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Abstract: Optimal nutrition is the foundation for the development and maintenance of a healthy
immune system. An optimal supply of nutrients is required for biosynthesis of immune factors and
immune cell proliferation. Nutrient deficiency/inadequacy and hidden hunger, which manifests as
depleted nutrients reserves, increase the risk of infectious diseases and aggravate disease severity.
Therefore, an adequate and balanced diet containing an abundant diversity of foods, nutrients, and
non-nutrient chemicals is paramount for an optimal immune defense against infectious diseases,
including cold/flu and non-communicable diseases. Some nutrients and foods play a larger role than
others in the support of the immune system. Oats are a nutritious whole grain and contain several
immunomodulating nutrients. In this narrative review, we discuss the contribution of oat nutrients,
including dietary fiber (β-glucans), copper, iron, selenium, and zinc, polyphenolics (ferulic acid and
avenanthramides), and proteins (glutamine) in optimizing the innate and adaptive immune system’s
response to infections directly by modulating the innate and adaptive immunity and indirectly by
eliciting changes in the gut microbiota and related metabolites.

Keywords: fiber; polyphenols; minerals; protein; human

1. Introduction

Optimal nutrition provides building blocks for the development and maintenance
of all cells, including a well-functioning immune system. Huge global burden of morbid-
ity and mortality is ascribed to malnutrition and includes both under and overnutrition.
Malnourishment of a child or an adult makes them vulnerable to repeated infections and
chronic inflammation, suggesting a relationship between malnourishment and immune
defect [1]. In fact, the most common cause of immunodeficiency in the world is undernutri-
tion [2], which manifests as depleted reserves or circulating concentrations of nutrients,
reflecting chronic dietary inadequacies. While this condition is more prevalent in the
underdeveloped and developing countries, it continues to be a problem in industrialized
countries, especially among hospitalized/institutionalized individuals and the elderly, as
well as people living in underprivileged communities where access to healthy foods is
limited [3]. Moreover, detrimental to optimal immune function is hidden hunger, defined
as a condition in which micronutrient intakes are inadequate but energy consumption is
either adequate or excessive [4]. Chronic surplus intake of energy could modify immune
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response by disturbing the metabolic and endocrine status as well [5]. Nutrient inadequa-
cies and deficiencies undermine the immune system, leading to immunosuppression and
dysregulation of immune responses, such as impaired phagocytosis and decreased cytokine
production [6,7]. Infection and illness can, in turn, increase nutrient losses through greater
nutrient utilization, diminished appetite, and reduced nutrient absorption, resulting in
a vicious cycle of undernutrition/hidden hunger and infection [2]. Thus, an adequate
and balanced diet containing abundant varieties of foods, nutrients, and non-nutrient
compounds is necessary to prevent infectious diseases, protect against infection-related
complications, and support an effective immune response [7].

A dietary intake rich in plant-based foods with high quality and quantity of nutrients
and non-nutrients such as vitamins, minerals, fiber, and polyphenolics may have a positive
effect on the immune system. In this review, we principally discuss the potential contri-
butions of oat as an integral part of a balanced diet and particularly that of oat nutrients
(protein, copper, iron, selenium, and zinc) and bioactives (fiber and polyphenolics) to
an optimal immune system and response. We explore the impact of selected nutrients
in oats on immune health both directly by modulating the innate and adaptive immune
system and indirectly by eliciting changes in the gut microbiota and related metabolites.
The information reviewed here is significant particularly during the global SARS-CoV-2
(COVID-19) pandemic as people are more likely to consume energy dense food high in fats,
refined carbohydrates, and sodium [8,9], which collectively impair the immune system
and host defense against infections [10].

2. Immune System and Response

The human immune system is comprised of both the innate (fast, non-antigen specific)
and adaptive (slower, antigen-specific) defenses [11] that work in an integrated, coop-
erative manner (Figure 1). The innate immune system includes epithelial barriers (skin
and gut), cellular components [monocytes (macrophages), polymorphonuclear leukocytes
(eosinophils and basophils), natural killer (NK) cells, neutrophils, mast cells, and dendritic
cells (DCs)], and non-cellular soluble factors with antigen recognition molecules (C-reactive
protein, serum amyloid protein, mannose-binding protein, antimicrobial peptides, com-
plement, lysozyme, interferon, and other humoral factors) [12]. The innate immunity acts
rapidly as the first line of protection to abate the establishment of overt infection typically
via inflammatory processes with a goal for rapid elimination of infectious agents [7,13].
The recognition of the presence of pathogens is mediated via the expression of nonspecific
pattern-recognition receptors and not influenced by prior exposure [13]. The innate im-
munity annihilates invading pathogens through two main mechanisms, direct destruction
and phagocytosis [12,14]. The direct destruction is mediated by the complement system,
attack of reactive radicals released by phagocytes, and toxic proteins released by NK cells.
The complement system, comprising more than 30 proteins, elicits immune responses
that eliminate invading pathogens by direct lysis or promoting phagocytosis [11]. Toxic
proteins secreted by NK cells including perforin, proteases, and defensins can directly
kill pathogens [15]. Phagocytosis of the innate immunity mainly exerted by monocytes,
macrophages, neutrophils, eosinophils, and dendritic cells, is a cellular process for ingest-
ing and degrading particles, including microorganisms, foreign substances, and apoptotic
cells, via phagolysosome [11,16].

