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A B S T R A C T   

Coffee is widely consumed across the globe. The most sought out varieties are Arabica and 
Robusta which differ significantly in their aroma and taste. Furthermore, varieties cultivated in 
different regions are perceived to have distinct characteristics encouraging some producers to 
adopt the denomination of origin label. These differences arise from variations on metabolite 
content related to edaphoclimatic conditions and post-harvest management among other factors. 
Although sensory analysis is still standard for coffee brews, instrumental analysis of the roasted 
and green beans to assess the quality of the final product has been encouraged. Metabolomic 
profiling has risen as a promising approach not only for quality purposes but also for geographic 
origin assignment. Many techniques can be applied for sample analysis: chromatography, mass 
spectrometry, and NMR have been explored. The data collected is further sorted by multivariate 
analysis to identify similar characteristics among the samples, reduce dimensionality and/or even 
propose a model for predictive purposes. 

This review focuses on the evolution of metabolomic profiling for the geographic origin 
assessment of roasted and green coffee beans in the last 21 years, the techniques that are usually 
applied for sample analysis and also the most common approaches for the multivariate analysis of 
the collected data. The prospect of applying a wide range of analytical techniques is becoming an 
unbiased approach to determine the origin of different roasted and green coffee beans samples 
with great correlation. Predictive models worked accurately for the geographic assignment of 
unknown samples once the variety was known.   

1. Introduction 

Consumption of coffee is widespread across the globe. According to the International Coffee Organization (2022) “world coffee 
exports amounted to 11.11 million bags in June 2022”. The complexity of coffee flavor arises from the combination of different factors 
that can be classified into three categories: environmental conditions, genetic resource and management [1]. Environmental condi-
tions are usually specific for this crop, topography and climate should be optimal to ensure quality of coffee [2]. It is well documented 
how the composition of coffee beans varies according to the altitude at which they were grown [3–5]. In general, coffee grown in 
higher altitudes has a higher market price. Temperature has a key role in seed development which finally affects the sensory profile of 
the roasted coffee by increasing the concentration of volatile compounds that are related to off-flavors [6]. Regarding the genetic 
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resource, as expected, coffee varieties differ in their metabolite composition and most notably Arabica brews are more acidic than 
Robusta due to their higher concentration of citric, malic, chlorogenic and quinic acids [7]. Management encompasses first agronomic 
management: irrigation, pest control, fertilization and harvesting strategies influence the quality of the bean regarding its size and 
ripeness that will ultimately affect its composition [1]. In fact, immature coffee cherries are characterized by having a lower amount of 
sucrose than those that were harvested at their optimal ripeness. Other undesirable compounds might also be present in larger amounts 
in the brewed product [8]. On the contrary, coffee cherries collected at their ideal point of maturity will exhibit greater amounts of 
sugars, decreasing the proportion of chlorogenic acid and increasing that of organic acids. A high concentration of fumaric, tartaric and 
oxalic acids is directly related to high-quality coffee since these acids have the property of enhancing the flavor and being responsible 
for providing a greater sensation of juiciness and granting a greater number of notes to the cup profile [9]. Management also relates to 
post-harvest handling. Arguably the most important factor is roasting where the volatiles that are produced are key to attribute coffee 
its quality and value. Chemically speaking, these volatiles belong to different families of compounds but the most significant to coffee 
flavor are pyrazines and sulfur-containing molecules. Other volatiles related to this characteristic of coffee are alcohols, aldehydes, 
furans, furanones, ketones and phenols just to name a few. Non-volatile compounds might also be involved: alkaloids such as caffeine 
which is related to bitterness and chlorogenic acids which are related to coffee’s astringency are just some examples [7]. The variation 
of concentration of these compounds explains why coffee flavor is such a complex attribute. Different markers were identified in green 
and roasted coffee beans processed in three ways: natural, fully-washed and honey, thus evidencing the impact of post-harvest 
handling [10]. Grinding contributes as well to the perceived aroma due to the larger surface area that releases more volatiles [11]. 
Even the preparation method has an influence on the coffee aroma and it’s been found that pressurized methods tend to extract less 
compounds than brewing [12]. 

Finally, although sensory analysis of a cup of coffee − based on visual impressions (crema, color and volume), aroma, flavor 
(acidity, fruitiness and roast, among other sensory differences) and body [13] is usually required, researchers are suggesting more 
reproducible assessments [5,14] factoring in the influence of enviromental factors [15] and linking directly coffee quality to specific 
geographic location [16]. Fig. 1 illustrates how some common influencing factors give different metabolomic profiles that affect coffee 
quality. Thus metabolomics rises as a promising tool for geographic origin assignment. 

Carbohydrates, organic and amino acids with tannins, terpenes and flavonoids among others constitute the metabolome of any 
species. Metabolites are elements or small molecules with molecular weights lower than 1000 Da present in species that may vary 
between populations, regions and species among other factors. Monitoring these variations allows the identification of metabolic 
fingerprints or biomarkers that could potentially be used for species differentiation, origin assignment and variety authentication. This 
field is known as metabolomics. Metabolomics is an omics science, along with genomics, transcriptomics and proteomics where 

Fig. 1. Influencing factors on metabolomic profile key to quality of coffee. Created with BioRender.com.  
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Analytical Chemistry, Bioscience and Informatics intersect [17]. Through different analytical techniques, metabolites are identified 
and quantified, then this data may be processed through a multivariate analysis to group samples into blocks that share some char-
acteristics. A model can also be generated with the data to assign an unknown sample to either group. This approach has been suc-
cessful in the discrimination of different products according to their country of origin: spices such as saffron [18] and oregano [19]; 
edible plant products such as oranges [20], hazelnuts [21], celery [22] and argan [23]; beverages like cocoa [24] and green tea [25]; 
grains like wheat [26], rice [27] and maize [28]; and meat products like beef [29] and shrimp [30], have been successfully categorized 
by the identification of key biomarkers that set them apart. Differentiation by regions that are close by could potentially be more 
difficult but it has been achieved for Chinese licorice [31], Egyptian carob [32], Italian extra-virgin olive oil [33,34] and wine [35]. 
This has opened the field for authentication of products with Protected Denomination of Origin labels such as cheese [36,37]. Most 
recently, it was suggested that metabolomics techniques could be applied for the geographical indication (GI) registration process in 
Brazil [38]. Therefore this approach should be consider for a highly valuable product such as coffee. 

Although other reviews on this topic have been published [39], they have focused on different coffee products while we have kept it 
to roasted and green coffee beans which are the main trade for many producing countries [40]. 

2. Analytical techniques used for metabolomic profiling of coffee 

Metabolomic profiling is carried out through a wide variety of techniques available. A single sample can potentially be processed by 
different procedures, each giving unique information that is characteristic of that sample [41,42]. Fig. 2 shows the most frequently 
reported techniques involved in this particular omic science, namely liquid chromatography - mass spectrometry (LC/MS) [42–45]; gas 
chromatography - mass spectrometry (GC/MS) [46–49] and nuclear magnetic resonance (NMR) [50,51]. Others have also been used 
for this specific purpose such as ultraviolet spectrometry (UV) [8], infrared spectrometry [52–54] and Raman spectrometry [53,54]. 
Specifically, chromatography has many variants when coupled with different detectors such as quadrupole [48], triple quadrupole, 
time of flight [45] or another high-resolution mass spectrometry (MS) [43]. Also NMR allows a wide variety of experiments ranging 
from simple 1H spectrum to bi-dimensional correlations all with a single NMR tube [50,51]. The data collected has distinct degrees of 
precision but overall it has allowed the identification of metabolites and the characterization of samples by comparison with existing 
and home-made libraries [43,46,55]. Each technique will be discussed in more detail below. 

