Critical role of PIP5KI γ 87 in InsP₃-mediated Ca²⁺ signaling

Ying Jie Wang,¹ Wen Hong Li,² Jing Wang,¹ Ke Xu,² Ping Dong,¹ Xiang Luo,¹ and Helen L. Yin¹

¹Department of Physiology and ²Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390

Phosphatidylinositol 4,5-bisphosphate (PIP₂) is the obligatory precursor of inositol 1,4,5-trisphosphate (InsP₃ or IP₃) and is therefore critical to intracellular Ca²⁺ signaling. Using RNA interference (RNAi), we identified the short splice variant of type I phosphatidylinositol 4-phosphate 5-kinase γ (PIP5KI γ 87) as the major contributor of the PIP₂ pool that supports G protein-coupled receptor (GPCR)-mediated IP₃ generation. PIP5KI γ 87 RNAi decreases the histamine-induced IP₃ response and

Ca²⁺ flux by 70%. Strikingly, RNAi of other PIP5KI isoforms has minimal effect, even though some of these isoforms account for a larger percent of total PIP₂ mass and have previously been implicated in receptor mediated endocytosis or focal adhesion formation. Therefore, PIP5KI₇87's PIP₂ pool that supports GPCR-mediated Ca²⁺ signaling is functionally compartmentalized from those generated by the other PIP5KIs.

Introduction

Phosphatidylinositol 4,5-bisphosphate (PIP₂) regulates multiple plasma membrane (PM) functions (Doughman et al., 2003; Yin and Janmey, 2003), and it is also a substrate for PLC-mediated inositol 1,4,5-trisphosphate (InsP₃ or IP₃) generation. In spite of PIP₂'s obligatory role as an IP₃ precursor, and the importance of IP₃ mediated Ca²⁺ signaling, surprisingly little is known about the identity of the phosphoinositide kinases involved. Unlike yeast, which has a single type I phosphatidylinositol 4-phosphate 5-kinase (PIP5KI) that synthesizes PIP₂ (Audhya and Emr, 2003), mammals have three major PIP5KI isoforms named α , β and γ (Doughman et al., 2003).

PIP5KI γ has two splice variants (PIP5KI γ 87 and 90) that are distinguished by a 28–amino acid extension at the COOH terminus of PIP5KI γ 90 (Di Paolo et al., 2002; Ling et al., 2002; Fig. 1 A). PIP5KI γ 90 is particularly enriched in neurons (Wenk et al., 2001); it is the major PIP₂ synthesizing enzyme at the synapse, where it has been implicated in the regulation of clathrin coat recruitment, actin dynamics (Wenk et al., 2001) and focal adhesion formation (Di Paolo et al., 2002; Ling et al., 2002). In contrast, PIP5KI γ 87 is not involved in focal adhesion formation or clathrin-mediated endocytosis (in HeLa cells; Padron et al., 2003).

The online version of this article contains supplemental material.

Correspondence to Helen L. Yin: Helen.Yin@UTSouthwestern.edu

© The Rockefeller University Press \$8.00 The Journal of Cell Biology, Vol. 167, No. 6, December 20, 2004 1005–1010 http://www.jcb.org/cgi/doi/10.1083/jcb.200408008 Here, we examined the role of PIP5KI γ 87 in intracellular Ca²⁺ signaling. Previous biochemical studies have shown that cells have agonist-sensitive and -insensitive PIP₂ pools (Koreh and Monaco, 1986). Inhibitor studies suggest that the agonist-sensitive pool can be further classified as constitutive or de novo generated in response to agonists (Nakanishi et al., 1995). Some of these pools are enriched in cholesterol–sphingolipid raft domains (Pike and Casey, 1996) and the stringent spatial and temporal regulation of Ca²⁺ may be specified by assembling key players into supramolecular signaling complexes (Delmas et al., 2004). We now report that PIP5KI γ 87 is the major source of the agonist-sensitive PM PIP₂ pool that fuels the initial Ca²⁺ response to external stimuli.