The adaptive system includes antigen-specific cells, namely B and T lymphocytes,
with the former secreting antibodies specific to the infecting agents for humoral immunity
and the latter with T helper [(Th) bearing CD4 receptor] cells coordinating the overall
adaptive response, with cytotoxic T [(Tc) bearing CD8 receptor] cells killing virally-infected
damaged host cells and tumor cells, and with T regulatory cells (Treg) being vital in
maintaining immune tolerance to allow the immune system to ignore non-harmful non-
self-substances (such as food, pollen, and environmental antigens) [6,13]. Intracellular
fragments generated from phagocytosis of pathogens stimulate Tc cells and extracellular
pathogens stimulate Th cells. The Th cells can be further categorized into three subtypes,
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defined by the cytokines they produce. Th1 cells produce interferon-gamma (IFN-γ), tumor
necrosis factor-α (TNF-α), and interleukin (IL)-2 and play a crucial role in antiviral and
cellular immune responses, Th2 cells produce IL-4, -5, -10, and -13 and are involved in
humoral (antibody), anti-parasitic, allergic responses [17] and Th17 cells secrete IL-17A,
IL-17F, and IL-22 and contribute to fighting extracellular pathogens [6,18]. After binding,
cytokines can regulate growth, development or activity of the target cells. For example,
TNF-α, IL-1 and IL-6 regulate monocytes and macrophages, stimulate acute phase protein
synthesis in the liver, and suppress appetite [14]. B lymphocytes differentiate into plasma
cells, producing a variety of antibodies, immunoglobulins (Igs), which facilitate recognition
and destruction of pathogens [19]. For example, IgA present in the mucosal surface
protects against bacterial and viral infections. Although slow at first when encountering a
microorganism for the first time, the adaptive immunity response is faster and stronger
than the initial response when the microorganism is encountered again (i.e., there is re-
infection) as it draws from its immunological memory from prior exposure to the antigenic
components of the microorganism. When an antigen binds to the small number of activated
lymphocytes that recognize it, it can stimulate lymphocytes clonal division, increasing the
immune response to the antigen, a process termed lymphocyte expansion or proliferation.
This memory mechanism also supports the effectiveness of vaccination against subsequent
pathogen exposure [13].
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Figure 1. Overview of the immune response. The human immune system is comprised of both the innate and adaptive
defenses. The innate immunity acts rapidly as the first line of protection to abate the establishment of overt infection with a
goal for rapid elimination of infectious agents. The recognition of the presence of pathogens is mediated via the expression
of nonspecific pattern-recognition receptors and not influenced by prior exposure and annihilation of invading pathogens
occurs through direct destruction (complement system) and phagocytosis (immune cells). Although slow at first when
encountering a microorganism for the first time, the adaptive immunity response is faster and stronger than the initial
response when the microorganism is encountered again (i.e., re-infection) as it draws from its immunological memory from
prior exposure to the antigenic components of the microorganism. Oats contain several nutrients that participate in both the
innate and adaptive immune systems including fiber, micronutrients (e.g., zinc, iron, copper, and selenium), polyphenols,
and proteins.
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Assessing functionality and status of the immune system is complex and challenging
because there is no single marker that reflect the health of the overall immune system,
including innate and adaptive immunity [12]. In general, immune cell functions and popu-
lations and antibody and cytokine levels are measured to provide a view on individual
elements of immunity but their relevance to clinical endpoints remains to be established.
Additionally, the ambiguity of inflammatory status derived from acute infection-related in-
flammation vs. low-grade chronic inflammation commonly present in chronic diseases [20]
can influence the accuracy of the assessment on clinical relevance. Thus, clinical endpoints
such as infection rate and duration, symptom severity, and antibody response to vaccina-
tion are more widely accepted as evidence of an immune benefit of interventions than the
changes in biomarkers. Nevertheless, the use of combinations of immune markers such as
T-cell proliferation and production of Th1, Th2, and regulatory-type cytokines (e.g., IFN-γ,
IL-2, IL-4, IL-5, IL-10, and TNF-α) has been commonly employed to evaluate immunity in
research settings [12,21].

The immune system is particularly vulnerable to free radical attacks because the
immune cells rely on cell-cell communications via receptors on membranes whose lipid-
rich structures are susceptible to free radicals induced oxidation and consequent damages.
Unfortunately, overwhelming amounts of free radicals are synthesized via respiratory
burst during phagocytosis of pathogens [22]. Additionally, chronic inflammation is also
linked to increased free radical productions resulting in higher oxidative stress. Thus, the
adequate antioxidant defense system is absolutely needed to protect immune cells and
other tissues from free radical attacks and related complications and damages.

3. Nutrition and Immune System and Functions

The immune system is influenced by genetic, physiological, and lifestyle factors,
including age, sex, stress, hormone, exercise, drinking, smoking, health condition, and
nutrition status [12]. Of these factors, nutrition is a modifiable factor that is fundamental
to the development and maintenance of a healthy immune system [6,7]. The significance
of nutrition in the robust, optimal immune system is manifested especially during mal-
nutrition, including undernutrition and overnutrition. For example, protein deficiency
increases the risk of infection due to low counts of antibodies and immune cells because
amino acids are building blocks for the proliferation of immune cells and synthesis of
immune effector molecules, [23]. Obesity, generally caused by overnutrition is linked with
alterations in leukocyte development, phenotypes, and activity and the coordination of
innate and adaptive immune responses [24]. Additionally, the impact of hidden hunger on
the optimal immune response can be manifest even in healthy individuals.

The magnitude of the influence of nutrients on different components of the immune
system does not always follow a linear dose-response relationship, with some being
relatively insensitive to nutrient status or supply [14]. Moreover, the health condition and
nutrient status of individuals can affect the response of the immune system to nutrient
intakes. For example, healthy individuals with optimal nutrition may not benefit from
supplementation of certain nutrients unless those statuses are deficient [14,25]. On the other
hand, the increased intake of nutrients that are supportive of the immune system can confer
immune benefits in people at increased risk of nutrient inadequacies and utilization, such as
hospitalized and institutionalized patients, who are generally older. Along with increasing
age, a variety of structural and functional changes in the immune system occur, such as
increased levels of circulating pro-inflammatory cytokines, and insufficient production of
naive immune cells. Furthermore, the amplified oligo-clonal expansion of memory immune
cells, leading to less effective innate and adaptive immune responses, increased risk of
auto-immune response, and increased susceptibility to infections (immunosenescence) [12].
All these changes support the importance of optimal nutrition for functional immunity for
fighting infectious diseases.