2.1. Gas chromatography 

Gas chromatography (GC) has proven to be a reliable and robust analytical tool that enables the observation and comparison of 
results obtained from analyzing the metabolomic profiles differences between samples of the same type (clinical, industry, 

Fig. 2. Most frequently used techniques in metabolomics. Created with BioRender.com.  
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agricultural, etc) [56]. 
This technique is widely used for the identification and quantification of volatile and semi-volatile metabolites by usually coupling 

it with a mass detector [46,47,57] although there are multiple examples where a flame ionization detector (FID) was employed 
depending on the approach selected for the study [58,59]. For targeted approaches, where few metabolites are analyzed, GC coupled 
either with FID or MS has been useful in the coffee industry, it has been helpful for the metabolomic profiling of coffee seeds [48]. More 
specifically, the GC analysis of thermolabile coffee diterpenes has been carried out to establish their relationship with cup quality [60]. 
Although this strategy is key for well documented matrices or particular metabolites of interest [56], non-targeted approaches are 
favored since they provide the largest amount of information and are usually the first step prior to a targeted approach [61]. 
Untargeted approaches usually involve applying different extraction procedures [62] to ensure the analysis of the largest number of 
metabolites with different physicochemical properties, especially regarding their polarity, solubility and boiling point [56]. Sensory 
quality in ground coffee has also been evaluated by the identification of metabolite markers related to coffee quality [55]. Finally, it’s 
been used to assess the solid state fermentation in Arabica coffee beans [46]. A summary of GC techniques and multivariate data 
analysis used for metabolomic profiling of coffee products are presented in Table 1. 

2.1.1. Volatile metabolites 
Volatile organic compounds (VOCs) are of particular interest in metabolomic profiling of coffee since these species are responsible 

for the distinctive aroma [63,64]. The most useful technique for the sampling of these molecules is solid phase microextraction 
(SPME): a fiber is exposed to the volatile portion of the coffee sample and then the compounds are subsequently desorbed and injected 
into a gas chromatographer. This specific field has been coined volatome or volatolome [65–67] and it has been useful for the 
comparison of capsule-brewed espresso coffees in Italy [68], monitoring changes in the volatile compounds of Robusta coffee beans 
during drying [57], the distinction between decaffeinated and regular coffee [49] and the prediction of Arabica coffee quality through 
its volatile composition [63] just to name a few examples. 

2.1.2. Non-volatile metabolites 
Although GC is usually reserved for volatile and semi-volatiles compounds, previous derivatization of the less volatile products can 

be achieved, rendering them suitable for this technique. This was useful for the differentiation of green coffee samples that were 
cultivated at different altitudes and had different post-harvest processes [47]. Derivatization by oximation and trimethylsilylation 
allowed the GC/MS analysis of amino acids such as lysine and glycine, and sugars such as sorbose and fructose that were identified as 
markers for the post-harvesting process. Regarding altitude, inositol and serotonin were the metabolites of interest since they showed a 
positive and negative correlation respectively. Silylation was also the derivatization process of choice for the GC/MS analysis of 

Table 1 
Summary of GC analytical techniques and multivariate data analysis used for metabolomic profiling of coffee products.  

Analytical techniques Abbreviation Sample Metabolites Multivariate Data 
analysis 

Reference 

Head Space-Solid Phase Microextraction - Two- 
dimensional Gas Chromatography fast 
Quadrupole Mass Spectrometry 

HS-SPME - 
GCxGC-qMS 

Roasted and ground coffee Volatiles PCA and CA [61] 

Pulsed Split - Gas Chromatography - Flame Ionization 
Detector - Mass Spectrometry 

PS-GC/FID & PS- 
GC/MS 

Green coffee beans oil 
extract 

Non-volatiles Not reported [60] 

Gas Chromatography - Flame Ionization Detector GC/FID Mucilage, pulp and 
endosperm of coffee 
cherries 

Volatiles and 
non-volatiles 

PCA [58] 

Gas Chromatography - Flame Ionization Detector GC/FID Ground green coffee beans Non-volatiles HCA [59] 
Gas Chromatography/Mass Spectrometry GC/MS Roasted and ground coffee Non-volatiles PCA [46] 
Head Space-Solid Phase Microextraction- Gas 

Chromatography/Mass spectrometry 
HS-SPME-GC/MS Coffee capsules Volatiles PCA and PLS-DA [68] 

Head Space-Solid Phase Microextraction- Gas 
Chromatography/Mass spectrometry 

HS-SPME-GC/MS Roasted and ground coffee Volatiles HCA and OPLS- 
DA 

[55] 

Head Space-Solid Phase Microextraction- Gas 
Chromatography/Mass spectrometry 

HS-SPME-GC/MS Ground green coffee 
beans, roasted and ground 
coffee 

Volatiles and 
non-volatiles 

Not reported [64] 

Head Space-Solid Phase Microextraction- Gas 
Chromatography - Time Of Flight - Mass 
spectrometry 

HS-SPME-GC- 
TOF/MS 

Ground green coffee beans Volatiles HCA [57] 

Gas Chromatography/Mass Spectrometry GC/MS Ground green coffee beans Non-volatiles PCA and OPLS [47] 
Head Space-Solid Phase Microextraction - Gas 

Chromatography/Mass spectrometry 
HS-SPME-GC/MS Roasted and ground coffee Volatiles PLS and GA-SVR [63] 

Gas Chromatography/Mass Spectrometry GC/MS Roasted and ground coffee Volatiles and 
non-volatiles 

PCA and HCA [48] 

Head Space-Solid Phase Microextraction- Gas 
Chromatography - Mass spectrometry 

HS-SPME-GC/MS 
& E-nose 

Roasted and ground coffee Volatiles PLS-DA [57] 

Head Space-Solid Phase Microextraction- Two 
Dimensional Gas Chromatography - Time Of 
Flight - Mass spectrometry 

HS-SPME- 
GCxGC-TOF/MS 

Coffee capsules Volatiles PCA and PLS-DA [49]  
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non-volatile metabolites such as fatty acids, organic acids and sugars for the differentiation of twenty coffee samples according to their 
genotype, roasting degree and blending [48]. Oximation and trimethylsilylation were also helpful to analyze low molecular weight 
metabolites such as amino acids and sugars in Indonesian coffee, produced by different fermentation isolates to improve its quality 
[46]. 

2.2. Liquid chromatography 

For non-volatile metabolites and especially those that might decompose in GC conditions, liquid chromatography (LC) is one of the 
best alternatives. It also provides a wider range of information due to the nature of the separation, especially related to the variants of 
the stationary phase [69]. It is usually coupled with mass detectors [43,70] but for targeted approaches, UV or diode array detectors 
(DAD) could be used too [71,72]. 

Some applications involved monitoring coffee roasting and its effect by determining the changes in the metabolomic profile of the 
samples. Potential biomarkers were identified as responsible for the roasting process by a hydrophilic interaction chromatography- 
mass spectrometry (HILIC/MS) based metabolomic approach [42]. LC coupled to high resolution mass spectrometry (LC-HRMS) 
proved to be suitable for the metabolomic fingerprinting of nine Coffea species leaves to potentially assign their botanical origin as well 
as their sampling period [73]. Furthermore, ultra performance liquid chromatography - quadrupole time of flight (UPLC-QTOF) was 
helpful in the assessment of three preparation techniques for coffee: boiling, pour over and cold-brew. Metabolomic profiling of each 
brewed product allowed the identification of potential markers for each method and showed more differences between those requiring 
higher temperatures and cold-brew [45]. In the same vein, coffee extracts obtained by traditional Italian methods were analyzed by 
UPLC-QTOF to acquire their metabolomic profile and identify markers characteristic of each extraction technique [44]. It was thus 
possible to determine similarities between them along with their differences related to caffeine content and vegetal aroma among other 
parameters, and even to infer that the extraction process was more important than the coffee species for the cup profile. 