Results and discussion

Knockdown of PIP5KIγ87 by RNA interference

We use small interfering RNA (siRNA) mediated RNA interference (RNAi) to knockdown each PIP5KI individually (Padron et al., 2003). Anti-PIP5KIγpan antibody recognizes a sharp 87-kD band and a slower migrating diffuse band (Fig. 1 B) which is probably hyperphosphorylated PIP5KIγ87 (Park et al., 2001; Wenk et al., 2001). Anti-PIP5KIγpan stains the PM, the perinuclear region and the nucleus (Fig. 1 D). Low level HA-PIP5KIγ87 overexpression confirms that PIP5KIγ is enriched in the PM and punctate internal structures, but rules out nuclear localization.

Biochemical fractionation shows that 60% of PIP5KI $\gamma 87$ is sedimented by high speed centrifugation (Fig. 1 E), and

Abbreviations used in this paper: $[Ca^{2+}]_i$, intracellular Ca^{2+} concentration; GPCR, G protein-coupled receptor; IP₃, inositol 1,4,5-trisphosphate; PIP5KI γ , type I phosphatidylinositol 4-phosphate 5-kinase γ ; PIP₂, phosphatidylinositol 4,5-bisphosphate; PM, plasma membrane; RNAi, RNA interference; siRNA, small interfering RNA.

Figure 1. PIP5KIy RNAi. (A) PIP5KIy siRNA design. Pan siRNA is directed against both isoforms. (B) PIP5KI γ protein knockdown. Effect of PIP5K γ RNAi on protein expression of the targeted and nontargeted PIP5KIs. Western blots were probed with isoform specific antibodies. Additional data are provided in Table S1, available at http://www.jcb.org/cgi/ content/full/jcb.200408008/DC1. (C) Quantitative real-time PCR. PCR primers were used to quantitate PIP5Klypan and PIP5Kly90 mRNA and PIP5KIy87 mRNA was calculated from the difference. Numbers indicate the amounts of each isoform relative to PIP5KIy90 in control cells. Data are the average of duplicate RNAi samples from a single experiment. Similar results were obtained from another experiment. (D) PIP5KIy is enriched in the PM. Endogenous PIP5KIv was detected with anti-PIP5KIvpan antibody. and overexpressed HA-PIP5KIy87 (in cDNA-transfected cells) were stained with anti-HA. Arrows indicate PM. Bars, 50 µm. (E) Differential PIP5KI membrane association. Fractions obtained after sequential sedimentation were loaded equivalently, except for the cytosol fraction (CYT), which was loaded 10 times less. Western blot band intensity was determined by quantitative densitometry, and expressed as a percent of total recovered, after correcting for differences in fraction of sample loaded.

approximately two thirds of this is associated with the PM enriched fraction. PIP5KI α is much more membrane bound, whereas PIP5KI β is least membrane associated. Therefore, these PIP5KIs have different patterns of membrane association. Nevertheless, each can potentially generate PIP₂ at the PM and internal membranes.

Because it is not possible to knockdown PIP5KIy87 exclusively, we compared the effects of siRNA directed against

Figure 2. **PIP5KI** γ **pan siRNA blocks histamine-stimulated IP** $_3$ generation. Cells were stimulated with 100 μ M histamine. (A) Effect of PIP5KI γ pan siRNA on IP $_3$ generation. Data shown are representative of five independent experiments. (B) Effect of PIP5KI RNAi on the initial IP $_3$ peak response. Values are mean \pm SEM of multiple independent experiments (n).

both PIP5KIγ isoforms (PIP5KIγpan) to that of PIP5KIγ90 alone. PIP5KIγpan siRNA decreases all PIP5KIγ bands in Western blots (Fig. 1 B) and reduces PM and cytoplasmic anti-PIP5KIγ immunofluorescence, but not the nonspecific nuclear staining (Fig. 1 D). PIP5KIγ90 siRNA has little effect on either PIP5KIγ bands (Fig. 1 B), even though quantitative real-time PCR established that PIP5KIγ90 mRNA is decreased by 70% (Fig. 1 C). We conclude that HeLa cells have very little PIP5KIγ90.