Nutrients that play a larger role in the immune system can be regarded as im-
munomodulators, which can be further categorized into immunoadjuvants, immunostimu-
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lants, and immunosuppressants [26]. Immunoadjuvants are specific immune stimulators
enhancing the efficacy of vaccines. Immunostimulants activate the mediators or com-
ponents of the immune system, whereby they can enhance resistance against infection,
autoimmunity, cancer, and allergy. Immunosuppressants can inhibit the immune system,
whereby they can be used to control the pathological immune reaction subsequent to organ
transplantation. Micronutrients, including vitamins A, C, D, B6, B9, and B12, copper, iron,
selenium, and zinc, collectively function to support the development and maintenance of
the immune system. These micronutrients can be considered an immunostimulant. How-
ever, the prevalence of deficiency or inadequacy of some of these nutrients is common, such
as zinc [27–29], iron [30], and selenium [28,29]. A variety of mechanisms enabled by these
nutrients that can contribute to modulation of the immune system include (1) production
and activity of antimicrobial proteins; (2) growth, differentiation, and motility/chemotaxis
(homing) of immune cells; (3) phagocytic and killing (e.g., oxidative burst) activities of
neutrophils and macrophages; (4) promotion of and recovery from inflammation (e.g., an-
tioxidant activity); and (5) cytokine and antibody production [6,7,14,31]. As symptomatic
infections can be a result of compromised immune functions consequential to deficient
micronutrient stores [25,32], maintaining optimal nutrient status is paramount for humans
defending against infectious diseases, including cold/flu and COVID-19.

4. Nutrient Composition of Oats

A variety of plant-based foods provide functional benefits due to their contents of
vitamins, minerals, polyphenolics, terpenoids, alkaloids, sterols, pigments or unsaturated
fatty acids [32]. Therefore, these foods may help optimize immunity that can mount an
effective reaction against infections and/or manage inflammatory damages in a controllable
manner, both crucial for the resolution of infectious diseases. Oats contain numerous
nutrients and bioactives that have been associated with anti-inflammatory anti-oxidant
and immunogenic responses [33].

Oats (family of Poaceae or Graminae), classified under the genus Avena, have 27 known
species or sub-species. Avena sativa, also referred to as cultivated oat, is the most economi-
cally important species worldwide. Oats are a nutritious whole grain and mainly supply
carbohydrate in the form of starch, have reasonably high lipid levels, and contain several
of micronutrients, vitamin B1, B6, folate, pantothenic acid, Mn, Mg, Se, Fe, Zn, and Cu [31]
(Table 1). Additionally, oats contain a higher protein content compared to widely consumed
cereals, such as corn and rice, with a fairly good balance of essential amino acids [34]. After
dehulling, the fiber content of oat groats is decreased to 10–12%, with roughly 40% as
soluble fiber, mainly β-glucan, and 60% as insoluble fiber, composed primarily of cellulose,
hemicellulose and lignin [35]. β-glucans in oats consist of linear branched linkage of 30%
β-1,3 glucan and 70% β-1,4 linked β-D-glucopyranosyl units [35]. Among β-glucan con-
taining foods, oats are by far the predominant dietary source [34]. The amount of β-glucan
in oats ranges from 2 to 8 g/100 g [36] and the total and soluble β-glucan contents of oats
was reported to be on average 4.40 and 3.88 g/100 g, respectively [37]. Nutrient contents in
oats, like all other plant foods are variable and influenced by a long list of factors, including
cultivar, location, cultivation, season, and postharvest processing [35].
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Table 1. Contents of macronutrients and micronutrients of in 100 g of raw Oats and Oat products in comparison with other common cereals as reported in the USDA Food Data Central
database.

Nutrients (per 100 g) Raw
White Rice

Raw Sweet
Yellow Corn

Raw Whole
Wheat Flour

Regular
Quick Oat 1

Old
Fashioned Oat 1 Steel Cut Oat 1 Instant Oat 1 Whole

Oat Flour 2 Oat Bran 2

USDA Food Data
Central ID 169760 169998 790085 173904 980451 1015405 685984 368827 168872

Energy (kcal) 360 86 370 379 375 375 375 400 246
Protein (g) 6.61 3.27 15.1 13.15 12.5 12.5 12.5 17.5 17.3

Total Fat (g) 0.58 1.35 2.73 6.52 7.5 6.25 7.5 7.5 7.03
Carbohydrate (g) 79.34 18.7 71.2 67.7 67.5 67.5 67.5 65 66.22

Total Fiber (g) N/A 2 10.6 10.1 10 10 10 10 15.4
Calcium, (mg) 9 2 38 52 50 N/A 45 50 58

Iron (mg) 0.8 0.52 3.86 4.25 3.75 4.5 3.5 4.5 5.41
Magnesium (mg) 35 37 136 138 100 N/A N/A N/A 235
Phosphorus (mg) 108 89 352 410 325 N/A N/A N/A 734
Potassium (mg) 86 270 376 362 N/A N/A N/A N/A 566

Zinc (mg) 1.16 0.46 3.24 3.64 N/A N/A N/A N/A 3.11
Copper (mg) 0.11 0.054 0.452 0.391 N/A N/A N/A N/A 0.403

Manganese (mg) 1.1 0.163 3.56 3.63 N/A N/A N/A N/A 5.63
Selenium (µg) N/A 0.6 23.6 28.9 N/A N/A N/A N/A 45.2
Thiamin (mg) 0.07 0.155 0.504 0.46 0 N/A N/A N/A 1.17

Vitamin B6 (mg) N/A N/A N/A 0.1 N/A N/A N/A N/A N/A
Folate, DFE (µg) 9 42 39 32 N/A N/A N/A N/A 52

Pantothenic acid (mg) 1.34 0.717 N/A 1.12 N/A N/A N/A N/A 1.5
Choline (mg) N/A N/A N/A 40.4 N/A N/A N/A N/A 32.2

