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Abstract
Background: The strength of aging bone depends on the balance between the resorption and
formation phases of the remodeling process. The purpose of this study was to examine the
interaction of two factors with the potential to exert opposing influences on bone turnover,
resistance exercise training and high dietary protein intake. It was hypothesized that resistance
training by young, healthy, untrained women with protein intakes near recommended levels (0.8
g·kg-1·d-1) would promote bone formation and/or inhibit bone resorption, and that subsequent
supplementation to provide 2.4 g protein·kg-1·d-1 would reverse these effects.

Methods: Bone formation was assessed with serum bone-specific alkaline phosphatase (BAP) and
osteocalcin (OC), and bone resorption with urinary calcium and deoxypyridinoline (DPD).
Biochemical, strength, anthropometric, dietary, and physical activity data were obtained from 24
healthy, untrained, eumenorrheic women (18–29y) at baseline, after eight weeks of resistance
training (3 d·wk-1, ~1 hr·d-1; 3 sets, 6–10 repetitions, 13 exercises, 75–85% maximum voluntary
contraction), and after 12 weeks of resistance training and 10 days of protein/placebo
supplementation. Subjects were randomized (double-blind) to either a high protein (HP) or training
control (TC) group and, during the final 10 days, consumed either enough purified whey protein to
bring daily protein intake to 2.4 g·kg-1·d-1, or an equivalent dose of isoenergetic, carbohydrate
placebo.

Results: Strength, lean tissue mass, and DPD increased significantly in both groups over time, while
percent body fat and BAP decreased (repeated measures ANOVA, p ≤ 0.05, Bonferroni
correction). No significant changes were observed for serum OC or urinary calcium, and no
significant group (TC, HP) × time (baseline, week 8, week 12) interactions emerged for any of the
biochemical measures.

Conclusion: (1) Twelve weeks of high-intensity resistance training did not appear to enhance
bone formation or inhibit bone resorption in young adult women, as assessed by biochemical
markers of bone metabolism. (2) Subsequent maintenance of a high protein intake for 10 days in
these regularly-training, calcium-replete women also showed no effects on bone metabolism.
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Background
Maximizing genetic bone mass potential during youth,
and minimizing bone loss throughout adulthood consti-
tute osteoporosis prevention at its most fundamental
level. To these ends, a great many factors in the pathogen-
esis of osteoporosis must be identified, assessed, and, as
much as possible, offset. Certainly some prominent risk
factors, such as age, sex, race, and family history are unal-
terable. Others, however, including diet, physical inactiv-
ity, menstrual status, medication use, low sunlight
exposure, alcohol consumption, and cigarette smoking
are amenable to change, and are therefore particularly
important targets for osteoporosis prevention.

The purpose of this study was to examine the interaction
of two lifestyle factors with the potential to exert opposing
influences on bone metabolism: resistance training and
high dietary protein intake. Some research indicates that
resistance training has osteogenic, or bone-building
effects, and some, that the metabolism of high protein
loads has osteopenic, or bone-weakening effects. How-
ever, while these notions are commonly discussed as
though they were well-established facts, the majority of
research into both areas has come from cross-sectional or
methodologically-limited experimental studies. Indeed,
research has confirmed both the beneficial effects of
weight-bearing activity [1] and the deleterious effects of a
lack of it [2,3], but relatively few studies have specifically
investigated the capacity of resistance training to increase
bone mineral density (BMD) and mass. Among the few
that have, findings have been inconsistent and clouded by
a number of noteworthy limitations, including a lack of
randomization [4-9] and the use of highly variable train-
ing intensities {≤ 10 repetitions and/or ≥ 70–85% one
repetition maximum (1RM) [4,10-12]; ≥ 10 repetitions
and/or ≤ 70% 1RM [5,6,9]}, subject populations (young,
healthy subjects [4,5,8,11,12]; older individuals
[6,7,9,10,13]; patients [14]), and study durations. Fur-
thermore, because most have lasted fewer than 12
months, precision error is an important limitation in
those that used bone densitometry. Since the annual rate
of BMD change generally lies within the precision error of
bone densitometry [15], it is difficult to accurately assess
BMD gains or losses within fewer than several years.

Regarding dietary protein and bone strength, several
cross-sectional studies have supported an inverse relation-
ship [16-18], while others have not [19-21]. Experimental
trials have also generated mixed findings [22,23], which
are further complicated by the use of diverse subject pop-
ulations, methods of assessing skeletal responses, experi-
mental controls (e.g., calcium supplementation,
menstrual status, etc.), and types, levels, and durations of
protein supplementation. Still, despite these limitations,

some authors have plainly labeled dietary protein a "neg-
ative risk factor" [[24], p. 336].

There are several theoretical mechanisms through which
high protein intakes might stimulate bone demineraliza-
tion, but the major possibility centers on the skeleton's
constitution of an alkali reserve that can be called upon to
assist in buffering the acidic catabolites of high-protein
foods [25]. A complete discussion of this mechanism is
beyond the scope of this article, but the body is known to
mobilize calcium and phosphorus salts in the presence of
high acid loads, and experimental increases in protein
intake have been shown to stimulate bone resorption and
calcium excretion [22,25-27]. Thus, the core concern is
whether individuals who maintain chronically high pro-
tein intakes over-rely on skeletal buffers and incur pre-
ventable losses of bone mineral.

Investigation into possible interactive effects of resistance
training and dietary protein on bone seems warranted
because of the tendency of some people to regularly con-
sume extraordinary amounts of protein. Traditionally,
strength and bodybuilder athletes have been the most
likely to follow high-protein diets; now many in the gen-
eral population are following suit, due largely to the pop-
ularity of the various high-protein, weight-loss diets.
Regardless of the rationale, it is known that some people
habitually consume from three to more than five times
[28-34] the adult recommended dietary allowance (RDA)
for protein, despite clear evidence that such quantities
constitute a nutritional overload [35,36]. An overload of
dietary protein is generally indicated by increased rates of
amino acid oxidation and urea nitrogen excretion. When
protein is consumed in excess of the body's needs to syn-
thesize new and replace degraded tissue proteins, it is not
simply stored as such, but is broken down into its constit-
uent amino acids. The surplus amino carbon fragments
are then either oxidized for energy, or converted to carbo-
hydrate or fat and stored, while the amino nitrogen frag-
ments are excreted, mainly as urea in the urine.