A summary of LC techniques and multivariate data analysis used for metabolomic profiling of coffee products is presented in 
Table 2. 

Table 2 
Summary of LC analytical techniques and multivariate data analysis used for metabolomic profiling of coffee products.  

Analytical techniques Abbreviation Sample Metabolites Multivariate Data 
analysis 

Reference 

High Performance Liquid Chromatography HPLC Ground green coffee 
beans 

Non-volatiles Not reported [8] 

High Performance Liquid Chromatography HPLC Green coffee beans 
extracts 

Non-volatiles Not reported [72] 

Ultra performance liquid chromatography Mass Mass UPLC-MS/MS Mucilage, pulp and 
endosperm of coffee 
cherries 

Volatiles and 
non-volatiles 

PCA [58] 

High Performance Liquid Chromatography - Diode Array 
Detection 

HPLC-DAD Ground green coffee 
beans 

Non-volatiles PLS-DA [71] 

Reverse Phase - Liquid Chromatography - Mass 
Spectrometry 

RP-LC-MS Roasted and ground 
coffee 

Non-volatiles PCA and PLS-DA [70] 

Liquid Chromatography-High Resolution Mass 
Spectrometry Liquid Chromatography-Quadrupole - 
Time of Flight 

LC-HRMS/LC- 
QTOF 

Coffee leafs Non-volatiles PCA and PLS-DA [73] 

Ultra-High Pressure Liquid Chromatography - 
Quadrupole Time Of Flight - Mass Spectrometry 

UHPLC-QTOF/ 
MS 

Coffee brews Non-volatiles PCA and HCA [45] 

Ultra performance Liquid Chromatography Mass/Mass UPLC-MS/MS Ground green coffee 
beans 

Non-volatiles HCA [59] 

High performance Liquid Chromatography - Mass/Mass HPLC-MS/MS Ground green coffee 
beans 

Non-volatiles HCA [59] 

High Performance Liquid Chromatography HPLC Roasted and ground 
coffee 

Non-volatiles Not reported [82] 

Hydrophilic Interaction Chromatography - Mass 
Spectrometrý 

HILIC - MS Roasted and ground 
coffee 

Non-volatiles PCA, HCA and 
PLS-DA 

[42] 

Ultra-High Pressure Liquid Chromatography - 
Quadrupole Time Of Flight - Mass Spectrometry 

UHPLC-QTOF/ 
MS 

Roasted and ground 
coffee 

Non-volatiles HCA and OPLS- 
DA 

[55] 

Ultra Performance Liquid Chromatography - Triple 
Quadrupole - Mass Spectrometry 

UPLC-QQQ/MS Coffee brews Non-volatiles PCA and HCA [45] 

Rapid Resolution Liquid Chromatography - Electrospray 
Ionization - Quadrupole Time Of Flight - High 
Resolution Mass Spectrometer 

RRLC-ESI- 
QTOF/HRMS 

Leafs and fruits of coffee Non-volatiles PCA and PLS-DA [43] 

Ultra-High Pressure Liquid Chromatography - 
Quadrupole Time Of Flight - Mass Spectrometry 

UHPLC-QTOF/ 
MS 

Coffee brews Volatiles and 
non-volatiles 

PCA, HCA and 
OPLS-DA 

[44]  
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2.3. NMR 

This technique has emerged as one of the most promising high-throughput tools due to the lack of sample preparation that avoids 
time-consuming purification processes that are common for these complex mixtures. It also has many advantages related to inherent 
characteristics of the technique such as low quantity of solvents needed, rapid analysis, robustness and reproducibility [74]. Due to its 
nature, NMR is more suitable for untargeted approaches and signal assignment for metabolites is achieved by comparison with da-
tabases and previously reported information [48,75]. It has been applied successfully for the authentication of roasted and ground 
coffee [76] as well as instant coffee according to manufacturer [77], to monitor the roasting process of Brazilian coffee beans [78], 
successfully differentiating organic from conventionally farmed coffee [79]. 

It has even been tested as an artificial tongue to predict sensations of roasted coffee bean products with good correlations [51]. 
Regarding targeted approaches, some studies have been reported for the quantification of metabolites such as caffeine and other 

organics acids in commercial coffee samples in Brazil [80] and the Middle East region [48]. 
Although most of these studies rely on proton spectra, whether it be mono or bidimensional correlations, especially for untargeted 

approaches, the potential for the analysis of other nuclei is still an open field [74]. 
A summary of NMR techniques and multivariate data analysis used for metabolomic profiling of coffee products is presented in 

Table 3. 

2.4. Other techniques 

Although chromatographic techinques and NMR are the most widely used techniques in this field, other less common ones have 
been successfully applied in metabolomics as shown on Table 4. The application of direct spectroscopic techniques such as UV, infrared 
or Raman spectroscopy for metabolomic approaches yield robust results in a shorter amount of time but they only can identify a few 
compounds per run contrary to the larger profiles obtained by chromatography for example. These are particularly appropriate for 
fingerprinting [41]. 

UV spectroscopy is a non-destructive, economical, and facile technique that has been used to identify selected coffee components as 
phenolic and chlorogenic acids, methylxanthines and antioxidants among others [41,52]. It has also been a fast and easy method to 
determine and quantify adulterations components in coffee [81] and has been a complementary analytical tool in other studies carried 
out for the discrimination of specialty and traditionally roasted commercial coffee [82] and for the evaluation of antioxidant activity 
related to phenolic compounds and melanoidin in Robusta and Arabica coffee extracts [83] to name a few. 

Like UV, infrared spectroscopy is considered not very expensive, nondestructive and an easy analytical technique to evaluate coffee 
quality features such as sensory properties [14] and degree of roasting [84], to discriminate roasted coffee defectives by 
Fourier-transform infrared spectroscopy (FTIR) [85] or to determine other specific metabolites as chlorogenic acids in Arabica green 
coffee beans [52]. 

Regarding Raman spectroscopy, no sample preparation nor pre-treatment is needed, and it requires just a small amount of sample 
[86]. This technique has been used to discriminate between two species of coffee (Arabica and Robusta) based on their Kahweol 
content both in green and roasted coffee beans [54] and also based on the comparison of their chlorogenic acid and lipid content [53]. 

3. Chemometric tools 

Due to the amount of data collected through targeted and untargeted studies, multivariate data analysis is required in order to 

Table 3 
Summary of NMR analytical techniques and multivariate data analysis used for metabolomic profiling of coffee products.  

Analytical techniques Abbreviation Sample Metabolites Multivariate Data 
analysis 

Reference 

Proton Nuclear Magnetic 
Resonance 

1H NMR Instant coffee Volatiles PCA and LDA [77] 

Proton Nuclear Magnetic 
Resonance 

1D and 2D NMR Coffee brews Non-volatiles Not reported [80] 

Proton Nuclear Magnetic 
Resonance 

1H NMR Roasted and ground coffee Non-volatiles PCA and OPLS [51] 

Proton Nuclear Magnetic 
Resonance 

1H NMR Roasted and ground coffee Non-volatiles PCA [76] 

Proton Nuclear Magnetic 
Resonance 

1H NMR Ground green coffee beans Non-volatiles PCA [50] 

Proton Nuclear Magnetic 
Resonance 

1H NMR Roasted and ground coffee Volatiles and non- 
volatiles 

PCA, PLS-DA and OPLS- 
DA 

[79] 

Proton Nuclear Magnetic 
Resonance 

1D and 2D NMR Roasted and ground coffee, instant 
coffee 

Non-volatiles PCA and OPLS-DA [75] 

Proton Nuclear Magnetic 
Resonance 

1D and 2D NMR Roasted and ground coffee Non-volatiles PCA [78] 

Proton Nuclear Magnetic 
Resonance 

1D and 2D NMR Roasted and ground coffee Volatiles and non- 
volatiles 

PCA and HCA [48]  
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retrieve patterns that can ultimately lead to predictive models. Fig. 3 shows the most common chemometric tools used for multivariate 
analysis of the metabolomic profiling of coffee-related samples. Unsupervised pattern recognition is usually the first step to ordinate 
the data and reduce the dimensionality to more manageable clusters. The most common unsupervised methods used in metabolomics 
are principal component analysis (PCA) [32,42,45,49,59,87–89] and hierarchical cluster analysis (HCA) [42,48,90,91]. 