Glutamic acid (g) 1.288 0.636 N/A 2.83 N/A N/A N/A N/A 3.748

Reference: USDA FoodData Central database, accessed on 8 October 2020 and 23 November 2020 (https://fdc.nal.usda.gov/fdc-app.html#/?query=oat). 1 Old fashioned oats are the oat groats steamed and
rolled into flakes. Quick oats are oats that have been steamed longer than old fashioned oats and rolled extremely thin. Instant oats are similar to quick oats but oats are cut smaller and rolled thinner than quick
oats. Steel cut oats are oat groats that are steel cut. 2 Oat flour are oat groats that are ground. Oat bran is the outer casing of the oat groat. Abbreviation: N/A, not available.

https://fdc.nal.usda.gov/fdc-app.html#/?query=oat
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Oats have been used traditionally as a stimulant, antispasmodics, antitumor, diuretics
or neurotonics [38]. Oat constituents display antioxidant, anti-inflammatory, wound heal-
ing, immunomodulatory, antidiabetic, and anticholesterolemic activities that are protective
against acute and chronic illnesses [38]. According to the FDA and EFSA nutrient source
guidance, oats can be a good source of protein, fiber, iron, magnesium, phosphorus, zinc,
copper, manganese, and selenium (Table 2). Oats per 40-g serving is a “good” or “excel-
lent” source of nutrients for protein, fiber, iron, magnesium, phosphorus, zinc, copper,
manganese, and selenium, based on the US FDA nutrition claim regulation or “a source of
nutrients” based on the EFSA regulation. According to the US FDA describe the level of a
nutrient in foods, a food containing at least 10–19 and 20% more of the Reference Daily
Intake (RDI) for micronutrients or of the Daily Reference Value (DRV) for protein, dietary
fiber, or potassium per reference amount customarily consumed can be labeled with “good
source of” and “excellent source of”, “high” or “rich in”, respectively [39]. In the European
Union (EU), a nutrient source claim can be used to label a food high in fiber when the
product contains at least 6 g of fiber per 100 g or at least 3 g of fiber per 100 kcal [40].
Furthermore, a food is a source of protein when at least 12% of the energy value of the food
is provided by protein, and a claim that a food is a source of vitamins or minerals can be
made where the product contains 15% of the recommended allowance as defined in the
Annex to Directive 90/496/EEC [40].

Table 2. Recommended dietary allowance of the nutrients that can be found in appreciable amounts in oats.

WHO EFSA US India China Mexico

Protein (g) 0.83 g/kg BW ≥12% of total kcal M: 56
F: 46

M: 60
F: 55

M: 65
F: 55 1 g/kg BW

Total Fiber (g) N/A 25 M: 28–34
F: 22–25 30 25–30 M: 30–35

F: 26–30

Iron (mg) M: 9.1–27.4
F: 7.5–58.8

M: 11
F: 11–16

M: 8
F: 8–18 21 M: 12

F: 12 -20 17

Magnesium (mg) M: 224–260
F: 190–220

M: 350
F: 300

M: 400–420
F: 310–320

M: 340
F: 310 310–330 248

Phosphorus (mg) N/A 550 700 600 670–720 664

Potassium (mg) ≥ 3510 3500 4700 M: 3750
F: 3225 2000 N/A

Zinc (mg) M: 4.2–14
F: 3–9.8

M: 9.4–16.3
F: 7.5–12.7

M: 11
F: 8

M: 12
F: 10

M: 12.5
F: 7.5 10

Copper (µg) N/A M: 1600
F: 1300 900 3000 800 650

Manganese (mg) N/A 3 M: 2.3
F: 1.8 2–5 4.5 N/A

Selenium (µg) M: 33–34
F: 25–26 70 55 40 60 41

Values are Recommended Dietary Allowance reflecting the average daily level of intake sufficient to meet the nutrient requirements of
nearly all (97–98%) healthy people. Abbreviations: BW, body weight; EFSA, European Food Safety Authority; F, females; g, gram, kg,
kilogram; M, males, mg, milligram; µg, microgram; WHO, World Health Organization.

In addition to containing essential nutrients and dietary fibers, oats contain a list of
polyphenolics, particularly phenolic acids and avenanthramides. Among 22 commercial
oat products (oat bran concentrate, oat bran, flaked oats, rolled oats and oatcakes) analyzed
using HPLC-DAD assay, the total concentrations of phenolic acids and avenanthramides
ranged from 0.4 to 1.5 mg/g, with oat bran concentrate having the highest [41]. This
translates to 16 to 25 mg total phenolic acids and 1–2 mg avenanthramides in a 40 g serving
of commercial oat products. Like other cereals, maize, whole-grain wheat, and rice, ferulic
acid is the predominant polyphenolics in oats with the content ranging from 9 to 15 mg in
a 40 g serving [41].

A poor diet with inadequate intake of essential micronutrients and fibers plays a major
role in immune dysfunction, leading to a state of systemic chronic inflammation (SCI). This
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state is well accepted as a major contributor in the development of non-communicable
chronic diseases. The typical Asian Indian diet is reported to be low in protein (9–10% of
total daily caloric intake) and high in carbohydrates (70–80% of total daily caloric intake),
mainly in the form of refined carbohydrates, such as white rice and white flour, putting
these populations in a growing risk of non-communicable diseases such as type 2 diabetes.
Globally, the high prevalence of type 2 diabetes and prediabetes, especially in China, India
and other emerging countries is exacerbated by a low diet quality and a higher prevalence
of obesity that coexists with that of type 2 diabetes. Observational studies have shown
that whole grains intake is associated with weight loss, reduced insulin resistance and
type 2 diabetes [42,43]. Substituting refined grains with wholegrains like oats improves
carbohydrate quality with higher fiber, protein and micronutrients like Zn, Se, Fe and
polyphenols can improve the overall diet quality and potentially promote a functional
immune system. In the following sections, we discuss potential benefits of oat nutrients that
are a good source (identified based on the US and EU nutrient claim) to the immune system
with special emphasis on immunity against infection. Additionally, the contribution of oat
polyphenolics to the immune system is discussed as the benefits of these phytochemicals
on the immunity have been well appreciated.