Resistance exercise is known to stimulate muscle protein
synthesis [37-40], which can thereby raise individual pro-
tein needs above the RDA of 0.8 grams per kilogram of
body weight per day (g·kg-1·d-1) [41], to as much as
much as 1.6 to 1.8 g·kg-1·d [42-45]. However, because
protein synthesis eventually plateaus despite increasing
dietary protein supply [43-45], no evidence supports a
need for the extreme levels consumed by some athletes
and dieters. It must be noted that these data assume ade-
quate overall energy intake, as it has long been known
that hypoenergetic diets increase protein requirements
[46].
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Thus, this double-blind, randomized trial was designed to
compare the effects of a normal (i.e., near RDA) versus a
high protein intake on bone metabolism in young adult
women participating in regular, high-intensity resistance
training. The high intake was set at 2.4 g·kg-1·d-1 for sev-
eral reasons: (1) several previous studies of protein intake
and calcium balance have used values between 2.0 and
2.7 g·kg-1·d-1 [22,23,26,47,48]; (2) several studies of
strength and bodybuilder athletes have reported habitual
protein intakes up to 4.3 g·kg-1·d-1 [31-34]; (3) many
people adhering to such plans as the Atkins Diet [28] and
the Zone Diet [29] will consume well over 2.0 g·kg-1·d-1;
and (4) it the first multiple of the RDA after 1.6 g·kg-1·d,
which, as indicated, may be needed by some people [42-
45]. A secondary objective was to examine bone turnover
responses to the initiation of regular resistance training in
untrained women with some remaining potential to add
to skeletal mass (i.e., < 30 y) [49]. We hypothesized that
the initiation of high-intensity resistance training in
untrained, young adult women with protein intakes near
recommended levels would stimulate osteogenic (i.e.,
increased bone formation) and/or anti-resorptive (i.e.,
reduced bone resorption) effects, and that a subsequent
increase in protein intake would trigger osteopenic effects
(i.e., increased bone resorption and/or reduced bone
formation).

Methods
Experimental approach
The study was a two-group, 12-week, randomized trial.
The first 10 1/2 weeks served as a control period, during
which all of the subjects followed the same relative resist-
ance training program, maintained their usual diets, and
consumed a daily calcium supplement. Biochemical,
strength, anthropometric, dietary, and physical activity
data were collected at three time points: baseline (prior to
both resistance training and protein/placebo supplemen-
tation), week 8 (after initial adaptation to resistance train-
ing, but prior to supplementation), and week 12 (after
continued resistance training and 10 days of supplemen-
tation). This timeline was planned largely to control for
menses-related variability in the biochemical measures
and to fit within a semester at the university. Considering
that both protein utilization [50] and bone biomarker
concentrations [51] may vary throughout the menstrual
cycle, blood and urine sampling at each time point was
scheduled during the early follicular phase (days 1–8).
This essentially left data collection opportunities for each
woman at approximately weeks 4, 8, and 12. Week 4 was
not used, to allow an initial period of adaptation to train-
ing to pass before applying the experimental treatment
(i.e., protein supplement/placebo). While resistance train-
ing could initiate detectable changes in the biomarkers
before week 8, the aim of the study was to investigate
effects of mechanical loading and protein supplementa-

tion on the markers, not effects of the novel exercise. Since
previous research has shown that the early stages of resist-
ance training may increase dietary protein needs
[34,42,45], the consumption of supplemental protein
soon after the initiation of an exercise program might not
induce as great an acid effect. Week 16 was not consid-
ered, because semester-end schedule changes and reloca-
tions were likely to prevent the continued participation of
many subjects.

Subjects
Thirty healthy, eumenorrheic women between 18 and 30
years of age were recruited from a general university pop-
ulation to form a training control (TC) group and a high
protein (HP) group. Exclusion criteria included having
fewer than 10 normal menses during the previous year,
engaging in resistance training within two years, using any
drugs or medications known to affect bone metabolism
within six months, having any known metabolic bone dis-
ease or chronic physical condition that would limit partic-
ipation in an exercise program, and regularly smoking
more than 10 cigarettes or drinking more than two alco-
holic beverages per day. These criteria were established on
the basis of research documenting their potential to affect
bone [52] and their inclusion in related studies [11,12].
Race was not restricted because a repeated measures
design was used, and because there is no evidence suggest-
ing that women with different racial backgrounds would
respond differently to training. The study was approved
by the Kent State University Institutional Review Board,
and informed consent was obtained from all subjects
prior to data collection.

Data collection protocol
Of the more than 150 women who responded to the ini-
tial request for study volunteers, the first 30 to satisfy the
eligibility criteria and agree to all procedures and respon-
sibilities were accepted. Each subject reported to the Exer-
cise Science Laboratory four times. During the initial visit,
each completed the health history and physical activity
questionnaires and underwent an anthropometric assess-
ment. Preconditions for the anthropometry were
explained via electronic mail or telephone prior to the ini-
tial visit, including appropriate attire and avoidance of
any substances or activities that could significantly alter
hydration status (specifically, heavy exercise for 12 hours,
caffeine for 24 hours, alcohol for 48 hours). Each subject
then received detailed instructions on keeping accurate
seven-day diet records and collecting 24-hour urine spec-
imens, and scheduled a second laboratory visit during her
next anticipated follicular phase (visits were rescheduled
if menses started earlier or later than anticipated). Finally,
to exclude the potential effects of calcium deficiency, each
subject was given a supply of calcium supplements (Tums
Calcium for Life™-Bone Health, SmithKline Beecham,
Page 3 of 17
(page number not for citation purposes)



Nutrition & Metabolism 2005, 2:19 http://www.nutritionandmetabolism.com/content/2/1/19
Pittsburgh, PA) to begin consuming for the duration of
the study. Each was instructed to carry the calcium tablets
in her purse or backpack, and was regularly reminded to
consume one 500-mg tablet, twice per day.

