gray. Functional
clusters and subclusters are indicated by square brackets.
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Table A1 | e-Value range based trust levels.

e-Value range Trust value

<0.1 0

0.1 ≤ e-value > 1e−10 1

1e−10 ≤ e-value > 1e−40 10

1e−40 ≤ e-value > 1e−50 20

1e−50 ≤ e-value > 1e−60 30

1e−60 ≤ e-value > 1e−70 40

1e−70 ≤ e-value > 1e−80 50

1e−80 ≤ e-value > 1e−90 60

1e−90 ≤ e-value > 1e−100 70

1e−100 ≤ e-value > 1e−110 80

1e−110 ≤ e-value > 1e−120 85

1e−120 ≤ e-value > 1e−130 90

1e−130 ≤ e-value > 1e−160 95

1e−160 ≤ e-value ≥ 0 100
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Table A2 | Genomes used for assessment of functional genome distribution.

Designation* Domain/family Genome size [bp] ORFeome size Accession number

Lactobacillus plantarum WCFS1 Bacteria/Lactobacillaceae 3308274 3051 AL935263

Lactobacillus brevis ATCC 367 Bacteria/Lactobacillaceae 2291220 2314 CP000416

Pediococcus pentosaceus ATCC 25745 Bacteria/Lactobacillaceae 1832387 1847 NC_008525

Lactobacillus sakei subsp. sakei 23K Bacteria/Lactobacillaceae 1884661 1886 CR936503

Lactobacillus casei ATCC 334 Bacteria/Lactobacillaceae 2895264 2909 CP000423

Lactobacillus salivarius UCC118 Bacteria/Lactobacillaceae 1827111 1738 CP000233

Lactobacillus reuteri F275 Bacteria/Lactobacillaceae 1999618 1944 CP000705

Lactobacillus johnsonii NCC 533 Bacteria/Lactobacillaceae 1992676 1857 AE017198

Lactobacillus gasseri ATCC 33323 Bacteria/Lactobacillaceae 1894360 1811 CP000413

Lactobacillus acidophilus NCFM Bacteria/Lactobacillaceae 1993561 1979 CP000033

Lactobacillus delbrueckii subsp.

bulgaricus ATCC 11842

Bacteria/Lactobacillaceae 1864998 2218 CR954253

Lactobacillus delbrueckii subsp.

bulgaricus ATCC BAA-365

Bacteria/Lactobacillaceae 1856951 2040 CP000412

Bacillus cereus ATCC 14579 Bacteria/Bacillaceae 5411809 5490 AE016877.1

Bacillus thuringiensis serovar konkukian

str. 97-27

Bacteria/Bacillaceae 5237682 5168 AE017355

Bacillus pumilus SAFR-032 Bacteria/Bacillaceae 3704465 3737 CP000813

Bacillus licheniformis ATCC 14580 Bacteria/Bacillaceae 4222645 4379 AE017333.1

Bacillus subtilis subsp. subtilis 168 Bacteria/Bacillaceae 4214630 4106 AL009126

Streptococcus pneumoniae R6 Bacteria/Streptococcaceae 2038615 2046 NC_003098

Streptococcus pyogenes SSI-1 Bacteria/Streptococcaceae 1894275 1861 BA000034

Streptococcus thermophilus LMD-9 Bacteria/Streptococcaceae 1856368 2003 CP000419

Leuconostoc mesenteroides subsp.

mesenteroides ATCC 8293

Bacteria/Leuconostocaceae 2038396 2073 NC_008531

Oenococcus oeni PSU-1 Bacteria/Leuconostocaceae 1780517 1864 NC_008528

Clostridium perfringens ATCC 13124 Bacteria/Clostridiaceae 3256683 2997 CP000246

Clostridium botulinum ATCC 3502 Bacteria/Clostridiaceae 3886916 3648 AM412317

Clostridium kluyveri DSM 555 Bacteria/Clostridiaceae 3964618 3926 CP000673

Clostridium difficile ATCC 9689 Bacteria/Clostridiaceae 4290252 3680 AM180355

Ruminococcus obeum ATCC 29174 Bacteria/Lachnospiraceae 3626304 4175 AAVO00000000; draft

Anaerostipes caccae L1-92 Bacteria/Lachnospiraceae 1691947 1582 ABAX00000000; draft

Ruminococcus gnavus ATCC 29149 Bacteria/Lachnospiraceae 3501953 3913 AAYG00000000; draft

Butyrivibrio proteoclasticus B316 Bacteria/Lachnospiraceae 3936787 3477 Unpublished draft

Pseudomonas aeruginosa PA7 Bacteria/Pseudomonadaceae 6588339 6371 CP000744

Escherichia coli O157:H7 Bacteria/Enterobacteriaceae 5528445 6006 AE005174

Escherichia coli K12 K-12 Bacteria/Enterobacteriaceae 4639675 4403 NC_000913

Methanococcoides burtonii DSM 6242 Archaea/Methanosarcinaceae 2575032 2446 NC_007955

Methanosarcina mazei Goe1 Archaea/Methanosarcinaceae 4096345 3371 NC_003901

Methanocaldococcus jannaschii DSM

2661

Archaea/Methanocaldococcaceae 1664970 1682 NC_000909

Methanosphaera stadtmanae DSM 3091 Archaea/Methanobacteriaceae 1767403 1588 NC_007681

Methanobrevibacter smithii ATCC 35061 Archaea/Methanobacteriaceae 1853160 1795 NC_009515

Methanothermobacter

thermautotrophicus DeltaH

Archaea/Methanobacteriaceae 1751377 1918 NC_000916

*Color coding used in the table corresponds to the color scheme shown in Figure 2 and Figure A1.
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Table A3 | Genomes used for assessment of functional genome distribution on strain level.

Designation* Serotype Host Genome status Accession number

Chlamydia trachomatis A2497 A Human Complete 347974781

Chlamydia trachomatis A HAR-13 A Human Complete 76788711

Chlamydia trachomatis B TZ1A828 B Human Complete 231272648

OT Chlamydia trachomatis B Jali20 OT B Human Complete 231273667

Chlamydia trachomatis D UW3 CX D Human Complete 15604717

Chlamydia trachomatis D-LC D Human Complete 297749010

Chlamydia trachomatis D-EC D Human Complete 297748130

Chlamydia trachomatis Ds2923 D Human Complete 222356764

Chlamydia trachomatis E Sweden2 E Human Complete 289525045

Chlamydia trachomatis E 150 E Human Complete 296434583

Chlamydia trachomatis E 11023 E Human Complete 296438301

Chlamydia trachomatis F 70 F Human Complete 222444350

Chlamydia trachomatis F 70s F Human Complete 222444349

Chlamydia trachomatis G 11074 G Human Complete 296437374

Chlamydia trachomatis G 9301 G Human Complete 297139873

Chlamydia trachomatis G 9768 G Human Complete 296435514

Chlamydia trachomatis G 11222 G Human Complete 296436438

Chlamydia trachomatis J 6276 J Human Complete 222444352

Chlamydia trachomatis J 6276s J Human Complete 222444351

Chlamydia trachomatis L2-434 Bu L Human Complete 166153973

Chlamydia trachomatis L2b UCH1 proctitis L Human Complete 352951305

Chlamydia trachomatis L2c L Human Complete 339625373

Chlamydia trachomatis L2tet1 L Human Complete 301334996

Chlamydia muridarum MopnTet14 draft Muridae Complete 311788820

Chlamydia muridarum Nigg Muridae Complete 29337300

Chlamydia muridarum Weiss.cb Muridae Draft NC_002620.2

Chlamydia pneumoniae Varied Complete 340215159
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