Unexpectedly, PIP5KI γ pan siRNA preferentially knocks down PIP5K γ 87 mRNA relative to PIP5KI γ 90. Because PIP5K γ 87 is more abundant than PIP5K γ 90 in HeLa cells and PIP5K γ pan siRNA generates a distinct phenotype (compared with that of PIP5K γ 90 siRNA), the PIP5KI γ pan siRNA effects described here can be attributed primarily to PIP5KI γ 87 knockdown. Importantly, PIP5KI γ pan siRNA has almost no effect on PIP5KI α and β protein expression (Fig. 1 B), establishing that the PIP5KI γ 87 knockdown phenotype is not complicated by compensatory changes in the other PIP5KIs. This was originally a concern, because we have previously found that knockdown of one PIP5KI induces changes in the mRNA level of some other PIP5KIs (Padron et al., 2003).

PIP5KI γ **87** is the major supplier of the **PIP**₂ pool that supports **GPCR**-mediated **Ca**²⁺ signaling

Histamine binding to the H1 type G protein–coupled receptor (GPCR) in HeLa cells (Tilly et al., 1990) initiates a PLC β activation cascade that culminates in the hydrolysis of PIP₂ to generate IP₃ and diacylglycerol. When control cells were stimulated with a supramaximal histamine dose (100 μ M), they generate a transient robust IP₃ response (Fig. 2 A). PIP5KI γ 87 RNAi decreases the initial IP₃ peak by 69% [to 10 ± 3 pmol IP₃/mg protein (n = 5)] (Fig. 2, A and B). Neither PIP5KI γ 90 nor PIP5KI β RNAi has any apparent effect, and PIP5KI α RNAi only decreases the initial IP₃ peak slightly [by 11%; to 28 ± 2 pmol/mg protein (n = 3)] (Fig. 2 B). Although we cannot rule out a small contribution by PIP5KI β or α because each is less completely knocked down than PIP5KI γ , we can conclude that PIP5KI γ 87 is the dominant regulator.

Consistent with a decrease in IP_3 production, PIP5KIypan RNAi also attenuates histamine-induced Ca^{2+} signaling. In control cells, 100 μ M histamine induces a rapid and transient rise in intracellular Ca²⁺ concentration ([Ca²⁺]_i) in 95% of the cells examined (Fig. 3 A). PIP5KI γ 87 RNAi reduces the percent of responding cells slightly (by 13%), decreases the amplitude of the first Ca²⁺ peak more [by 36%; from 1.14 \pm 0.07 (n = 19) to 0.73 \pm 0.08 (n = 10) fluorescence ratio unit], and has the most impact on Ca²⁺ flux [76% decrease; from 0.33 \pm 0.03 (n = 19) to 0.08 \pm 0.01 (n = 10) unit/s] (Fig. 3 A). Because Ca²⁺ flux correlates with the open probability of the IP₃Rs and hence the rate of IP₃ generation (Johenning et al., 2004), our results establish that PIP5KI γ 87 RNAi depletes the PIP₂ pool used for IP₃ generation. A similarly large decrease in Ca²⁺ flux was also observed when PIP₂ was depleted by overexpressing the PIP₂ phosphatase synaptojanin (Johenning et al., 2004).

The weakened Ca²⁺ response by PIP5KI γ 87 RNAi cells is not due to depletion of Ca²⁺ stores, because thapsigargin releases similar amounts of Ca²⁺ into the cytosol of control and siRNA cells (unpublished data). The [Ca²⁺]_i response to UTP, which binds a different GPCR than histamine (P2Y and H1, respectively), is blunted as well (unpublished data). [Ca²⁺]_i increase in the presence of 1.3 mM of extracellular Ca²⁺ (Table S2, available at http://www.jcb.org/cgi/content/full/jcb.200408008/DC1) is also attenuated, confirming that the lack of PIP₂ impacts the entire Ca²⁺ signaling cascade that starts with Ca²⁺ release from internal stores and ends with capacitative Ca²⁺ stores).

As expected, in control cells, 1 μ M histamine induces a slower Ca²⁺ flux than 100 μ M histamine [0.24 ± 0.01 (n = 63) vs. 0.33 ± 0.03 (n = 19) fluorescence ratio unit/s]. Paradoxically, PIP5KI γ 87 RNAi cells have the same low Ca²⁺ flux [0.08 ± 0.01 (n = 46) vs. 0.08 ± 0.01 (n = 10) fluorescence ratio unit/s] at both histamine doses. We cannot explain why this is the case. Perhaps because PIP₂ is already limiting at submaximal stimulation, increasing the intensity of the stimulus does not significantly increase the amount of IP₃ generated due to lack of substrate.