For each subsequent laboratory visit, subjects reported
between 6:00 and 9:00 a.m. in the overnight fasted state
to control for circadian, dietary, and exercise influences
on the biochemical measures. Of these, circadian variabil-
ity appears to have the greatest impact, with most serum
and urinary biomarker levels being unaffected by diet and
only slightly affected by prior exercise [53]. Diet records
and urine specimens were collected and a venous blood
sample drawn for the determination of serum OC, BAP,
E2, and P4. The serum was immediately separated from the
blood cells, transferred into separate Cryovials® (Nalgene,
Rochester, NY) for each biomarker, and stored at -120°C.
Total urine volume was measured and several aliquots fro-
zen at -120°C (DPD) and -20°C (calcium, creatinine, pH,
urea nitrogen).

Questionnaires
Questionnaires were administered to assess general
health, menstrual, and physical activity histories and to
monitor ongoing health status and physical activity levels.
The health questionnaire was a standard form of the Exer-
cise Science Laboratory, supplemented with questions on
menstrual history and eating behaviors. The physical
activity questionnaire (PAQ) was based on the Seven-Day
Activity Recall of Sallis et al. [54], and used to determine
whether the subjects' participation in resistance training
affected their involvement in other types of physical
activity.

Anthropometry
Skinfold thicknesses (mm) were measured with Holtain®

calipers (Holtain Ltd., Wales, UK) at the subscapular, tri-
ceps, chest, midaxillary, anterior suprailiac, abdominal,
and mid-thigh sites, and used to estimate body composi-
tion. Percent body fat (%BF), fat mass (FM), and fat-free
mass (FFM) were derived using the Jackson et al. [55]
seven-site skinfold equation for adult women and the
body density formula of Brozek et al. [56]. Girths were
obtained with a fiberglass measuring tape at the neck,
shoulders, chest, waist, umbilicus, hips, gluteal thigh,
mid-thigh, calf, mid-arm, and forearm to evaluate the
effects of resistance training on muscle mass. All values
were obtained in triplicate according to Lohman et al.
[57], by one experienced anthropometrist (N. Mullins).
Median values were used as data.

Diet analyses
All subjects completed seven-day diet records prior to lab-
oratory visits 2–4. Baseline and week 8 records were used
to assess habitual dietary intake, consistency, and any

between-groups differences. Week 12 records were used to
confirm the subjects' continued maintenance of their
usual diets. Estimates of average daily intake were com-
puted for total kilocalories (kcals), percent kcals (%kcals)
from protein, carbohydrate, fat, and alcohol, grams of
protein per kilogram of body weight (g·kg-1), and calcium
(mg), phosphorus (mg), vitamin D (µg), sodium (mg),
magnesium (mg), caffeine (mg), and fiber (g) using diet
analysis software (Diet Analysis Plus©, Version 4.0, ESHA
Research, Salem, OR).

Biochemical measures
Serum osteocalcin (OC) and serum bone-specific alkaline
phosphatase (BAP) were used as indicators of bone for-
mation, and urinary deoxypyridinoline (DPD) and uri-
nary calcium as indicators of bone resorption. Detailed
discussions of the individual markers are available in sev-
eral reviews [53,58-60]. The bone markers and urinary
creatinine (correction for urinary DPD) were measured at
all three time points, and serum estradiol (E2) and proges-
terone (P4) at baseline to confirm menstrual status.

Serum OC (Metra™ Osteocalcin), serum BAP (Metra™
BAP), and urinary DPD (Metra™ DPD) were measured
with enzyme-linked immunosorbant assay kits (Quidel
Corporation, Santa Clara, CA), and serum E2 (Coat-A-
Count® Estradiol) and P4 (Coat-A-Count® Progesterone)
via radioimmunassay (Diagnostics Products Corporation,
Los Angeles, CA). Urinary calcium and creatinine were
measured using automated procedures at Suburban Med-
ical Laboratory (Cuyahoga Falls, OH). To minimize inte-
rassay variation, all serum and urine samples remained in
frozen storage until all data were collected and assays
could be run simultaneously. Duplicate values for all bio-
chemical measures were obtained and mean values used
as data.

Strength testing and training
Between the first and second laboratory visits, each sub-
ject was familiarized with the resistance training facility
(in the same building as the laboratory) and given indi-
vidual instruction on training safety and techniques. Each
completed two familiarization workouts under one-on-
one supervision, after which baseline strength testing was
scheduled (at least 48 hours later). Strength was evaluated
using 1RM procedures for select exercises (Table 1), and
also using isometric dynamometry, to provide strength
scores independent of the training program.

Peak isometric flexion and extension force of the right arm
and leg were determined using an electronic dynamome-
ter, designed and built by Karpovich and Karpovich [61]
and interfaced with a Biopak® computer system and Acq-
Knowledge® software (Biopak® Systems Inc, Santa Barbara,
CA). Voltage readings from the dynamometer were
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converted to force units (kg) by the software, and peak
force values easily identified from force curves. Subject
instruction, encouragement and positioning, including
posture, joint angle and limb stabilization, were closely
controlled. The subjects' limbs were positioned at the
joint angles shown to permit maximum force production:
115° for elbow flexion, 40° for elbow extension, 165° for
knee flexion, and 115° for leg extension [62]. Three trials
for each movement were performed, and the median val-
ues used as data.

Once baseline strength and all other baseline measures
were obtained (lab visit 2), each subject began her 12-
week program of high-intensity resistance training target-
ing the major muscle groups (3 d·wk-1, ~1 hr·d-1, 3 sets
of 6–10 repetitions for 13 different exercises at 75–85% of
1-RM values; Table 1). All training sessions were fully
supervised (subject:instructor ratios between 1:1 and 4:1),
and subjects' training loads continually adjusted to main-
tain proper intensity levels.