PCA is usually the first step for exploratory data analysis to reduce the dimensionality [92] and explain the maximum variation 
between samples [93]: in this scenario, uncorrelated new variables arise from mathematical simplification of the originals, also known 
as principal components (PC). These PCs account for the total variance of the original variables, obtained by linear combination [92] 
and the first components bear most of the information. 

In some cases, good cluster separation can be obtained without data set separation [45,49,70] but in others, a previous data set 
separation is required: this was especially true for the volatilome analysis of four typologies of coffee where the PCA was applied to 
compare encapsulated and non-encapsulated samples for each one [89]. 

On the other hand, HCA aims to classify samples hierarchically based on similarity or dissimilarity and it is represented by 

Table 4 
Summary of other analytical techniques and multivariate data analysis used for metabolomic profiling of coffee products.  

Analytical techniques Abbreviation Sample Metabolites Multivariate Data 
analysis 

Reference 

Fourier Transform Raman Spectroscopy FT-IR Green and roasted 
coffees 

Non-volatiles PCA [54] 

Ultraviolet–Visible Spectroscopy UV-VIS Green coffee beans Non-volatiles Not reported [8] 
Raman spectroscopy Raman Green coffee beans Non-volatiles PCA [53] 
Near Infrared Spectroscopy NIR Coffee brews Non-volatiles PLS [14] 
Fourier Transform Infrared Spectroscopy FT-IR Roasted and 

ground coffee 
Volatiles and non- 
volatiles 

PCA [84] 

Ultraviolet–Visible Spectroscopy UV-VIS Green coffee beans Non-volatiles PCA and HCA [52] 
Ultraviolet–Visible Spectroscopy UV-VIS Roasted and 

ground coffee 
Non-volatiles PCA and PLS [83] 

Fourier Transform Infrared Spectroscopy FT-IR Roasted and 
ground coffee 

Non-volatiles PCA and PLS [83] 

Ultraviolet–Visible Spectroscopy UV-VIS Roasted and 
ground coffee 

Not specified PCA and PLS [81] 

Raman spectroscopy Raman Ground green 
coffee beans 

Not specified PCA and PLS-DA [86] 

High Performance Anion Exchange Chromatography - 
Pulsed Amperometric Detection 

HPAEC - PAD Ground green 
coffee beans 

Non-volatiles HCA [59] 

Ultraviolet–Visible Spectroscopy UV-VIS Roasted and 
ground coffee 

Non-volatiles Not reported [82] 

Fourier Transform Infrared Spectroscopy FT-IR Roasted and 
ground coffee 

Non-volatiles Not reported [82]  

Fig. 3. Multivariate data analysis used in metabolomics. Created with BioRender.com.  
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Table 5 
Major findings in coffee metabolomics studies for origin assessment.  

Analytical techniques Abbreviation Sample Multivariate 
Data analysis 

Statistical Analysis 
Findings 

Chemical Findings Reference 

Inductively Coupled Argon 
Plasma Atomic Emission 
Spectrometer 

ICP AES Roasted 
coffee 
beans 

PCA and CDA The statistical analysis 
differentiated samples 
from the three major 
geographic regions of 
coffee production in the 
world: Indonesia, East 
Africa, and Central/ 
South American. 

It was found that Cu, Na, Mn, and 
Fe have some discriminating 
power with the geographic 
regions tested, but one cannot 
determine origin with these 
elements alone. Another 
important finding of the element 
concentration distribution is that 
no region is responsible for all of 
the high or low concentrations. 

[99] 

Liquid Chromatography - 
Mass Spectrometry, Gas 
Chromatography - Flame 
Ionization Detector 

LC - MS, GC- 
FID 

Roasted 
and 
ground 
coffee 

PCA Statistical analysis 
differentiated coffee 
samples from the 
regions studied: Asia, 
South America and 
Africa. 

It was found that samples from 
Asia and South America were 
distinct in GC–FID outputs and 
amines. Samples from South 
America were different from the 
others in that outputs of overall 
GC–FID were very high and 
amines were very low. Samples 
from Africa were different from 
the others in protein (rather low) 
and monosaccharide (rather high) 
content. 

[100] 

Proton Nuclear Magnetic 
Resonance 

1H NMR Roasted 
and 
ground 
coffee 

PCA and 
OPLS-DA 

The statistical analysis 
differentiated the coffee 
samples of the regions 
studied: America, 
Africa and Asia. 

It was found that American 
roasted coffee samples were 
characterized by fatty acids 
chains, the African samples by 
chlorogenic acids and lactate, 
while the Asian ones by acetate 
and trigonelline. 

[101] 

Unidimensional Proton and 
Carbon 13 Nuclear 
Magnetic Resonance 

1D 1H and 13C 
NMR 

Ground 
green 
coffee 
beans 

PCA and 
OPLS-DA 

The statistical analysis 
demonstrated that the 
greatest significance 
differentiation of coffee 
samples was related to 
the species: arabica and 
robusta. 

It was found that the significantly 
different metabolites captured by 
PCA and OPLS-DA models were 
sucrose, citrate, malate, 
trigonelline, caffeine, choline, 5- 
CQA, 4-CQA, 3-CQA, acetic acid, 
L-Ala, L-Asn, L-Glu and 
γ-aminobutyric acid. 

[102] 

Direct Infusion Electrospray 
Ionization Fourier 
Transform Ion Cyclotron 
Resonance Mass 
Spectrometry 

ESI FT-ICR MS Ground 
green 
coffee 
beans 

PCA and PLS- 
DA 

The statistical analysis 
differentiated coffee 
samples from the 
regions studied: 
Londrina and 
Mandaguari regions of 
Brazil. 

It was found that two compounds 
with m/z values of 695.20442 and 
833.51922 were indicated by 
multivariate analyses as very 
important for discriminating the 
coffee cultivars. However, they 
could not be fully characterized. 
The most important compounds, 
responsible for discriminations in 
all PLS-DA analyses were: the 
unidentified [M − H] of m/z 
695.20442, atractyloside 
analogue II, sucrose, and the 
chlorogenic acids CQA and 
diCQA. 

[107] 

Gas Chromatography - Mass 
Spectrometry 

GC - MS Roasted 
and 
ground 
coffee 

PCA and 
OPLS-DA 

The statistical analysis 
differentiated 
commercial Kopi 
Luwak, commercial 
regular coffee, and 
counterfeit coffee. 

It was found that the discriminant 
marker candidates were identified 
and quantitated against six 
authentic standards (malic acid, 
citric acid, glycolic acid, 
pyroglutamic acid, caffeine, and 
inositol) at various 
concentrations. 