Unlike PIP5KI γ 87 RNAi, PIP5KI γ 90, α or β RNAi has much less effects (Fig. 3 A), paralleling the trend observed with IP₃ production (Fig. 2 B). Thus, the PIP5KI γ pan siRNA phenotype can be most simply explained by a decrease in the amount of PLC β accessible PM PIP₂ and that this pool is generated primarily by PIP5KI γ 87.

If PIP5KI γ 87 RNAi suppresses Ca²⁺ signaling by depleting PM PIP₂, restoring membrane PIP₂ should rescue the Ca²⁺ response. We used a membrane permeant polyamine shuttle carrier to deliver exogenous PIP₂ into intact cells (Ozaki et al., 2000; Wang et al., 2003). Control HeLa cells respond to sequential histamine challenges identically, and Shuttle PIP₂ does not change the Ca²⁺ response significantly (Fig. 3 B). PIP5KI γ 87 RNAi cells, which are already less responsive to the first stimulus than control cells, have an even more blunted response to the second stimulus in the absence of Shuttle PIP₂ (Fig. 3 B, left). This is consistent with depletion of the already small PIP₂ pool by the first stimulus, and inadequate refilling before the second stimulus. Significantly, Shuttle PIP₂ restores the Ca²⁺ response of PIP5KI γ 87 RNAi cells to ~74% of that

Figure 3. **PIP5KI**γ**pan siRNA attenuates intracellular Ca**²⁺ **signaling.** Cells loaded with fura2-AM in randomly chosen microscopic fields were ratio imaged (F_{340}/F_{380}) to obtain baseline Ca²⁺ values. Histamine was added in the absence of extracellular Ca²⁺, and the ratio image was recorded as a function of time. (A) Ca²⁺ response to 100 μ M histamine (indicated by the arrow). Representative tracings for each type of RNAi are shown. Values in bar graphs are expressed as percent (mean \pm SEM) of control. (B) In vivo rescue of intracellular Ca²⁺ signaling in PIP5KIγpan siRNA-treated cells by Shuttle PIP₂. Top panels are representative tracings. (Bottom) The Ca²⁺ flux of the transients elicited by the second histamine addition was plotted and 10 cells were analyzed per condition.

observed in Ctrl RNAi cells (Fig. 3 B). Therefore, the Ca^{2+} signaling defect is due to PIP₂ depletion by PIP5KI γ RNAi.

Together, our results demonstrate that PIP5KI γ 87 has a critical role in GPCR-mediated IP₃ signaling in HeLa cells. Interestingly, overexpressed mouse PIP5KI β (equivalent to human PIP5KI α described in this paper) stimulates tyrosine kinase receptor activated-IP₃ generation in B lymphocytes (Saito et al., 2003). Together, these results raise the intriguing possibility that the GPCR- and tyrosine kinase receptor-coupled PIP₂ pools may be governed by different PIP5KIs. We plan to determine if this is the case in future studies.

Effects of PIP5KI γ 87 RNAi on PIP₂ content and distribution

To understand how PIP5KI γ 87 uniquely contributes to GPCR mediated IP₃ signaling, we estimated the size and location of its

Figure 4. Effect of PIP5KI RNAi on PIP₂. (A) PIP₂ mass (HPLC) and ³²P-incorporation (TLC). Means \pm SEM of independent experiments are shown. (B) PIP₂ distribution as detected with anti-PIP₂ and overexpressed GFP-PLC&-PH. Cross-sectional plots of fluorescence intensity are shown next to the image. Bars, 50 µm. (C) Analysis of PIP₂ quantitation. (Left) The average intensities of anti-PIP₂ at the PM and inside the cell are expressed in arbitrary units (mean \pm SEM). 10 cells were analyzed per RNAi condition. (Right) PM/cytoplasmic intensity ratios of anti-PIP₂ and GFP-PLC&-PH were shown. 10 cells were analyzed per RNAi condition.