Protein/placebo supplementation
During week 10, all subjects were randomized (double-
blind) to either the TC or HP group. HP subjects were pro-

vided with a 10-day supply of purified whey protein
(Extreme Pure Pro™, American Body Building Products®,
Waterboro, SC), and TC subjects with a 10-day supply of
carbohydrate placebo (Maltrin® M100 Maltodextrin,
Grain Processing Corporation, Muscatine, IA). Treatment
dosages were measured, packaged, and distributed by a
single, third party technician. Daily rations were prepared
to bring each HP subject's average protein intake to 2.4
g·kg-1·d-1, or to supply each TC subject with an equiva-
lent dose of placebo. They were provided in three to five
small containers, with the recommendation to consume
one drink with each daily meal, and any additional sup-
plement ad libitum. Since the protein supplement was a
fruit punch flavored concentrate and the placebo an
unflavored powder, the placebo was mixed with enough
fruit drink powder (carbohydrate only) to make it similar
in taste, appearance, and energy content to the protein
supplement. The subjects had only to add water to prepare
either substance. Each subject consumed the assigned
daily ration during the final 10 days of her training
program, and reported for week 12 data collection imme-
diately afterwards (day 11).

Table 1: Exercises used for resistance training and strength testing

MUSCLE GROUP EXERCISES MUSCLE GROUP EXERCISES

Back Lat pull-downa

Bent-over dumbbell row
Seated row
Underhand pull-down

Biceps Seated dumbbell curla
Concentration curl
Preacher curl
Hammer curl

Quadriceps Leg extensiona

Seated leg press
Dumbbell squats
Dumbbell lunges

Triceps Triceps pressdowna

Triceps kickback
Overhead triceps extension
Triceps dips

Chest Chest pressa

Dumbbell flyes
Dumbbell bench press
Dumbbell pullover

Calves Standing calf raisea

Seated plantar flexion
Single-leg standing calf raise

Hamstrings Lying hamstring curla
Deadlifts

Upper Body Push-upsb

Assisted chin-ups Assisted dips
Shoulders Overhead pressa

Lateral raises
Front raises
Shrugs

Lower Back Machine back extension
Roman chair

Hip Standing hip abductiona

Seated hip abduction
Standing hip extension

Abdominals Basic crunches
Reverse crunches
Elbow crunches
Machine crunches
Hanging knee-ups Oblique knee-ups

Hip Standing hip adductiona

Seated hip adduction
Standing hip flexion

All underlined exercises were used during weeks 1, 2, 5, 8, 11, 12, with alternative exercises used during the other weeks to provide variety and 
enhance adherence.
aExercises used in 1-RM testing
b Tested for maximum number of repetitions
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Statistical Analyses
Descriptive statistics were computed for all data and select
health questionnaire responses were evaluated in terms of
frequency and percent frequency. All data were checked
for normality and nonparametric tests were used where
appropriate. Data were analyzed for the main effects of
group and time and the interaction of group by time with
a two (group: HP, TC) × three (test period: baseline, week
8, week 12) repeated-measures analysis of variance
(ANOVA). Group differences in diet composition and
exercise adherence were examined using Mann-Whitney
tests, and Wilcoxon Signed Rank tests were used to test
within-groups consistency in dietary intake over time. Sig-
nificance was set at the p ≤ 0.05 level for all comparisons,
and the Bonferroni correction used where multiple com-
parisons were made. Data were analyzed using SPSS for
Windows, Version 9.0 (SPSS Inc., Chicago, IL, USA).

Results
Subject Characteristics and Exercise Adherence
Six volunteers dropped out within the first week of the
study (three due to schedule conflicts and three due to
unrelated health concerns), leaving a total of 24 subjects
who completed the study (12 TC, 12 HP). Baseline subject
characteristics for the TC and HP groups are shown in
Table 2. There were no initial, between-groups differences
in age, height, weight, %BF, FFM, FM, or serum E2 or P4.
All subjects had baseline serum E2 and P4 levels within
normal follicular phase ranges (i.e., E2 10–200 pg·ml-1; P4
0.15–1.4 ng·ml-1; Diagnostics Products Corporation, Los
Angeles, CA) and maintained menstrual function
throughout the study. The same number of women in
each group used oral contraceptives (n = 7). Attendance at
the resistance training sessions was excellent and similar
for both groups (TC 92%, HP 94%, p = 0.86). On average,
subjects in both groups missed only three of approxi-
mately 36 total training sessions. The total possible
number of training sessions slightly exceeded 36 (36.6),
as it was important to maintain the trained state while
scheduling final data collection around slight menstrual
cycle delays.

Dietary Intake
Both groups maintained similar and consistent diets over
time, with no significant differences between groups at
any time point, and no significant changes over time in
any of the assessed dietary variables. Baseline and week 8
dietary data were pooled to provide the basis for calculat-
ing supplement dosages (Table 3).

Physical Activity Questionnaire Data
No significant group by time interactions emerged from
the PAQ data (not shown). Logically, there was a signifi-
cant main effect for time (p ≤ 0.001) in the number of
weekly hours spent performing strength exercise, but time
spent engaged in all other types and levels of physical
activity did not change significantly (moderate, hard or
very hard physical activity, flexibility exercise, sleeping).
There was a significant group effect in moderate physical
activity (p = 0.02), such that the TC group reportedly
engaged in more moderate-intensity physical activity than
the HP group, but at all time points and not as a result of
the resistance training or dietary protein interventions.

Strength and Body Composition
Large increases in voluntary strength (Figure 1) and
changes in body composition (Figure 2) confirm the effec-
tiveness of the training program. Since all strength and
body composition measures were initially similar
between groups and progressed similarly throughout the
study, these data are presented as total sample means. Per-
cent increases in strength over the course of the 12-week
program ranged from 26–143% for upper body measures,

Table 2: Baseline subject characteristics (mean ± SE) of the 
training control (TC) and high-protein (HP) groups

VARIABLE TC (n = 12) HP (n = 12)

Age (yr) 22.7 ± 1.07 22.8 ± 0.85
Height (cm) 164.9 ± 1.84 167.1 ± 1.75
Weight (kg) 64.8 ± 2.31 64.2 ± 2.48
Body fat (%) 27.9 ± 1.70 26.0 ± 1.96
FFM (kg) 46.4 ± 1.00 47.1 ± 1.25
FM (kg) 18.4 ± 1.68 17.1 ± 1.81

* Significant (p ≤ 0.05) difference, independent samples t-tests

Table 3: Mean† daily nutrient intake (mean ± SE) for the training 
control (TC) and high-protein (HP) groups