[109] 

Gas Chromatography- 
Quadrupole - Mass 
Spectrometry 

GC-Q - MS Ground 
green 
coffee 
beans 

PLS-DA The statistical analysis 
differentiated between 
Coffea arabica L. 
genotypes: Mundo 
Novo and Bourbons, 
and betweeen coffee 

It was found that the features that 
were most influential in 
differentiating genotype were: 5- 
CQA, oxalic acid, galactinol, 
nicotinic acid, caffeine, and 
caffeic acid (Bourbon) and myo- 
inositol, quinic acid, malic acid, 

[108] 

(continued on next page) 
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Table 5 (continued ) 

Analytical techniques Abbreviation Sample Multivariate 
Data analysis 

Statistical Analysis 
Findings 

Chemical Findings Reference 

producing 
municipalities in Brazil 

fructose, and D-glucose (Mundo 
Novo). 

High Performance Liquid 
Chromatography -Diode 
Array Detector 

HPLC-DAD Green 
coffee 
beans 

PCA-LDA The statistical analysis 
demonstrated a 
moderate classification 
efficiency in 
differentiate the 
geographical origin of 
the coffee beans from 
the major production 
regions of Ethiopia 
using alkaloids. 

It was found that using alkaloids, 
in conjunction with other 
chemical constituents such as 
phenolic compounds has 
potential, for the construction of 
classification models and 
generation of databases useful for 
the geographical origin 
discrimination of Ethiopian green 
coffee beans. 

[110] 

Ultra performance Liquid 
Chromatography Mass 
Spectrometry 

UPLC-MS Green 
coffee 
beans 

PCA-LDA The statistical analysis 
differentiated the 
geographical origin of 
the coffee beans from 
the major production 
regions and sub-regions 
of Ethiopia using 
chlorogenic acids. 

They were identified 3 
compounds (3-caffeoylquinic 
acid, 3,4-dicaffeoylquinic acid, 
3,5-dicaffeoylquinic acid and 4,5- 
dicaffeoylquinic acid) as the most 
discriminating compounds for the 
authentication of the various 
regional and sub-regional green 
coffee beans of Ethiopia. 

[40] 

Inductively Coupled Plasma – 
Optical Emission 
Spectroscopy 

ICP OES Green 
coffee 
beans 

PCA-LDA The statistical analysis 
provided a reliable 
prediction model for 
the three major 
producing regions of 
coffee of Ethiopia using 
elemental analysis. 

It was found that the elements P, 
Mn, S, Cu, and Fe were the most 
discriminating elements. Mg, P, S, 
Ca, Mn, Fe, Cu, Ba, Si, and K were 
determined as representative 
major and minor elements in 
coffee that are simple to 
determine, which is ideal for 
routine analysis. These elements 
have also been shown to be 
suitable for discriminating 
between Arabica and Robusta 
varieties, as well as for tracing the 
geographical origin of coffee 
beans. 

[111] 

Ultra-High Pressure Liquid 
Chromatography - 
Quadrupole Time Of 
Flight - High Resolution 
Mass Spectrometry 

UHPLC-QTOF - 
HRMS 

Ground 
green 
coffee 
beans 

PCA and PLS- 
DA 

The statistical analysis 
differentiated the green 
coffee samples from 5 
geographical regions of 
Colombia. 

They were identified 13 
biomarkers (8 of them tentatively 
elucidated). The markers selected 
to create the discrimination 
model were 1-o-sinapoylglucose, 
3-hydroxysuberic acid, N-acetyl- 
L-phenylalanine, 5-caffeoyl- 
metylquinic acid (5-ferulic acid 
trans), caffeoyl alcohol, 5-caf-
feoylquinic acid (5-CQAcis), 5- 
caffeoyl-methylquinic acid (5- 
ferulic acid cis), palmitic acid, 
and 5 more with feature names. 

[112] 

Gas Chromatography - Mass 
Spectrometry 

GC-MS Ground 
green and 
roasted 
coffee 
beans 

PCA The statistical analysis 
differentiated the coffee 
of western, central and 
eastern regions of 
Indonesia. 

It was found that metabolites 
showing higher concentration in 
Sulawesi, Papua, Flores and 
Sumatra samples were glycerol, 
glucuno-1,5-lactone, gluconic 
acid and sorbitol. A clear 
distinction in galactitol and 
galactinol concentration between 
all samples from eastern part of 
Indonesia and western and middle 
part of Indonesia was also 
observed. 

[113] 

Gas Chromatography - Mass 
Spectrometry 

GC-MS Ground 
green 
coffee 
beans 

PCA and LDA The statistical analysis 
differentiated the coffee 
of northwest, west, east 
and south regions of 
Ethiopia, based on fatty 
acid composition. 

It was found that oleic, linoleic, 
palmitic, stearic and arachidic 
acids were the most 
discriminating compounds among 
the production regions. 

[114] 

(continued on next page) 
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dendrograms. Usually, HCA is preceded by PCA to reduce dimensionality but there are reported instances where the contrary is 
performed [48]. In that matter, HCA takes the scattergram obtained from PCA to build a dendrogram that allows the identification of 
clusters [90]. This has been useful for the evaluation of coffee samples that had different roasting degrees and were conclusive for 
differences in their metabolic profiles [42]. It was also carried out to assess heterogeneity regarding species, processing and additives 
present in commercially available coffee in the Middle East compared to four authenticated coffee samples [48]. As a final example, 
highly heritable metabolites were identified to be used as markers for the selection of Robusta seedlings that could potentially provide 
the best coffee cup quality [91]. 

Unsupervised methods as described above are usually followed by supervised methods where the groups are known a priori and the 
aim is to devise rules which can allocate previously unclassified objects or individuals into these groups in an optimal fashion [94]. 

The most common supervised methods used in metabolomics are partial least squares discriminant analysis (PLS-DA) and 
orthogonal partial least squares discriminant analysis (OPLS-DA) [95]. 

PLS-DA is an algorithm that combines dimensionality reduction with discriminant analysis in a flexible manner by not fitting the 
data into a specific distribution [95,96]. Dimensionality reduction is achieved by variable selection instead of the linear combination 
performed in PCA. Model validation methods allow the construction of a predictive model and can be grouped into three categories: (a) 
internal methods such as cross-validation [41,42,70], (b) external testing and (c) optional methods such as permutation tests [70,79]. 
Selection of either method depends on the size of the dataset [96]. PLS-DA has been used to discriminate samples depending on their 
roasted degree: low, medium and dark. Pairwise models were constructed whose aim was to obtain information about which me-
tabolites were affected by the roasting process. The models were cross-validated and strengthened the robustness of the constructed 
models [42,70]. 

OPLS-DA is a special case of multilinear regression whose aim is to maximize both cross-covariance matrices and group dis-
criminability. It consists of two independent processes: (a) discovery of hidden components for predictor variables and (b) data fitting 
through a projection matrix [97]. For this purpose, orthogonal variations are filtered from the variations of the data that are effective 
for the prediction of quantitative responses making it easier to interpret the models obtained [98]. In regard to regression prediction 
results, OPLS-DA is similar to PLS-DA modeling. The principal advantage of the former consists in the easier interpretation, specifically 
for multi-class cases [98]. It has also been used to identify markers of sensory quality in ground coffee [55], to differentiate organic 
from conventional coffee [79], to assess the impact of extraction methods in coffee brews [45] even evidencing that espresso prep-
arations exhibit a distinctive chemical profile [44], and to evaluate coffee beans according to their cultivation altitudes, origins and 
post-harvest processing, being the latter the dominant factor influencing the final metabolite composition [47]. 

Table 5 (continued ) 

Analytical techniques Abbreviation Sample Multivariate 
Data analysis 

Statistical Analysis 
Findings 

Chemical Findings Reference 

Ultra-High Pressure Liquid 
Chromatography - 
Quadrupole Exactive - 
Mass Spectrometry 

UHPLC-QE-MS Ground 
green 
coffee 
beans 

PCA and 
OPLS-DA 

The statistical analysis 
differentiated the coffee 
from 18 regions. 