PIP₂ pool relative to those of other PIP5KIs. PIP5KIγpan siRNA reduces PIP₂ mass, determined by HPLC (Nasuhoglu et al., 2002), by 14% [from 377 ± 90 (n = 3) to 325 ± 95 (n = 3) pmol/mg protein] and ³²P-incorporation into PIP₂, determined by TLC, to a similar extent (Fig. 4 A). PIP5KIγ90 siRNA has no statistically significant effect. PIP5KIβ RNAi decreases PIP₂ mass by 34% (Fig. 4 A), which is consistent with the large decrease in [³²P]PIP₂ reported previously (Padron et al., 2003). Paradoxically, although PIP5KIα RNAi does not decrease [³²P]PIP₂ (Padron et al., 2003), it decreases PIP₂ mass by 33%. The difference between the TLC and HPLC estimates may be because they measure different parameters. ³²P-labeling/TLC detects PIP₂ that turns over during the labeling period, whereas the HPLC method does not involve radiolabeling (Nasuhoglu et al., 2002) and measures PIP₂ mass. It is possible that the 4-h labeling interval we used was not long enough to completely equilibrate a particularly stable PIP₂ pool, and therefore underestimates its size.

PIP5KI γ 87 RNAi decreases PM PIP₂ significantly. PIP₂ was detected by single cell fluorescence imaging using overexpressed GFP-PLC δ -PH (Varnai and Balla, 1998; Watt et al., 2002) and anti-PIP₂ (Laux et al., 2000; Matsuda et al., 2001; Fig. 4 B). Although it is generally accepted that the PM is particularly enriched in PIP₂ and that GFP-PLC δ -PH labels the PM intensely, internal GFP-PLC δ -PH labeling has also been reported in at least some types of cells (Matsuda et al., 2001). However, because GFP-PLC δ -PH was overexpressed and also binds IP₃ (Hirose et al., 1999), it is difficult to determine if the internal GFP-PLC δ -PH is bound to PIP₂/IP₃ or represents unliganded PH. This issue is clarified somewhat by a quantitative immuno-electron microscopic study which shows that the PM accounts for 40% of total GST-PLC δ -PH labeling, and internal organelles account for the remainder (Watt et al., 2002).

Our anti-PIP₂ staining results clearly shows that PIP₂ is present in internal membranes as well as PM in HeLa cells. Using image quantitation (Fig. 4, B and C), we estimate that anti-PIP₂ fluorescence in the vicinity of the PM accounts for $12.3 \pm$ 1.2% (n = 10) of total, and its intensity is 1.54 ± 0.13 times (n = 10) higher than in internal sites (PM/cytosol ratio; Fig. 4 C). Although these cross-sectional analyses underestimate the size of the PM pool (compared with morphometric analysis by electron microscopy, as described by Watt et al., 2002), it can be used to compare the effects of different PIP5KI RNAi.

PIP5KIypan RNAi decreases the PM anti-PIP₂ intensity from 226 \pm 7 to 134 \pm 8 arbitrary units (59% of control) and internal PIP₂ from 157 \pm 12 to 130 \pm 12 arbitrary units (84%) of control; Fig. 4 C). Therefore, PM PIP₂ is preferentially depleted. PIP5KIB RNAi decreases anti-PIP2 intensity at the PM to the same extent (to 58% of control; Fig. 4 B) but has a greater effect on internal PIP₂ (71% of control). In contrast, PIP5KIα RNAi has no detectable effect on PM PIP₂ (98% remains after RNAi), but decreases internal staining (76% remaining; Fig. 4, B and C). The differential responses of PM versus internal PIP₂ is evident when the average intensity of PM PIP₂ is expressed as a ratio to that in the cytosol (Fig. 4 C, right). Qualitatively similar, but not identical, changes are also observed with GFP-PLCô-PH (Fig. 4 C). Thus, these two independent methods both show that PIP5KIy87 and PIP5KIB RNAi decrease PM PIP₂, even though only the former suppresses GPCR-mediated IP₃/Ca²⁺ signaling.

In conclusion, PIP5KI γ 87 is the major source of the GPCR mobilized PIP₂ pool. This specialized PIP₂ accounts for a small fraction of total PIP₂, a significant fraction of PM PIP₂ and most of the histamine induced IP₃ response. The exquisitely selective effect of PIP5KI γ 87 RNAi on Ca²⁺ signaling suggests that the cell's PIP₂ is functionally compartmentalized in a PIP5KI-dependent manner. This study provides a mechanistic understanding of how PIP₂ can regulate multiple PM functions independently. Additional studies will determine if PIP5KI γ 87 is part of the supramolecular PLC β signaling scaffold that specifies rapid local Ca²⁺ generation and propagation (Delmas et al., 2004), and whether the functionally compartmentalized PIP₂ is physically segregated in the PM.