5. β-Glucans and Other Dietary Fibers

Dietary fibers are mainly polysaccharides that cannot be digested and absorbed in
the human gastrointestinal tract [44]. Historically, dietary fibers are known for reducing
energy intake and helping body weight loss and maintenance, as well as for modulation of
the gut microbiota [45]. Recently, their effects on the immunity and the incidence/severity
of infectious diseases are recognized, and this relationship is probably mediated by the
gut microbiota [46]. The underlying mechanism of actions of dietary fibers on the immune
system and risk of infectious diseases have not been elucidated, although four probable
mechanisms have been proposed [45,47]. First, the fermentable fibers can spare mucin
from being utilized by the gut microbes during fermentation. Mucin is part of the innate
immunity serving as the physical barrier against the invasion of infectious microorganisms.
Second, dietary fibers contribute to the maintenance of the gut microbiota with diverse
composition and variable, complement metabolic functions that can abate the proliferation
of opportunistic pathogens, which cause inflammation and weaken the immune system.
Third, short-chain fatty acids (SCFAs), microbially derived metabolites of dietary fibers,
stimulate mucus and anti-microbial peptide productions, increase expression of tight
junction proteins, and modulate innate and adaptive immunity. Fourth, dietary fibers
can benefit the overall inflammatory status indirectly by blunting the glycemic load and
postprandial glucose-induced systemic inflammation observed in pathological states like
type 2 diabetes [47].

There is growing evidence illustrating the effect of SCFA on the immunity. Human
and animal studies show that butyrate inhibits proinflammatory cytokines IFN-γ, TNF-α,
IL-1β, IL-6, IL-8, and IL-12 and up-regulates IL-10 and TGF-β partly through the inhibition
of NF-κB signaling pathway [7,48]. Additionally, SCFAs promote the differentiation of
naive T cells into Th1 (playing a crucial role in antiviral and cellular immune responses) and
Th17 cells [45]. Moreover, SCFAs are capable of inhibiting the expression of toxic genes of
pathogens, such as Salmonella, E. coli, and Campylobacter jejuni [49]. Although these putative
actions of SCFAs are more relevant to the intestinal immunity, their effects are anticipated
to extend to other parts of the human body, such as the respiratory system. In line with this
notion, dietary fiber consumption is inversely linked to the risk of mortality from respira-
tory and infectious diseases [50]. It is possible that the fortified intestinal integrity by SCFA
can ward off the invasion of pathogens or their residues, such as lipopolysaccharides, and
absorbed microbial metabolites, which after entering the body, can affect systemic immune
responses [51]. Additionally, the linkage of the gut microbiota and respiratory infection
is substantiated by the positive results of human trials testing the effect of Lactobacillus
spp. and Bifidobacterium spp.-based probiotics on respiratory infections in humans and the
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efficacy of influenza vaccination [52–54]. As dietary fibers can increase the abundance of
normally recognized beneficial bacteria including Lactobaccillus spp., Bifidobacterium spp.,
Prevotella spp., Ruminococcus spp., Facealibacterium spp., in the human gut [55–57], their
favorable effects on the immune system and the risk of infectious diseases via the modi-
fication of the gut microbiota composition is expected [7,58]. Additionally, the favorable
changes in the gut microbiota may help fight viral infection by blocking cell internalization,
destabilizing virion structure, and suppressing viral replication [7].

Dietary fibers can be grouped into different categories, such as prebiotic vs. non-
prebiotic, soluble vs. non-soluble, fermentable vs. non-fermentable, and natural vs. syn-
thetic. With a wide diversity of chemical structures, the biological effects of each dietary
fiber are anticipated to be different. Beta-glucans are non-digestible polysaccharides nat-
urally present in foods, such as oats, barley, bacteria, yeast, algae, and mushrooms [59].
Among cereals, the barley and oats have the highest β-glucan content. The biological
activities of β-glucans are structure-dependent. The immune-modulating activities of
β-glucans are present in those with (1,3)-β-linked backbone containing small numbers
of (1,6)-β-linked side chains [60]. Even though oat β-glucans have either (1,3) or (1,4)-
β-linkage, they display a modest immune effect. A cell culture study showed that the
mRNA expression and production of TNF-α and IL-6 were significantly increased in THP-1
cells primed first with oat β-glucans before the challenge with LPS, suggesting oat β-
glucans could enhance the responsiveness of the innate immune system [61]. However,
in a human trial with trained male cyclists, supplementing oat β-glucans (5.6 g/d) for
18 days did not affect chronic resting or exercise-induced changes in immune function
(NK activity, polymorphonuclear respiratory burst activity, lymphocyte proliferation, IL-6,
IL-10, IL-1 receptor agonist, and IL-8) or URTI incidence during the 2-wk period after an
intensified exercise [62]. In contrast, the results of two mouse studies conducted by the
same research group showed that oat β-glucans decreased the susceptibility to respira-
tory infection following one bout of exercise stress [63,64]. Moreover, oral treatment of
oat β-glucan extract protected mice against infection of pathogens, Staphylococcus aureus
and E. vermiformis [65]. The effect of oat β-glucan on the gut microbiota is supported
by the observed increase in Bacteroides and decrease in Enterobacteriaceae families in an
in vitro human fecal fermentation experiment [66]. However, in a human study with
elderly subjects with low habitual fiber intake, neither oat β-glucans nor arabinoxylans
(12 g/day for 6 weeks) affected intestinal permeability and the gut microbiome, compared
to placebo [67]. Moreover, oat β-glucan did not affect inflammatory markers in patients
with hypercholesterolemia [68,69](Theuwissen et al., 2009; Queenan et al., 2007). Thus,
more human studies are needed to demonstrate whether oat β-glucans can modulate
immunity and inflammatory status via the gut microbiota.