They were considered ten 
different families of compounds 
as potential markers of the coffee 
beans: 3- hydroxycoumarin, 4,5- 
di-O-caffeoylquinic, 
cryptochlorogenic acid, palmitic 
amide, linoleamide, arachidic 
acid, petroselinic acid, trehalose, 
L-glutamic acid, L-malic acid. 

[103] 

Ultra-High Pressure Liquid 
Chromatography - Electro 
Spray Ionization - High 
Resolution Mass 
Spectrometry 

UHPLC-ESI 
-HRMS 

Roasted 
and 
ground 
coffee 

PCA and 
OPLS-DA 

The statistical analysis 
differentiated the coffee 
of two species and five 
botanical varieties 
collected during the 
Brazilian International 
Conference of Coffee 
Tasters” (2022 Edition). 

It was found that Caffeine, 
DIMBOA-Gl, roemerine, and 
cajanin were determined as 
chemical markers for robusta 
samples, and toralactone, 
cnidilide, LysoPC(18:2 (9Z,12Z)), 
Lysophosphatidylcholine (16:0/ 
0:0), and 2,3-Dehydrosilybin for 
arabica samples. 

[104] 

Ultraviolet–Visible 
Spectroscopy, High 
Performance Liquid 
Chromatography - Diode 
Array Detection - Mass 
Mass, Gas 
Chromatography - Mass 
Spectrometry, Gas 
Chromatography - Flame 
Ionization Detector, 
Polymerase Chain 
Reaction - Restriction 
Fragment Length 
Polymorphism 

UV/VIS, HPLC- 
DAD–MS/MS, 
GC–MS, GC- 
FID, PCR-RFLP 

Ground 
green 
coffee 
beans 

PCA The statistical analysis 
differentiated the two 
species, arabica and 
robusta, according to 
their geographical 
origin. 

It was found that Robusta 
accessions were confirmed to 
possess a higher antioxidant 
activity due to the high content of 
total phenolic compounds and 
caffeine when compared to 
Arabica. 

[106]  

C. de León-Solis et al.                                                                                                                                                                                                 



Heliyon 9 (2023) e21402

11

4. Application of metabolomics for origin assignment of coffee beans 

Due to the effect edaphoclimatic conditions have on metabolite content in coffee, it was imperative to determine if it was possible to 
discriminate regions of origin using metabolomic profiling. As shown on Table 5, the research to differentiate coffee’s geographic 
origins has evolved, from differentiating roughly between continents to discriminate between regions of the same country and most 
recently to identify potential markers for a specific coffee cultivar. Below are compiled, to the best of our knowledge, the studies that 
have focused on country and region assignment using metabolomics as a tool, as well as the attempts for authentication purposes 
where sensory analysis could fall short. 

4.1. Studies focusing on discrimination by countries 

The first metabolomic profile to differentiate geographic origins of coffee was reported in 2002 and focused on elements present in 
coffee samples from the three major producing regions: Indonesia, East-Africa and Central/South America. A total of 160 samples from 
these regions were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) to quantify eighteen elements 
from which twelve are considered essential nutrients: K, Mg, Ca, Na, Cr, Mn, Fe, Cu, Zn, Mo, P and Co. The results showed that 
individually none of these elements could potentially be used as biomarkers to discriminate between regions. Still, it was highlighted 
that the highest concentrations of copper and sodium were found in Costarrican coffee; Colombian coffee had the highest zinc con-
centration; and Guatemalan coffee, the highest amounts of calcium and sulfur. Contrary, coffee from Panama had the lowest aluminum 
on average and Ethiopian coffee had the lowest concentrations of iron and magnesium. Coffee from Kenya had the highest concen-
trations of manganese and the lowest of potassium and sulfur. The same tendency was found in coffee from Sulawesi regarding 
magnesium (highest) and copper and calcium (lowest). Finally Sumatran coffee was the one that most differed from the others with the 
lowest zinc, manganese, potassium, and sodium content and the highest for iron and aluminum. The data was then submitted to 
multivariate data analysis for pattern recognition. Both PCA and canonical discriminant analysis (CDA) were performed to reduce 
variables and discriminant functional analysis and neural networks allowed building a classification model. The best visuals were 
obtained with CDA where the regions could be separated as shown in Fig. 4. The statistical analysis indicated that the three major 
regions had patterns and the model predicted the origin of the samples with a 70–86 % successful rate [99]. 

The first report on metabolomics for origin identification of coffee beans focused on small molecules was carried out in South Korea 
in 2010. On the basis that flavor and taste are influenced by the environment, the metabolite profiling of 21 samples from three 
distinctive regions (Asia, South America and Africa) were performed using LC/MS and GC/FID. The untargeted approach showed that 
coffees from the same region shared chromatographic patterns. For the targeted approach, carbohydrates and amines were quantified 
by LC/MS, monosaccharides were analyzed by GC/FID and proteins were determined with a protein-assay kit. All the data were 
combined in a PCA from which three PCs were selected to explain 64.83 % of the samples’s diversity. PC1 corresponded to mono-
saccharide and early outcome of GC/FID quantification, PC2 to monosaccharide and later outcomes of GC/FID quantification and 
finally, PC3 to monosaccharide and high negative weights to GC/FID quantification. Fig. 5 shows the schematic 3D plot of the coffee 
samples along these PCs. It was concluded that Asian coffees are more affected by protein content, South American by volatiles and 
carbohydrates, and African by monosaccharides [100]. 

Fig. 4. Schematic representation of the patterns found by region in the plot of scores of first and second canonical functions for 160 coffee samples, 
adapted from Anderson (2002). Region A: Colombia, region B: Costa Rica, region C: Ethiopia, region D: Guatemala, region E: Kenya, region F: 
Panama, region E: Sulawesi and region H: Sumatra. Created with BioRender.com. 
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Later on, in 2012, NMR spectroscopy was employed for the first time to determine the metabolite profile of coffee beans and relate 
it to their geographic origin. Forty samples from Asia, Africa and America were ground and extracted at room temperature in buffered 
deuterated water (D2O). The proton nuclear magnetic resonance (1H NMR) spectra were recorded and then aligned for bucket inte-
gration on the formic signal at 8.424 ppm. PCA and OPLS-DA were carried out with the data collected. It was thus possible to determine 
that chlorogenic acids and lactate are responsible for African sample differentiation, acetate and trigonelline for Asian samples and 
fatty acids chains for those of American origin. This method has the advantage that it needs no or little derivatization and the 
experimental times are extremely fast compared to others [101]. 

A similar study was carried out in Japan in 2012, this time using green coffee instead of roasted coffee beans. Arabica coffee beans 
from Brazil, Colombia, Guatemala, and Tanzania along with Robusta coffee beans from Indonesia and Vietnam were supplied by a local 
vendor. Metabolites were extracted with D2O at higher temperatures with less probability to lose compounds that give coffee its 
characteristic aroma. The supernatants were buffered and spiked with 4-dimethyl-4-silapentane-1-sulfonate as an internal standard. 
Both (1D) 1H and 13C NMR spectra were recorded at 500 and 125.65 MHz, respectively, and the latter was reduced into 1 ppm spectral 
buckets. The data were analyzed by PCA and OPLS-DA was applied giving a good separation of samples according to the geographical 
origin (Fig. 6). Although the most differences arose from the distinctive species, applying the model to the Arabica data set showed that 
Guatemalan coffee contains higher quantities of caffeine; Tanzanian coffee higher content of sucrose, acetic acid, and trigonelline; 
higher concentrations of caffeoylquinic acids (CQAs), citrate, and sucrose for Colombian coffee; and finally, higher levels of amino 
acids for Brazilian coffee [102]. 