Materials and methods

Antibodies

Anti-PIP5KI α was purchased from Santa Cruz Biotechnology, Inc. Anti-PIP5KI β and PIP5KI γ pan were gifts from C. Carpenter (Harvard Medical School, Boston, MA) and P. De Camilli (Yale University, New Haven, CT; Wenk et al., 2001), respectively. Monoclonal anti-PIP₂ (Fukami et al., 1988) was a gift from K. Fukami (University of Tokyo, Tokyo, Japan).

RNAi

We used the human PIP5KI isoforms designation, which is different from the mouse designation. siRNA oligonucleotides were performed as described previously (Padron et al., 2003). HeLa cells were transfected with the siRNA and used 48–72 h later.

Quantitative real-time PCR

RNA extracted from HeLa cells transfected with siRNA were reverse transcribed and used for PCR in a sequence detection system (Prism 7000; Applied Biosystems). Primers directed at nucleotides 414–478 (pan) and 1993–2048 (unique to PIP5KI_Y90) were used (Padron et al., 2003).

PIP₂ measurements

 $\rm PIP_2$ mass was determined by a nonradioactive HPLC detection system (Nasuhoglu et al., 2002). ^{32}P -incorporation into $\rm PIP_2$ was determined by labeling cells for 4 h with ^{32}P -PO₄ (NEN Life Science Products), resolving lipids by TLC, and quantitation by phosphorimager analysis (Wang et al., 2003). PM PIP_2 was determined by image analysis of cells overexpressing low amounts of GFP-PLC&-PH (Varnai and Balla, 1998), or labeling with anti-PIP_2 (Laux et al., 2000; Matsuda et al., 2001). Fluorescence images were captured by confocal microscopy (model LSM5; Carl Zeiss MicroImaging, Inc.) and intensity plots were analyzed by MetaMorph Offline software (Varnai and Balla, 1998). The average fluorescence intensity of the two cell edges and between the cell edges were defined as PM and cytoplasmic PIP_2, respectively, and are expressed in arbitrary units.

Immunofluorescence microscopy

For most purposes, 0.4% formaldehyde fixed cells were permeabilized with Triton X-100 and processed for confocal microscopy as described previously (Wang et al., 2003). Anti-PIP₂ staining was detected by permeabilizing fixed cells with 10 μ g/ml digitonin, which preserves the lipid signal better than Triton X-100.

Multistep membrane fractionation

Cells were homogenized by 25 strokes in a prechilled steel homogenizer and homogenates were centrifuged sequentially to obtain the crude organelle/membrane fractions as described previously (Wei et al., 2002). LSP is enriched for Golgi membranes and early endosomes, and HSP is enriched for lysosomes and late endosomes. The PM fraction was obtained by placing the 19,000 g pellet on top of a sucrose cushion, and collecting the membranes at the top after centrifugation at 100,000 g.

IP₃ measurement

Cell monolayers incubated in Ca²⁺-free Hank's buffer supplemented with 0.1% BSA were stimulated with 100 μ M histamine (Sigma-Aldrich) for 0–25 s at RT and the reaction was stopped with PCA. IP₃ content was assayed by competition with exogenous [³H]IP₃ to bind calf cerebellar microsomes (Sun et al., 1995).

Single cell Ca²⁺ imaging

Cells plated on glass-bottom culture dishes (Mat Tek) were loaded with fura2/AM, washed and incubated for 30 min at RT to allow de-esterification of the loaded dye. The dish was mounted on the stage of an inverted fluorescence microscope (Axiovert 200; Carl Zeiss MicroImaging, Inc.) with a 40× objective. Cells were excited at 340 and 380 nm and the change in fluorescence ratio values (F_{340}/F_{380}) as a function of time in individual cells within a field was recorded simultaneously. The percent of responding cells was obtained by dividing those with a Ca²⁺ signal to total cells recorded. The ratio of maximal F_{340}/F_{380} induced by histamine to basal F_{340}/F_{380} is defined as the Ca²⁺ peak. Ca²⁺ flux is defined as the slope of a line between the initiation of a persistent increase in F_{340}/F_{380} and the maximal F_{340}/F_{380} .