Oats also contain insoluble fibers, particularly cellulous, lignin, and hemicellulose.
Dietary cellulous is not fermentable in the colon and its potential immune benefits may be
attributed to the resulting changes in the composition of the gut microbiota [70](Holscher
2017), which are involved in the local and systemic immunity and inflammation [46]. While
clinical evidence on the impact of these fibers on the immunity is lacking, scarce preclinical
data support their potential contributions. An endotoxemic mouse study showed that
a high cellulose diet (30% by weight) decreased the number and activation of splenic
macrophages and dendritic cells and amplified the suppressive function of T-regulatory
cells after lipopolysaccharide administration [71] (Di Caro et al., 2019). The diet also led to
an increased abundance of Lachnospiraceae and Akkermansia. The effect of oat insoluble fibers
in oats on inflammation has been reported in a few human studies. The OptiFiT trial with
180 adults with impaired glucose tolerance showed that supplementation 15 g/d purified
oat insoluble fibers containing 70 wt% cellulose, 25 wt% hemicellulose and 3–5 wt% lignin
for two years did not affect CRP and IL-18 as compared to placebo even though it improved
glycemic metabolism in people with impaired fasting glucose [72,73] (Honsek et al., 2018;
Kabisch et al., 2019). More human studies are needed to demonstrate the effect of oat
insoluble fibers on immunity and inflammation.
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Oats are a good source of dietary fiber as one serving (40 g) provides 3.97 g dietary
fiber. In developed countries, fiber intake is generally low, around 15–20 g/d [74], which
is inadequate for maximizing the benefits of dietary fibers on the immune system. For
example, a significant reduction in C-reactive protein (CRP), an acute phase protein and
a marker of systematic inflammation, is noted with an increase in total fiber intake to
30 g/d [75]. Increased whole-grain intake (even below 5 g/d) has been associated with
decreased CRP, IL-6, and TNF-α and increased SCFA [7]. Additionally, increased dietary
fiber intake is associated with reduced mortality rates in respiratory-related diseases and
improved lung function [46]. All these studies support the incorporation of fiber-rich oats
to a healthy diet for immune health.

6. Minerals

Oats are good sources of several minerals known to play important roles in the im-
mune system and these include the metal ions iron, zinc, and copper, which are recognized
as contributing to a normal function of the immune system by EFSA [76–78]. Zinc and
iron deficiencies are associated with deleterious health outcomes, such as increased sus-
ceptibility to infections and consequent morbidity and mortality [12,75,76]. Unfortunately,
the global prevalence of zinc deficiency has been estimated to be 30% [79] while iron
deficiency ranks number nine among 26 risk factors included in the Global Burden of
Disease 2000 project, and accounts for 841,000 deaths and 35,057,000 disability-adjusted
life years lost [80]. In contrast, copper deficiency is very rare and is often associated with
genetic disorders that interfere with copper absorption, or special circumstances such
as poor enteral nutrition [81]. While there are many interlinking factors contributing to
iron deficiency, one factor is the low bioavailability of iron and zinc from cereals, which
comprises 40–60% of total daily energy intakes in developed countries and up to 80% in
certain developing countries [82]. Despite being good sources of iron and zinc, cereals
have high phytic acid content (Table 3) that hinders their bioavailability. Studies using
cereal porridges made from rolled cereals estimated iron absorption between 0.33% for
oats and 1.8% for maize [83]. Removal of phytic acid resulted in a 3–12 times increase in
iron absorption; specifically, absorption of iron from oats increased over 8-fold [83]. For
the most part, commercially available oat products are not dephytinized, although some,
such as oat groats, have lower phytic acid content due to the removal of the hull [84].
Additionally, many cereal products are fortified with iron. Other strategies that consumers
may employ to decrease phytic acid content and thus increase iron and zinc availability
include soaking oats overnight prior to consumption [85]. Unlike iron and zinc, copper
absorption is not affected by phytic acid.

Table 3. Phytic acid content of several major cereals 1.

Major Cereals Phytic Acid g/100 g Dry Weight

Barley 0.38–1.16
Sorghum 0.57–3.35

Oat 0.42–1.16
Rye 0.54–1.46

Millet 0.18–1.67
1 The information is obtained from the cited study [86].

Selenium also support the immune system indirectly via its role in the antioxidant
defense system [12]. It is very well appreciated that an increase in free radical level resulting
from selenium deficiency increased the risk of viral and bacterial infections. This is partially
due to the increased mutation of viruses such as Coxsackie and influenza that can be more
virulent [87]. In a recent small observational study with 50 hospitalized patients with
COVID-19, selenium deficiency was found in 42% of patients, suggesting selenium status
may affect the onset and severity of COVID-19 [88]. Moreover, selenium deficiency is
associated with over-expression of influenza-induced proinflammatory cytokines [89,90].
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Unfortunately, concentrations of selenium from plasma, serum or whole blood of healthy
adults from 69 countries suggest nutritional selenium deficiency is prevalent in more than
half of the countries listed [91]. Cereals and cereal products, especially those grown in
selenium-rich soils, is a major contributor of dietary selenium globally [92]. All plants
accumulate selenium, and this includes cereal crops. The amount of selenium in different
types of cereals is directly related to selenium bioavailability in the soil and dependent on
plant genetics [93]. Selenium from cereals, including oats, is highly bioavailable [94,95].