Another report came from China where eigtheen samples of coffee beans from different countries in Asia, Africa, Oceania, North 
and South America were analyzed by an UPLC-Q-Exactive Orbitrap/MS method (UHPLC-QE-MS). Samples were extracted with a 
mixture of acetonitrile, methanol and water, vortexed, incubated at − 40 ◦C (− 233.15 K) and centrifuged. The supernatant was then 
taken into the UPLC instrument for an untargeted analysis. The data collected was processed with an in-house program and the 
multivariate analysis was performed with SIMCA 14.0 software. The samples could be separated in clusters by PCA although there was 
some sample overlapping. The supervised analysis OPLS-DA allowed the identification of sixteen potential biomarkers for the 
discrimination of the samples according to the continent of origin: 3-hydroxycoumarin, 4,5-Di-O-caffeoylquinic acid, linoleamide, 
palmitic amide, L-glutamic acid, D-aspartic acid and L-phenylalanine were more abundant in Asian coffees; cryptochlorogenic acid (4- 
O-caffeoylquinic acid) and arachidic acid, in Oceanian samples; alanine, in North American coffee; and the relative quantification of 
organic acid such as succinic acid and L-malic acid was higher both in North American and South American samples. Furthermore, 
comparison of Yunnan coffee to samples from other origins returned seventeen metabolites that could potentially be used as bio-
markers for authentication purposes [103]. 

The metabolomic profiles of twenty one samples of three varieties of Arabica and two varieties of Robusta from Brazil and Mexico 
were evaluated by Ultra-High Pressure Liquid Chromatography - Electro Spray Ionization - High Resolution Mass Spectrometry 
(UHPLC-ESI-HRMS). Samples were extracted with a methanol-water (7:3) mixture, sonicated and centrifuged. The supernatant was 
extracted with heptane and the aqueous layer was filtered before injection into the instrument. A total of thirty three compounds were 
identified using different confidence levels. Multivariate statistical analysis on ProteoWizard software preceded by pre-processing the 
data by ionization mode, included PCA and OPLS-DA, the latter allowing to discriminate the samples by species and variety and the 
metabolomic fingerprinting showed good correlations to assess what the authors called the terroir effect [104], the interactions be-
tween the physical environment and coffee cultivars [105]. This approach is potentially useful for the added value of specialty coffees 

Fig. 5. Schematic representation of the 3D plot of the coffee samples, adapted from Choi 
(2010). Created with BioRender.com. 
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[104]. 
Most recently, five samples of green coffee Robusta and fifteen of Arabica from ten different countries underwent a battery of 

instrumental analysis (UV/Vis, HPLC-DAD–MS/MS, GC/MS, and GC-FID) as well as molecular (Polymerase Chain Reaction - Re-
striction Fragment Length Polymorphism, PCR-RFLP) fingerprinting in order to differentiate them by geographical origin using their 
flavonoid profile among other compound families. In total, thirty two compounds were identified, twenty eight flavonoids among them 
which were the main focus of this study due to the limited information available on them in the literature. Statistical análisis consisted 
of ANOVA followed by the Tukey–Kramer HSD test using using SPSS v. 28 software. Although PCA of the instrumental data revealed 
differences between varieties, discrimination by geographical origin was only achieved by the DNA-fingerprinting [106]. 

Fig. 6. Schematic representation of the patterns obtained by score and loading plots of OPLS 
DA performed by considering all roasted coffee samples, adapted from Wei (2012). Created with 
BioRender.com. 

Fig. 7. Schematic representation of the patterns found from the PCA score plot of principal component 1 (40.6 % of the total variability) and 
principal component 2 (11 % of the total variability) of the metabolite profile differentiating green coffee harvested from three different origins: 
Lavras, Santo Antônio do Amparo (SAA) and São Sebastião da Grama (SSG), adapted from Da Silva (2014). Created with BioRender.com.(For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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4.2. Studies focusing on discrimination by regions within a country 

As stated previously it is well known that coffees from different countries usually have different chemical composition but this is 
less evident for coffees that are grown in regions that are closer to each other. 

Twenty three green coffee samples from eight different cultivars that had the same edaphoclimatic conditions in two different 
regions of Brazil were analyze with direct infusion electrospray ionization Fourier transform ion cyclotron resonance (ESI FT-ICR MS). 
Samples were ground, extracted with methanol in an ultrasonic bath and diluted with a mixture of methanol/water (1:1) prior to MS 
analysis. Metabolite identification was accomplished based on comparison of the m/z values and MS/MS data obtained by ESI FT-ICR 
MS in negative-ion mode with a homemade library and standards, identifying twenty metabolites. PCA and PLS-DA analysis was 
performed on twenty three samples with forty seven variables and showed that coffees from the Londrina region had higher levels of 
sucrose and feruloylquinic acid, whereas Mandaguari region provided higher levels of atractyloside analogue II. Apart from these 
compounds, others that were key for discrimination of these coffee samples were chlorogenic acids caffeoylquinic acid and di- 
caffeoylquinic acid [107]. 

In 2014, thirty six samples of Arabica L. genotypes (Mundo Novo and Bourbons) grown in the Brazilian municipalities of Lavras, 
Santo Antônio do Amparo (SAA), and São Sebastião da Grama (SSG) were subjected to metabolomic profiling in order to identify 
markers that could help differentiate them and assign their origin. Samples were extracted and derivatized to be analyzed by GC-Q/MS 
which provided forty four metabolites as potential biomarkers. The two PCs responsible for 51.6 % of the variations present in the 
samples were selected for the PCA analysis (Fig. 7). Both regions had similar profiles with SAA exhibiting higher levels of oxalic acid, 
malic acid, D-glucose, fructose, D-sorbitol, and galactinol. Conversely, Lavras showed higher levels of quinic acid, caffeine, and 5-caf-
feoylquinic acid (5-CQA), and SSG displayed higher levels of citric acid and glutamic acid. The genotypes were successfully differ-
entiated. The metabolites that were used as markers were 5-CQA, oxalic acid, galactinol, nicotinic acid, caffeine, and caffeic acid for 
Bourbon and myo-inositol, quinic acid, malic acid, fructose, and D-glucose for Mundo Novo [108]. 

4.3. Studies with authentication purposes 

Among coffee connoisseurs, the variety that really piques their interest is the Indonesian Kopi Luwak. Made from berries that have 
been eaten and excreted by the Asian palm civet, this coffee holds the title of being the most expensive coffee in the world. With such a 
standard to hold, it becomes evident how important it is to have methods to determine its authenticity and protect consumers from 
counterfeit products. As aforementione earlier, metabolomics techniques have risen as powerful tools for chemical profiling in 
different matrices which could be useful for authentication purposes and assigning geographical origin. In 2013, the first report on 
metabolite biomarkers that could potentially help differentiate civet coffee from other varieties was published. Samples consisted of 
Kopi Luwak, commercial Kopi Luwak, commercial regular coffee, fake coffee, and coffee blend. Multimarker profiling was achieved by 
gas chromatography quadrupole mass spectroscopy (GC-Q/MS) which provided discriminant markers for the differentiation of Kopi 
Luwak from other varieties and quantification of these metabolites was then performed by GC/MS. Multivariate analysis involved PCA 
to classify samples, followed by OPLS-DA and significance analysis of microarrays/metabolites (SAM) for the identification of 
discriminant marker candidates. Citric acid, malic acid and the inositol/pyroglutamic acid ratio were the selected markers. The model 
was tested with good results for differentiation against regular coffee and counterfeits and was acceptable for adulterated Kopi Luwak 
[109]. 