Intracellular delivery of PIP₂ by Shuttle PIP₂

siRNA-treated cells were stimulated with 1 μ M histamine in the absence of extracellular Ca²⁺ and ratio imaged. Histamine was washed out and cells were loaded with a mixture of 1 μ M diC16-PIP₂ and 1 μ M of carrier 2 (Shuttle PIP₂; Echelon Biosciences, Inc.) diluted in the Hank's buffer (PIP₂) or buffer only (Mock; Wang et al., 2003) for 10–15 min on the microscope stage. Cells were then reexposed to 1 μ M histamine and imaged again.

Online supplemental material

Table S1 illustrates the effect of PIP5KI RNAi on PIP5KI protein expression. HeLa cells transfected with siRNA for each PIP5KI was lysed and subjected to Western blotting with isoform specific antibodies. Table S2 illustrates the effect of PIP5KI RNAi on histamine induced Ca²⁺ transients. HeLa cells transfected with siRNA were stimulated with histamine, and Ca²⁺ transients were recorded on single cells loaded with fura2. Online supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.200408008/DC1.

We thank D.W. Hilgemann, S. Muallem, and I. Bezprozvanny for stimulating discussions, and K.M. Lin for help with initial Ca^{2+} measurements.

This work is supported by National Institutes of Health GM21681 and the Robert A. Welch Foundation to H.L. Yin, the Leukemia and Lymphoma Society Career Development Fellowship to YJ. Wang and the Welch Foundation and the American Diabetes Association Career Development Award to W.H. Li.

Submitted: 2 August 2004 Accepted: 5 November 2004

References

- Audhya, A., and S.D. Emr. 2003. Regulation of PI4,5P₂ synthesis by nuclearcytoplasmic shuttling of the Mss4 lipid kinase. *EMBO J.* 22:4223–4236.
- Delmas, P., M. Crest, and D.A. Brown. 2004. Functional organization of PLC signaling microdomains in neurons. *Trends Neurosci.* 27:41–47.
- Di Paolo, G., L. Pellegrini, K. Letinic, G. Cestra, R. Zoncu, S. Voronov, S. Chang, J. Guo, M.R. Wenk, and P. De Camilli. 2002. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 γ by the FERM domain of talin. *Nature*. 420:85–89.
- Doughman, R.L., A.J. Firestone, and R.A. Anderson. 2003. Phosphatidylinositol phosphate kinases put PI4,5P₂ in its place. J. Membr. Biol. 194:77– 89.
- Fukami, K., K. Matsuoka, O. Nakanishi, A. Yamakawa, S. Kawai, and T. Takenawa. 1988. Antibody to phosphatidylinositol 4,5-bisphosphate inhibits oncogene-induced mitogenesis. *Proc. Natl. Acad. Sci. USA*. 85:9057– 9061.
- Hirose, K., S. Kadowaki, M. Tanabe, H. Takeshima, and M. Iino. 1999. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca²⁺ mobilization patterns. *Science*. 284:1527–1530.
- Johenning, F.W., M.R. Wenk, P. Uhlen, B. DeGray, E. Lee, P. De Camilli, and B.E. Ehrlich. 2004. InsP₃-mediated intracellular calcium signaling is altered by expression of synaptojanin-1. *Biochem. J.* 382:687–694.
- Koreh, K., and M.E. Monaco. 1986. The relationship of hormone-sensitive and hormone-insensitive phosphatidylinositol to phosphatidylinositol 4, 5-bisphosphate in the WRK-1 cell. J. Biol. Chem. 261:88–91.
- Laux, T., K. Fukami, M. Thelen, T. Golub, D. Frey, and P. Caroni. 2000. GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J. Cell Biol. 149:1455–1472.
- Ling, K., R.L. Doughman, A.J. Firestone, M.W. Bunce, and R.A. Anderson. 2002. Type I γ phosphatidylinositol phosphate kinase targets and regulates focal adhesions. *Nature*. 420:89–93.
- Matsuda, M., H.F. Paterson, R. Rodriguez, A.C. Fensome, M.V. Ellis, K. Swann, and M. Katan. 2001. Real time fluorescence imaging of PLC γ translocation and its interaction with the epidermal growth factor receptor. *J. Cell Biol.* 153:599–612.
- Nakanishi, S., K.J. Catt, and T. Balla. 1995. A wortmannin-sensitive phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of inositol phospholipids. *Proc. Natl. Acad. Sci. USA*. 92:5317–5321.
- Nasuhoglu, C., S. Feng, J. Mao, M. Yamamoto, H.L. Yin, S. Earnest, B. Barylko, J.P. Albanesi, and D.W. Hilgemann. 2002. Nonradioactive analysis of phosphatidylinositides and other anionic phospholipids by anion-exchange high-performance liquid chromatography with suppressed conductivity detection. *Anal. Biochem.* 301:243–254.
- Ozaki, S., D.B. DeWald, J.C. Shope, J. Chen, and G.D. Prestwich. 2000. Intracellular delivery of phosphoinositides and inositol phosphates using polyamine carriers. *Proc. Natl. Acad. Sci. USA*. 97:11286–11291.
- Padron, D., Y.J. Wang, M. Yamamato, H.L. Yin, and M.G. Roth. 2003. Phosphatidylinositol phosphate 5-kinase Iβ recruits AP-2 to the plasma membrane and regulates rates of constitutive endocytosis. J. Cell Biol. 162: 693–701.
- Park, S.J., T. Itoh, and T. Takenawa. 2001. Phosphatidylinositol 4-phosphate 5-kinase type I is regulated through phosphorylation response by extracellular stimuli. J. Biol. Chem. 276:4781–4787.
- Pike, L.J., and L. Casey. 1996. Localization and turnover of phosphatidylinositol 4,5-bisphosphate in cavenolin-enriched membrane domains. J. Biol. Chem. 271:26453–26456.
- Saito, K., K.F. Tolias, A. Saci, H.B. Koon, L.A. Humphries, A. Scharenberg, D.J. Rawlings, J.P. Kinet, and C.L. Carpenter. 2003. BTK regulates Ptd-Ins-4,5-P2 synthesis: importance for calcium signaling and PI3K activity. *Immunity*. 19:669–678.