7. Polyphenolics

Whole grains including oats are a rich source of phytochemicals that confer health
benefits. While there is scarce evidence of whole grain consumption on the immunity or in-
fection, the data of two human trials show that compared to refined grain products, whole
grain consumption increased the percentage of terminal effector memory T cells [96,97].
These results suggest nutrients and non-nutrient phytochemicals in whole grain augment
an adaptive immune response to a recall antigen. During the processing to produce refined
grains, most phytochemicals in whole grains are lost substantially but this does not happen
to oats because oats are typically consumed as a whole grain. Among thousands of phyto-
chemicals, polyphenolics, including phenolic acids, flavonoids, and others, have been well
appreciated for their antioxidant, anti-inflammatory, anti-allergic, and immunomodulating
activities [98]. These activities are partially mediated through their regulatory effects on
antioxidant defense system and innate and adaptive immunity via inhibition of NF-κB and
AP-1 and activation of Nrf2 [99,100]. Additionally, actions enabling a reduction in viral
infections include suppressing neuraminidase and hemagglutinin activity, decreasing viral
replication, hemagglutination, adhesion and penetration, and modifying cellular signaling
pathways and transcription factors [7,101]. These antiviral actions were illustrated in an
in vitro study showing that a number of flavonoids diminished infectivity and replication
of herpes simplex virus type 1 (HSV-I), polio-virus type 1, parainfluenza virus type 3
(Pf-3), and respiratory syncytial virus (RSV) [102]. Clinical evidence in this regard remains
scarce. A human trial conducted in healthcare professionals with an increased risk for
cold/flu via patient contacts showed that a fruit/vegetable extract supplement rich in
polyphenolics decreased by 20% of moderate or severe common cold symptom days [103].
This benefit is supported by a rodent experiment, in which a polyphenol extract from Cistus
Incanus lowered the influenza virus infection rate and reduced mortality of mice [104].
While polyphenolic compositions are variable between foods, it can be anticipated that
polyphenolics in oats may have a similar effect on the immune system, but more clinical
evidence is warranted [99].

Oats contain polyphenolics bioactives, particularly phenolic acids and avenanthramides.
These non-nutrient phytochemicals contribute to health benefits of oat consumption, in-
cluding immune health. The preponderant polyphenol in oats, ferulic acid, has been
shown to associate inversely with 35% lower risk with elevated CRP status (>3 mg/L) in
a cross-sectional study with 315 participants of the EPIC [105]. This result implicates a
potential effect of consumption of ferulic acid-containing foods on the immune system.
While clinical evidence of ferulic acid on the immune system remains scarce, promising
data have been observed in rodent studies. For example, ferulic acid improved survival
rate and mitigated weight loss in mice infected with influenza virus A/FM/1/47(H1N1)
by activating toll-like receptor (TLR)-7 and -9, increasing production of type I IFNs, and
inhibiting NF-κB pathway [106]. In another rodent study, ferulic acid pretreatment allevi-
ated pulmonary histological changes, function, and inflammation in rats with LPS-induced
acute respiratory distress syndrome [107]. Thus, these data are in keeping with a previous
review indicating that natural phenolic acids possess an inhibitory effect on infection
of HIV, hepatitis B and C virus, herpes simplex virus, influenza virus, and respiratory
syncytial virus [108]. While there is no human data demonstrating the effect of ferulic acid
on acute infection, its inflammatory modulating action was noted in human trial showing
that as compared to the control, ferulic acid supplementation (1 g/d for 6 weeks) signifi-
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cantly reduced inflammatory markers CRP and TNF-α in adults with hyperlipidemia [109].
Avenanthramides are polyphenolics unique to oats and display anti-inflammatory effects.
Using an acute eccentric exercise-induced inflammation model, avenanthramide supple-
mentation (20.6 mg/day for 8 weeks) reduced circulatory inflammatory cytokines and
inhibited expression of chemokines and cell adhesion molecules in 24 young adults [110].
Similarly, avenanthramides (9.2 mg/d for 8 weeks) blunted acute eccentric exercise-induced
neutrophil respiratory burst in 16 young women. Such an effect of avenanthramides on
neutrophil respiratory burst was also noted in 16 older women [111]. These results indicate
that avenanthramides are capable of mitigating exercise-related inflammation but their
effect on the immunity against infection remains to be examined.

Potential mechanisms explaining the link between ferulic acid and avenanthramides
and immune system include boosting antioxidant defense system, as well as modulating
inflammation via increasing histone deacetylase activity, regulating transcription factors,
and attenuating endoplasmic reticulum stress signaling [105]. Another mechanism is
mediated through IFNs, which contribute to inhibiting viral replication including SARS
coronavirus via the activation of TLR-7 [112]. Interestingly, ferulic acid was also reported
to up-regulate the activation of TLR-7 and stimulation of the type 1 IFN via the induction
of heme oxygenase-1 [113]. Additionally, TLR4 is involved in the alleviation of excessive
inflammatory symptoms induced by a viral infection, and its expression is abated by ferulic
acid [114].

In addition to direct interactions with the immune systems, polyphenolics can regulate
the immunity through indirect mechanisms. Polyphenolics are not well absorbed in the
small intestine and remain intact in the colon where they have dynamic interactions with
the gut microbiota [115]. Since the emerging evidence shows the link between immu-
nity and infection and the gut microbiota, it can be anticipated that polyphenolics with a
microbial modulating activity can affect immunity [46,116–118]. Uncontrolled excessive
oxidative stress during infection has been implicated in tissue injuries, such as lung tissue
injury and epithelial barrier dysfunction in acute respiratory viral infections. Given their
up-regulated effects on the antioxidant defense, polyphenolics are likely to help ameliorate
free radical induced complications [7,46]. Finally, the results included in a US patent appli-
cation shows that avenanthramide 2c is a promoter of iron bioavailability in humans [119],
suggesting this polyphenol can regulate the immunity via its influence on the iron status
(iron and immunity reviewed above). All these mechanisms implicate the potential of oat
polyphenolics for sustaining optimal immunity against infectious diseases.