VARIABLE TC (n = 12) HP (n = 12)

Energy (kcals) 1632 ± 141 1792 ± 103
Protein (g·kg-1) 0.96 ± 0.05 0.91 ± 0.07
Protein (% kcals) 15.4 ± 1.0 12.9 ± 0.5
Carbohydrate (% kcals) 56.2 ± 2.2 55.9 ± 1.6
Fat (% kcals) 27.9 ± 1.5 27.2 ± 1.4
Alcohol (% kcals) 1.1 ± 0.5 3.2 ± 1.0
Calcium (mg) 685 ± 84 682 ± 64
Phosphorus (mg) 873 ± 75 876 ± 56
Vitamin D (µg) 3.37 ± 0.53 2.50 ± 0.38
Magnesium (mg) 182 ± 17 209 ± 13
Fiber (g) 12.4 ± 4.5 15.1 ± 5.9
Sodium (mg) 2428 ± 211 2781 ± 158
Caffeine (mg) 56 ± 16 46 ± 16

* Significant (p ≤ 0.05) difference, Mann-Whitney tests
† 14-day means
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and from 25–83% for lower body measures. Strength
improvements were significant between all time points
for all strength measures, except for those of isometric arm
and leg flexion, which did not increase significantly
between weeks 8 and 12. With regard to body composi-
tion, both groups showed similar, significant reductions
in percent body fat (TC -6.5%, HP -7.3%, p ≤ 0.001) and
gains in lean tissue mass (TC 2.7%, HP 3.9%, p ≤ 0.001).

Biochemical Measures
The effects of resistance training and protein intake on the
biochemical measures are shown in Figures 3, 4, 5, 6. Sig-
nificant time effects were observed for serum BAP and uri-
nary DPD in both groups, such that BAP was significantly
lower at week 12 than at baseline (p ≤ 0.001), while DPD
was significantly higher at week 12 than at both baseline
and week 8 (p ≤ 0.001). A significant group effect emerged
for urinary calcium, with the HP group showing greater
calcium excretion than the TC group (p = 0.02), but at all
time points and not as a result of training or supplemen-
tation. Serum OC showed neither time, nor group effects,

and no significant group by time interactions emerged for
any of the biochemical measures.

Discussion
The strength of aging bone depends on the balance
between the resorption and formation phases of the
remodeling process. To our knowledge, this is the first
study to examine the interaction of two lifestyle factors
with the potential to exert opposing influences on bone
turnover, resistance exercise training and high dietary pro-
tein intake. It was hypothesized that high-intensity resist-
ance training would increase bone formation and reduce
bone resorption activity, as indicated by biochemical
markers of bone metabolism, and that subsequent con-
sumption of a high protein intake would reverse these
effects. The loading intensity was at least as great as that in
previous studies which reported significant osteogenic
responses to resistance exercise [10-12], and the protein
intake was at least as great as that in previous studies
which reported significant protein-induced calciuric
effects [47,48,63].

Strength changes over time (mean ± SE) for the training control (TC) and high-protein (HP) groups combined (n = 24)Figure 1
Strength changes over time (mean ± SE) for the training control (TC) and high-protein (HP) groups combined (n = 24). Abso-
lute strength was similar between TC and HP at all time points, and strength increases were significant (p ≤ 0.05) between all 
time points for all measures, except for those of isometric arm and leg flexion, which were not significantly different between 
weeks 8 and 12 (NS). † One-repetition (1-RM) maximum (kg) ‡ Isometric dynamometry (kg)
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The results, however, conflicted with several previous
findings. Progressive resistance training did not prompt
an increase in formation marker concentrations, with
serum BAP declining and serum OC showing no change
in both groups over time. In contrast, Fujimura et al. [4]
reported significantly elevated BAP and OC levels in eight
healthy, young men (23–31y) one month after initiating
resistance training – levels that remained elevated through
four months of training and that were not seen in seven
age-matched, non-exercising controls. Menkes et al. [6]
reported significant increases in BAP and OC after 12 and
16 weeks of resistance training, respectively, in 11 healthy,
untrained, older men (59 ± 2y), but not in seven non-
training controls. Rockwell et al. [8] and Nelson et al. [10]
reported significantly elevated OC levels after initiating
resistance training in eumenorrheic, premenopausal
(mean ± SE, 36.2 ± 1.3 yr) and postmenopausal (50–70 y)
women, respectively. While the exercise protocols and
subject samples varied, these studies all supported the
possibility that resistance training might stimulate osteo-

genic effects, detectable through changes in bone forma-
tion marker concentrations.

Though explanations for the discrepant findings are not
clear, for several reasons, we are confident that neither
exercise adherence, nor training intensity was a confound-
ing factor. First, the subjects' high overall attendance at the
training sessions (93%) and their significant strength and
body composition changes throughout the study (Figures
1 and 2) support the effectiveness of the exercise program.
Second, the training program was consistent with recently
published recommendations by the American College of
Sports Medicine for preserving bone health throughout
adulthood [64]. Third, all workouts were fully supervised,
resistances carefully monitored and adjusted, and
personalized encouragement given to help each subject
consistently train at target levels. If resistance training can
stimulate osteogenic responses in young adult women,
the present program should have provided an adequate
stimulus to do so.

Anthropometric and body composition measures (mean ± SE) for the training control (TC) and high-protein (HP) groups com-bined (n = 24)Figure 2
Anthropometric and body composition measures (mean ± SE) for the training control (TC) and high-protein (HP) groups com-
bined (n = 24). All measures were similar between TC and HP at all time points, with both groups showing similar, significant 
(p ≤ 0.05) reductions in percent body fat and gains in lean tissue mass over time. ab Like letters are significantly different.
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The few studies that have evaluated the effects of resist-
ance training on both biomarker concentrations and
BMD were particularly important to forming the
hypothesis that high-intensity resistance training would
stimulate osteogenic shifts in the bone metabolism of pre-
viously untrained subjects. An overview of the majority of
these studies is presented in Table 4[4-11,13,65]. How-
ever, while importantly contributing to the literature,
these studies are complicated by several limitations,
including nonrandomized designs, short study durations,
low-intensity training protocols, small and varied subject
samples (age, sex, previous training), inadequate controls
over important hormonal and nutritional factors (estro-
gen, calcium), and the use of different bone assessment
techniques. In fact, six of the 10 studies cited allowed sub-
jects to self-select membership to exercise or control
groups – all six of which reported either BMD or biomar-
ker changes that could be interpreted as beneficial effects
of resistance training. Since there may be inherent differ-

ences that motivate some individuals to choose exercise
over control participation, these results must be viewed
cautiously.