- Sun, H.Q., K. Kwiatkowska, D.C. Wooten, and H.L. Yin. 1995. Effects of CapG overexpression on agonist-induced motility and second messenger generation. J. Cell Biol. 129:147–156.
- Tilly, B.C., L.G. Tertoolen, A.C. Lambrechts, R. Remorie, S.W. De Laat, and W.H. Moolenaar. 1990. Histamine-H1-receptor-mediated phosphoinositide hydrolysis, Ca²⁺ signalling and membrane-potential oscillations in human HeLa carcinoma cells. *Biochem. J.* 266:235–243.
- Varnai, P., and T. Balla. 1998. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[³H]inositol–labeled phosphoinositide pools. J. Cell Biol. 143:501–510.
- Wang, Y.J., J. Wang, H.Q. Sun, M. Martinez, Y.X. Sun, E. Macia, T. Kirchhausen, J.P. Albanesi, M.G. Roth, and H.L. Yin. 2003. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. *Cell*. 114:299–310.
- Watt, S.A., G. Kular, I.N. Fleming, C.P. Downes, and J.M. Lucocq. 2002. Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C delta1. *Biochem. J.* 363:657–666.
- Wei, Y.J., H.Q. Sun, M. Yamamoto, P. Wlodarski, K. Kunii, M. Martinez, B. Barylko, J.P. Albanesi, and H.L. Yin. 2002. Type II phosphatidylinositol 4-kinase β is a cytosolic and peripheral membrane protein that is recruited to the plasma membrane and activated by Rac-GTP. J. Biol. Chem. 277:46586–46593.
- Wenk, M.R., L. Pellegrini, V.A. Klenchin, G. Di Paolo, S. Chang, L. Daniell, M. Arioka, T.F. Martin, and P. De Camilli. 2001. PIP kinase Iγ is the major PI(4,5)P(2) synthesizing enzyme at the synapse. *Neuron*. 32:79– 88.
- Yin, H.L., and P.A. Janmey. 2003. Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 65:761–789.