8. Proteins and Glutamine

Proteins are crucial for the production of immune cells and effector molecules such
as antibodies and it has been estimated that up to 60 g protein is utilized daily during an
episode of infection [120]. Not surprisingly, people with a low protein status are more
susceptible to infection or have a lower antibody titer response after vaccination than those
with an adequate protein status [7,121]. As such, maintaining optimal protein homeostasis
is very important to sustain optimal immunity, and consuming an adequate amount of
high-quality protein during infection is critical to restrain symptomatic severity and com-
plications [120]. The protein sources affect immunity and infection to a different degree due
to content of amino acids, especially those with immunomodulating properties. Among the
amino acids, arginine, glutamine, and tryptophan are known for modulating the immune
system [99]. Of these, glutamine is recognized as important for the “maintenance of the
normal function of the immune system” by the European Food Safety Authority [122]. Glu-
tamine regulates the proliferation of lymphocytes, neutrophils, and macrophages through
(JNK) signal-regulated kinases and activator protein (AP)-1 signal transduction pathways
and controls the production of various cytokines, such as IL-6, IFN-γ, and TNF-α [7,123].
Additionally, activated B and T cells have an increased demand for glutamine for the
production of IFN-γ and IL-2 and T cell proliferation [99,124]. Recent data showed that glu-
tamine supplementation and metabolism is a vital part of the immune function and greatly
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reduces the risk of infectious complications in critically ill or surgical patients [125,126].
Oats, including all oat products listed in Table 1, contain proteins at 12–13% dry weight,
equivalents to at least 5.0 g protein per 40-g serving and provision of 8.9% of daily protein
requirement of 0.8 g/kg body weight for a 70-kg American male adult (Tables 1 and 2).
However, the protein quality score as assessed using Digestible Indispensable Amino Score
(DIAAS) in oats is 57 which is below the threshold (DIAAS < 75) of being able to make
protein claims [127]. Nevertheless, A. sativa oat groats are abundant in glutamine/glutamic
acid, 23.9% of total protein in oats, delivering 1.63 g glutamine per serving [128]. While
the amounts of glutamine administered in clinical studies for immunity and diminishing
infectious complications are much larger than the amount in one serving of oats, the incor-
poration of oats to a healthy diet pattern is anticipated to help maintain the pool of this
amino acid for immunity support, as well as to support protein status for production of
immune cells and antibodies.

9. Conclusions

The human immune system is comprised of both the innate and adaptive defenses
that work in an integrated, cooperative manner. Nutrient inadequacies/deficiencies can
undermine the immune system, thereby increasing the risk of infectious diseases, as well as
non-communicable diseases such as diabetes, and aggravating consequent symptom sever-
ity and complications if infected. Thus, maintaining optimal nutrient status is paramount
for humans defending against infectious diseases, including cold/flu and COVID-19. Mi-
cronutrients, including vitamins A, C, D, B6, B9, and B12, copper, iron, selenium, and zinc,
as well as dietary fibers and non-nutrient phytochemicals, such as polyphenolics, collec-
tively function to support the development and maintenance of the immune system and are
being considered an immunostimulant. Oats contain several of these immunomodulating
nutrient summarized in Table 4. In this narrative review, we discussed the contribution
of copper, iron, selenium, and zinc, four elements that oats are either a good or excellent
source, to the immune system against infectious diseases. Additionally, the abundance of
protein, as well as glutamine, an amino acid known for reducing infectious complications,
support the consumption of oats for maintaining the pool of glutamine for immunity sup-
port. Oats are a renowned source of dietary fibers and β-glucans. While these molecules
may directly modulate the immune system, they can also improve/maintain immunity
through indirect mechanisms, such as modifying the gut microbiota composition and
functions and increasing the production of SCFAs. Finally, polyphenolics, including ferulic
acid and avenanthramides in oats, can help optimize the immune system by regulating
inflammatory response, boosting the antioxidant defense system, and modulating the
gut microbiota. Therefore, oats are a good source of numerous nutrients, including fiber
(β-glucans), copper, iron, selenium, zinc, glutamine, and polyphenolic bioactives (ferulic
acid and avenanthramides) that can help optimize the immune system and response to
infections, including cold/flu viruses and other pathogens. These nutrients support the
immunity directly by modulating the innate and adaptive immune system and indirectly
by eliciting changes in the gut microbiota and related metabolites.
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Table 4. Mechanism of actions by which oat constituents modulate the immune system against infection.

Constituents Actions

Fiber

• Spare mucin (physical barrier against infection) from being utilized
by the gut microbes

• Create an ecosystem unfavorable for survival of pathogens in
the gut

• Substrate for production of SCFAs which promote gut integrity,
exert anti-inflammatory action, regulate differentiation of naive T
cells into Th1 and Th17 cells

• B-glucans enhance the responsiveness of the innate immune system

Copper, iron, selenium, zinc
• Cofactors of antioxidant enzymes
• Protect immune cells from free radical attacks
• Regulate proliferation of immune cells

Polyphenols (e.g., ferulic acid, avenanthramides)

• Regulate antioxidant defense system and innate and adaptive
immunity via inhibition of NF-κB and AP-1 and activation of Nrf2

• Display anti-inflammatory via increasing histone deacetylase
activity, regulating transcription factors, and attenuating
endoplasmic reticulum stress signaling

• Exert antiviral action suppressing neuraminidase and
hemagglutinin activity, decreasing viral replication,
hemagglutination, adhesion and penetration

• Increase IFNs, which contribute to inhibiting viral replication
including SARS coronavirus via the activation of TLR-7

• Promotes iron bioavailability in humans

Proteins
• Substrate for proliferation and immune cells and molecules
• Regulates the proliferation of lymphocytes, neutrophils,

and macrophages

Glutamine

• Regulates proliferation of lymphocytes, neutrophils,
and macrophages

• Required for the production of various cytokines, such as IL-6,
IFN-γ, and TNF-α

Abbreviations: Th, T helper cells; SCFAs, short-chain fatty acids; TLR, toll-like receptor; SARS, severe acute respiratory syndrome; IFN,
interferon; TNF, tumor necrosis factor; IL, interleukin.
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