Particularly notable among the first studies to use both
biomarker technology and densitometry to examine
resistance training effects is that of Lohman et al. [11], due
to its inclusion of important controls for hormonal status,
training intensity, and calcium intake. Lohman's group
reported significantly elevated serum OC in 22 young
adult women (28–39 y) after five, 12, and 18 months of
high-intensity resistance training, but not in 34 age-
matched, non-training controls. Since the present study
used both a similar subject sample and training program
(Lohman et al.: 1 h·d-1, 3 d·wk-1, 3 sets, 8–12 repetitions,
12 exercises, 70–80% 1RM; present study: ~1 h·d-1, 3
d·wk-1, 3 sets, 6–10 repetitions, 13 exercises, 75–85%
1RM), similar results were anticipated. The present study
was shorter, but did produce significant strength and body

Serum bone-specific alkaline phosphatase (BAP) concentrations (mean ± SE) for the training control (TC) and high-protein (HP) groups from baseline through week 12Figure 3
Serum bone-specific alkaline phosphatase (BAP) concentrations (mean ± SE) for the training control (TC) and high-protein 
(HP) groups from baseline through week 12. For both groups, BAP levels were significantly (p ≤ 0.05) lower at week 12 than at 
baseline. * Time point values are significantly different.
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composition changes and was markedly longer than other
studies in which biomarker responses to experimental
manipulations have been observed [22,23,66].

Even fewer studies have specifically addressed the possi-
bility that resistance training may benefit bone by reduc-
ing bone resorption. Fujimura et al. [4], cited earlier,
reported not only significant elevations in BAP and OC,
but also non-significant, yet noticeable reductions in uri-
nary DPD during the first three of four months of resist-
ance training in healthy young men (45 minutes, 4 d·wk-

1, 3 sets of 10 repetitions at 60–80% 1-RM for 7–8 exer-
cises). Ashizawa et al. [67], examining more acute effects
of resistance exercise, observed reductions in two resorp-
tion markers [urinary DPD and serum tartrate-resistant
alkaline phosphatase (TRAP)] within two hours of an
intense resistance training workout. Reductions in these
markers reached significance (p ≤ 0.05) on the third and
first post-exercise days, respectively. Much more research
is needed to investigate the potential for resistance exer-
cise to reduce bone resorption, as well as to determine

whether acute shifts in blood and urine chemistry, as in
the Ashizawa study, are meaningful in terms of overall
bone health.

The present data also did not support the hypothesis that
the consumption of 2.4 g protein·kg-1·d-1 by women with
habitual intakes near the RDA for protein (0.9 g pro-
tein·kg-1·d-1; Table 3) would increase bone resorption or
reduce bone formation. As noted previously, one forma-
tion marker (serum BAP) did decline with supplementa-
tion, but in both groups, while the other (serum OC)
showed no change. Regarding bone resorption, it was
hypothesized that urinary calcium and DPD would rise in
the HP, but not the TC group. Instead, urinary calcium
showed no change with supplementation (Figure 5),
while DPD levels increased nearly 50% between weeks 8
and 12 in both groups (Figure 6). Ryan et al. [9] reported
a similarly unexpected rise in a resorption marker after 16
weeks of resistance training in older men (61 ± 1 y, n =
21), but the use of a different biomarker (serum TRAP)

Serum osteocalcin (OC) concentrations (mean ± SE) for the training control (TC) and high-protein (HP) groups from baseline through week 12Figure 4
Serum osteocalcin (OC) concentrations (mean ± SE) for the training control (TC) and high-protein (HP) groups from baseline 
through week 12. Differences were not significant (p ≤ 0.05) for group, for time, or for group × time effects.
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and an older subject sample complicates the ability to
draw comparisons.

The lack of a calciuric response by the HP group is perhaps
the most puzzling observation, as the protein dose was
comparable to that in previous studies that did precipitate
such an effect – an effect that has been shown to be
consistent, rapid, and sustained [68,69]. It is possible that
the phosphorus content of the supplement and the sub-
jects' habitual diet attenuated the hypothesized effects, as
phosphorus has known hypocalciuric effects [68,70]. A few
studies have demonstrated blunted calciuric effects when
using meat with a substantial phosphorus content, rather
than purified isolates, as the source of supplemental pro-
tein [71,72]. The present study used a commercially-avail-
able form of purified whey protein, but the supplement
did contain a noteworthy amount of phosphorus. An
exact value was not available, but an estimate provided by
Weider International® indicated that the powder
contained about 56 g of phosphorus for every 100 g of

protein (personal communication, February 2002). In
addition, the subjects' dietary phosphorus intake, exclu-
sive of supplementation (Table 3), was 125% of the RDA
for females 19 to 24 years of age [41].

It is also possible that calcium excretion did increase, but
through the gut and not the kidney – an increase that
would go undetected without measures of endogenous
fecal calcium. Previous studies have examined fecal cal-
cium after manipulating dietary protein and have not
shown significant changes [68,73], but the majority has
measured only total fecal calcium, without distinguishing
the endogenous fraction. Heaney et al. [74] have recently
generated strong support for possibility that significant
fecal losses may have previously gone undetected in stud-
ies that did not measure the endogenous fraction.
Heaney's group studied 191 adult, female inpatients in a
metabolic ward, obtained complete calcium intake,
absorption, and excretion data, and demonstrated a
significant, inverse relationship between urinary and

Urinary calcium concentrations (mean ± SE) for the training control (TC) and high-protein (HP) groups from baseline through week 12Figure 5
Urinary calcium concentrations (mean ± SE) for the training control (TC) and high-protein (HP) groups from baseline through 
week 12. Calcium levels were significantly (p ≤ 0.05) greater in TC than HP at all time points. * Group values are significantly 
different.
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Urinary deoxypyridinoline (DPD) concentrations (mean ± SE) for the training control (TC) and high-protein (HP) groups from baseline through week 12Figure 6
Urinary deoxypyridinoline (DPD) concentrations (mean ± SE) for the training control (TC) and high-protein (HP) groups from 
baseline through week 12. For both groups, DPD levels were significantly (p ≤ 0.05) higher at week 12 than at both baseline 
and week 8. ab Like letters are significantly different.