A targeted approach was examined in 2016 where the alkaloid content of ninety nine Ethiopian green coffee bean samples of eight 
varieties was determined. Alkaloids were extracted with boiling water and centrifuged. Precipitation of colloidal material such as 
polysaccharides was achieved with an aqueous lead acetate solution and the supernatants were filtered prior to their injection onto an 
High Pressure Liquid Chromatography - Diode Array Detector (HPLC-DAD) system. Concentrations were determined against cali-
bration curves of each alkaloid (caffeine, theobromine and trigonelline) and linear discriminant analysis (LDA) of these results gave 
moderate correlations regarding the classification (75 %) and the prediction (74 %) abilities of the models. Nonetheless, alkaloid 
content still exhibits a good potential for further use as a discrimination parameter for geographical origin [110]. 

Simultaneously, phenolic compound content was also evaluated on 100 samples of Ethiopian green beans belonging to eight 
different varieties (Harar, Jimma, Kaffa, Wollega, Sidama, Yirgachefe, Benishangul and Finoteselam) for authentication purposes. 
Extraction was achieved by shaking with aqueous methanol, followed by centrifugation and retrieval of the supernatant. Polymeric 
components were removed with Carrez reagent I and II and the centrifuged and filtered supernatant was analyzed by ultra performance 
liquid chromatography - time of flight - mass spectrometry (UPLC-TOF-MS). The main phenolic compounds found in these samples 
were chlorogenic acids, eight of which were quantified with calibration curves. Using SIMCA13 (Umetrics, Sweden) and SPSS 20 (IBM 
Corp, USA), discriminant analysis was performed showing that 3-caffeoylquinic acid and 4,5-dicaffeoylquinic acid were suitable as 
markers for the determination of geographical origin of green coffee beans from Northwest and East growing regions of Ethiopia and a 
combination of other chlorogenic acids were useful for the South and West regions. The model had good prediction abilities for both 
regional and sub-regional level proving to be a convenient tool to identify fraudulent products [40]. 

Since elemental composition depends to some degree on environmental conditions, it could be assessed as a discriminant for 
geographic origin. Contrary to organic compounds which can undergo changes during post-harvest processing, elemental composition 
in coffee beans remains relatively stable. On this basis, forty nine coffee bean samples − Harar, Jimma, Kaffa, Wollega, Sidama, and 
Yirgachefe varieties− from different Ethiopian regions were digested in a mixture of H2O2 and HNO3 using a microwave-assisted 
method. Inductively coupled plasma – optical emission spectroscopy (ICP-OES) analysis of the samples allowed the determination 
of nine elements (Mg, P, S, Ca, Mn, Fe, Cu, Ba and Si) and flame atomic emission spectrophotometer (FAES) was used for the 
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determination of potassium. Trends were visualized by PCA (performed on the statistic software package SPSS 20) suggesting that the 
best descriptors for these regions were the P, S, Mn, Si, Cu, and Fe content. PC1 and PC2 accounted for 57 % of the variance of the data. 
A LDA model was proposed which had good regional and sub-regional classification and prediction abilities, 98 % and 92 % of success 
rate, respectively, necessary for the authentication of some of the best coffee beans in Ethiopia [111]. 

Colombian coffee is one of the most renowned coffees in the world, it has been registered as “Protection of Geographical Indications 
granted by the European Commission”, it is sold under the “Café de Colombia” trademark, thus it becomes evident how important is to 
ensure the origin. In 2018, forty one samples of green coffee harvested in experimental stations located in Caldas, Antioquia, Huila, 
Valle del Cauca and Santander were subjected to an untargeted metabolomic analysis in order to identify metabolite markers which 
could potentially identify the origin of Colombian coffee. Two types of extraction were performed to retrieve polar and semi-polar 
compounds and these extracts underwent three chromatographic separations under a HPLC-QTOF MS system. The data was carried 
into a PCA followed by PLS-DA to develop a model that could discriminate between groups analyzed. Thirteen markers were selected 
for the prediction model, from which eight were elucidated by accurate mass: 5-CQA, caffeic acid, ferulic acid, p-coumaric acid and 
feruloylquinic acid isomers. The models showed a 94 % classification accuracy which makes metabolomics a promising approach for 
origin discrimination [112]. 

Another example of applying metabolomics to the discrimination of geographical origin was published in 2019. As a coffee pro-
ducer, Indonesia is known for its Arabica coffee, being the second largest exporter, and its specialty coffees. The demand for high 
quality products increases the interest in having better assays to ensure the origin of these sought after goods. Indonesian Specialty 
Arabica (Bali, Flores, Java, Papua, Sulawesi, Sumatra, Sumbawa) and Fine Robusta (Java Sulawesi, Sumatra) coffee samples were 
subjected to a non-targeted metabolome analysis in order to determine markers that could differentiate between major cultivation 
areas in 2019. Green and roasted coffee beans were extracted and derivatized prior to GC/MS analysis. Data collected was processed 
with MetAlign software which was later carried into a PCA. Even if the model allowed the differentiation of each coffee variety, the 
determination of their origin was possible only if each variety was analyzed independently. Markers for coffee originating from 
Sulawesi, Papua, Flores and Sumatra were glycerol, glucuno-1,5-lactone, gluconic acid and sorbitol. Other interesting markers were 
galactitol and galactinol which allowed differentiating samples from the eastern part of Indonesia and the western and middle part 
[113]. 

Fatty acids are another group of compounds that can be targeted to predict geographical origin. In this Ethiopian report from 2019, 
100 samples of the four major producing areas, Northwest (varieties Benishangul and Finoteselam), West (varieties Jimma, Kaffa and 
Wollega), East (variety Harar) and South (varieties Sidama and Yirgachefe), were subjected to lipid extraction, followed by fatty acid 
derivatization to methyl ethers prior to GC/MS analysis. Eight fatty acids (myristic, palmitic, linoleic, stearic, oleic, arachidic, behenic 
and lignoceric acids) were quantified using calibration curves with the corresponding standards and three more were quantified by 
relation to the internal standard (hypogeic, margaric and gondoic acids). Distribution patterns were found with PCA for the fatty acid 
composition in these regional green coffee beans performing one-way ANOVA on SIMCA 13 (Umetrics, Sweden) and SPSS 20 (IBM 
Corp, USA). Finally LDA was applied which yielded a model with good recognition and prediction abilities (95 % and 92 %, 
respectively) [114]. 

Fig. 8 provides a summary of metabolomics origin assessment over time. 

5. Conclusions 

The introduction of metabolomics for the analysis of different types of produce has expanded the possibilities to have more accurate 
parameters to evaluate not only their quality but also their origin and authenticity. Coffee being a high-demanded product that is 
consumed all over the world, would definitely benefit from having assays that could ensure these aspects that ultimately determine its 
price in the market. As its been demonstrated, geographical origin can be determined not only by differentiation of continents, but even 
by regions within the same country which according to edaphoclimatic differences, might vary in their components and give different 
notes on the final brew. Different techniques are available for this purpose: among the most relevant are chromatography -either gas or 
liquid-coupled with mass detection, NMR, ICP and HRMS. All of them give different information but overall, they provide the 
necessary data to design models that can help assign the origin of unknown samples. 
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[89] G. Greco, E. Núñez-Carmona, M. Abbatangelo, P. Fava, V. Sberveglieri, How coffee capsules affect the volatilome in espresso coffee, Separations 8 (2021), 
https://doi.org/10.3390/separations8120248. 

[90] B.S. Everitt, G. Dunn, Applied multivariate data analysis C6, in: B.S. Everitt (Ed.), Applied Multivariate Data Analysis, first ed., John Wiley & Sons, Ltd., 2001, 
pp. 125–160, https://doi.org/10.1002/9781118887486.ch6. 
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