Table 4: Longitudinal studies of resistance training (RT) effects on bone mineral density (BMD1) and biochemical markers of bone 
metabolism

Bemben et al., 2000 Subjects: 25 postmenopausal women (17 RT1, 8 C), 41–60 y
Eligibility criteria: No RT previous 6 months; no current or recent HRT
Design: Randomized (subjects matched for lumbar BMD, then randomly assigned to groups)
Training duration / frequency: 6 months / 3 d·wk-1 (~45 min·d-1)
Training intensity: 3 sets, 8–16 reps, 40–80% 1-RM, 12 exercises
Calcium supplementation: 600 mg·d-1+125 IU vit. D only for subjects with daily Ca2+ <1500 mg
Training supervised: Yes
Results-Strength: * Strength ↑ in RT, but not in C
Results-BMD: Total body, lumbar, & femoral BMD changes – NS
Results-Biomarkers: OC & CTX changes – NS
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Fujimura et al., 1997 Subjects: 15 adult men (8 RT, 7 C), 23–31 y
Eligibility criteria: No RT previous 2 y
Design: Not randomized
Training duration / frequency: 4 months / 4 d·wk-1 (~45 min·d-1)
Training intensity: 1 set, 10 reps, 60% 1-RM, & 2 sets, 10 reps, 80% 1-RM, 7–8 exercises
Calcium supplementation: 600 mg·d-1

Training supervised: Not indicated Results-Strength: * Strength ↑ in RT, but not in C
Results-BMD: Total body, lumbar, femoral, radial BMD changes – NS
Results-Biomarkers: * OC & BAP ↑ at 1, 2, 3, & 4 months in RT, but not in C

* PICP ↓ at 2 & 4 months in C, but not in RT (not measured at 3 months in C) DPD changes – NS

Gleeson et al., 1990 Subjects: 72 eumenorrheic women (34 RT, 38 C), 23–46 y
Eligibility criteria: No previous, regular RT; oral contraceptive users eligible
Design: Not randomized
Training duration / frequency: 12 months / 3 d·wk-1 (~30 min·d-1)
Training intensity: 2 sets, 20 reps, 60% 1-RM, 8 exercises
Calcium supplementation: 500 mg·d-1

Training supervised: Not indicated
Results-Strength: * Strength ↑ in RT, but not in C
Results-BMD: * Percent lumbar BMD change (0.8% ↑ in RT vs. 0.5% ↓ in C)
Absolute lumbar (DPA) & calcaneal (SPA) BMD changes – NS

Results-Biomarkers: OC changes – NS

Lohman et al., 1995 Subjects: 56 eumenorrheic women (22 RT, 34 C), 28–39 y
Eligibility criteria: No RT previous 2 y; oral contraceptives users not eligible
Design: Randomized
Training duration / frequency: 18 months / 3 d·wk-1 (~1 hr·d-1)
Training intensity: 3 sets, 8–12 reps, 70–80% 1-RM, 12 exercises
Calcium supplementation: 500 mg·d-1

Training supervised: Yes
Results-Strength: * Strength ↑ in RT, but not in C
Results-BMD: * Lumbar BMD ↑ at 5 (2.0%) & 12 (1.6%) months in RT, but not in C

* Trochanteric BMD ↑ at 5 (0.8%), 12 (2.4%), & 18 (1.5%) months in RT, but not in C Total body & radial BMD (SPA) 
– NS
Results-Biomarkers: * OC ↑ in RT at 5, 12, & 18 months, but not in C

Menkes et al., 1993 Subjects: 18 men (11 RT, 7 C), 50–70 y
Eligibility criteria: No RT previous 2 y
Design: Not randomized
Training duration / frequency: 4 months / 3 d·wk-1

Training intensity: 1 set, 15 reps, 8 upper body exercises, & 2 sets, 15 reps, 4 lower body exercises
Calcium supplementation: No: subjects instructed to follow diet containing 1000 mg·d-1 calcium
Training supervised: Yes
Results-Strength: * Strength ↑ in RT, but not in C
Results-BMD: * Lumbar (2.0%) & femoral (3.8%) BMD ↑ in RT, but not in C

Total body BMD changes – NS
Results-Biomarkers: * OC ↑ at 3 & 4 months, & BAP ↑ at 4 months in RT, but not in C

TRAP changes – NS

Nelson et al., 1994 Subjects: 39 postmenopausal women (20 RT, 19 C), 50–70 y
Eligibility criteria: No current regular exercise; no HRT previous 12 months
Design: Randomized
Training duration / frequency: 12 months / 2 d·wk-1 (~45 min·d-1)
Training intensity: 3 sets, 8 reps, 80% 1-RM, 5 exercises
Calcium supplementation: No: subjects consuming < 800 mg·d-1 counseled to ↑ intake
Training supervised: Yes
Results-Strength: * Strength ↑ in RT, but not in C
Results-BMD: * Lumbar (1.0%) & femoral (0.9%) BMD ↑ in RT, but ↓ in C (lumb. -1.8, fem. -2.5%)

Total body BMD changes – NS
Results-Biomarkers: * OC ↑ in RT, but ↓ in C

Table 4: Longitudinal studies of resistance training (RT) effects on bone mineral density (BMD1) and biochemical markers of bone 
metabolism (Continued)
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Pruitt et al., 1992 Subjects: 26 postmenopausal women (17 RT, 9 C), RT 53.6 ± 1.0 y, C 55.6 ± 0.9 y
Eligibility criteria: No RT previous 6 months; no previous HRT
Design: Not randomized (early respondents placed in RT group)
Training duration / frequency: 9 months / 3 d·wk-1 (~40 min·d-1)
Training intensity: 1 set, 10–15 reps, 11 exercises
Calcium supplementation: Not indicated
Training supervised: Not indicated
Results-Strength: * Strength ↑ in RT, but not in C
Results-BMD: * Lumbar BMD (DPA) ↑ in RT (1.6%), but ↓ in C (-3.6%)

Femoral (DPA) & forearm (SPA) BMD changes – NS
Results-Biomarkers: * Baseline OC greater in RT than in C

OC, BAP, & HYP changes – NS

Pruitt et al., 1995 Subjects: 26 postmenopausal women (15 RT2, 11 C), 65–79 y
Eligibility criteria: No previous RT; no previous HRT or HRT ≥ 1 y
Design: Randomized
Training duration / frequency: 12 months / 3 d·wk-1 (~50–55 min·d-1)
Training intensity: 3 sets, 7–14 reps, 40–80% 1-RM, 10 exercises
Calcium supplementation: 500 mg·d-1+200 IU vitamin D
Training supervised: Yes
Results-Strength: * Strength ↑ in RT, but not in C
Results-BMD: Lumbar & hip BMD changes – NS
Results-Biomarkers: OC changes – NS

Rockwell et al., 1990 Subjects: 17 eumenorrheic women (10 RT, 7 C), RT 36.2 ± 1.3 y, C 40.4 ± 1.6y
Eligibility criteria: No previous RT; oral contraceptive users not eligible
Design: Not randomized
Training duration / frequency: 9 months / 2 d·wk-1 (~45 min·d-1)
Training intensity: 2 sets, 12 reps, 70% 1-RM, 8 exercises
Calcium supplementation: 500 mg·d-1 +200 IU vitamin D
Training supervised: Not indicated
Results-Strength: * Strength ↑ in RT, but not in C
Results-BMD: * Lumbar BMD ↓ in RT at 4.5 (-2.9%) & 9 months (-4.0%); no change in C

Femoral BMD changes – NS
Results-Biomarkers: * Baseline OC greater in RT than in C
* OC ↑ in RT & in C at 4.5 & 9 months

Ryan et al., 1994 Subjects: 37 men (21 RT, 16 C), 51–71 y
Eligibility criteria: No RT previous 6 months Design: Not randomized
Training duration / frequency: 4 months / 3 d·wk-1

Training intensity: 1 set, 15 reps using variable resistance machines, 14 exercises
Calcium supplementation: Not indicated
Training supervised: Not indicated
Results-Strength: * Strength ↑ in RT, but not in C
Results-BMD: * Femoral BMD ↑ in RT (2.8%), but not in C

Total body & lumbar BMD (DXA) changes – NS
Results-Biomarkers: * TRAP ↑ in RT & in C (no difference between groups)

Changes in OC & BAP – NS

BMD1 = all BMD measurements made using dual-energy x-ray absorptiometry (DXA) unless otherwise specified (DPA = dual-photon 
absorptiometry; SPA = single-photon absorptiometry)
RT = resistance training
C = control
RT1 = two training groups: 10 high-load RT & 7 high-repetition RT
HRT = hormone replacement therapy
* = statistically significant
NS = non-significant
OC = serum osteocalcin
CTX = urinary C-telopeptide
BAP = serum bone-specific alkaline phosphatase
DPD = urinary deoxypyridinoline
PICP = plasma carboxy-terminal pro-collagen 1 extension peptide
TRAP = serum tartrate resistant acid phosphatase
HYP = urinary hydroxyproline
RT2 = two training groups: 8 high-intensity RT & 7 low-intensity RT

Table 4: Longitudinal studies of resistance training (RT) effects on bone mineral density (BMD1) and biochemical markers of bone 
metabolism (Continued)
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endogenous fecal calcium. For every 0.41 mg drop in uri-
nary calcium, there was an associated 1.0 mg rise in
endogenous fecal calcium. Thus, it may, after all, be criti-
cal to measure both urinary and fecal calcium excretion to
accurately assess calcium balance.

Still another possibility is that the hypothesized effects on
bone turnover may have been offset by the subjects' high
calcium intake. Calcium supplementation was considered
essential to excluding the effects of calcium deficiency, but
the high supplemental dosage, in addition to the subjects'
dietary calcium, may have provided enough exogenous
alkali material to effectively neutralize any protein-
induced acid effects. Shapses et al. [23] have supported
this possibility, reporting that an increase in dietary cal-
cium initiated a drop in urinary DPD, and that a large
increase in dietary protein had no effect on urinary cal-
cium or DPD when dietary calcium was very high (~1600
mg·d-1).

Heaney [75] has simply explained the mechanism
through which high calcium intakes may counter the
effects of protein excess. Essentially, increased dietary pro-
tein stimulates calcium excretion, which in turn stimu-
lates the synthesis and activation of vitamin D to enhance
intestinal calcium absorption. If dietary calcium is suffi-
cient, intestinal calcium absorption can be up-regulated
and bone resorption is not needed to preserve calcium
balance. However, if dietary calcium is inadequate, then
an up-regulation of absorption will do nothing to com-
pensate for the increased calcium excretion and bone
resorption will ensue.

Finally, it is possible that the relatively uncontrolled tim-
ing of the treatment dosages could have influenced the
results. While it was recommended that the subjects
consume one drink with each daily meal and any addi-
tional supplement ad libitum, standardization of the tim-
ing of supplementation was not possible with these free-
living college students and working women. Future stud-
ies may want to examine this potential influence.

Conclusion
The present study provided no evidence that high-inten-
sity resistance training stimulated osteogenic effects, as
assessed with serum osteocalcin and bone-specific alka-
line phosphatase. It is possible that other biomarkers may
have produced different results, and that, given a longer
time frame, bone densitometry could detect osteogenic
effects. The present study also yielded no evidence that
short-term protein supplementation would have osteo-
penic effects in young adult women. However, the supple-
mentation period was brief and the subjects were healthy,
eumenorrheic, calcium-replete women, regularly partici-
pating in high-intensity exercise. These characteristics,

which may have additive, beneficial effects on bone, are
unfortunately not often descriptive of American women,
and thus these results must not be taken as justification to
perpetuate the common 'more-is-better' mentality toward
dietary protein.
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