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Indirect comparisons are used to obtain estimates of relative effectiveness

between two treatments that have not been compared in the same randomized

controlled trial, but have instead been compared against a common compara-

tor in separate trials. Standard indirect comparisons use only aggregate data,

under the assumption that there are no differences in effect-modifying vari-

ables between the trial populations. Population-adjusted indirect comparisons

aim to relax this assumption by using individual patient data (IPD) from one

trial to adjust for differences in effect modifiers between populations. At pre-

sent, the most commonly used approach is matching-adjusted indirect compar-

ison (MAIC), where weights are estimated that match the covariate

distributions of the reweighted IPD to the aggregate trial. MAIC was originally

proposed using the method of moments to estimate the weights, but more

recently entropy balancing has been proposed as an alternative. Entropy

balancing has an additional “optimality” property ensuring that the weights

are as uniform as possible, reducing the standard error of the estimates. In this

brief method note, we show that MAIC weights are mathematically identical

whether estimated using entropy balancing or the method of moments. Impor-

tantly, this means that the standard MAIC (based on the method of moments)

also enjoys the “optimality” property. Moreover, the additional flexibility of

entropy balancing suggests several interesting avenues for further research,

such as combining population adjustment via MAIC with adjustments for

treatment switching or nonparametric covariate adjustment.
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1 | INTRODUCTION

Estimates of relative treatment effects are required for
health care decision-making, for example, in health tech-
nology assessment or regulatory/reimbursement

decisions. A common scenario encountered is where two
treatments of interest, say B and C, have not been com-
pared head-to-head in the same randomized controlled
trial, but instead are compared against a common com-
parator A in separate AB and AC trials. In such scenarios,
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an indirect comparisons1 may be used to obtain an esti-
mate of the relative effect of C vs B, denoted dBC, by com-
paring the relative effect estimates reported in the AB
and AC trials as d̂BC = d̂AC− d̂AB (on a suitable scale, eg,
log odds ratios, log hazard ratios, or mean differences).
However, if there are differences in effect-modifying vari-
ables between the two study populations, this indirect
comparison will be biased.2,3 If individual patient data
(IPD) are available from both the AB and AC study, stan-
dard regression or weighting methods may be used to
adjust for differences in effect-modifying variables
between the study populations. However, it is common
for IPD to only be available from one study and publi-
shed aggregate data from the other. For example, in
health technology assessment a company submits evi-
dence of clinical and cost effectiveness to a reimburse-
ment body such as the National Institute for Health and
Care Excellence in England and Wales. The submitting
company will typically have IPD from their own trial (say
AB), but only published aggregate data from their com-
petitor's trial (AC).

Methods for population-adjusted indirect comparison
have been proposed that aim to adjust for any differences
in observed effect modifiers between populations, using
IPD from one study and aggregate data from another.2,3

At present, the most commonly used approach2,4 is
matching-adjusted indirect comparison (MAIC).5 MAIC is
a weighting approach, where weights wik are estimated
so that the weighted covariate distribution in the AB
study matches that of the AC study. Using these weights,
mean outcome on treatments k = A, B in the AC popula-
tion are estimated by taking a weighted average of the
outcomes yik(AB) of the Nk(AB) individuals i on treatment
k in the AB population

ŷk ACð Þ=

PNk ABð Þ
i=1 yik ABð ÞwikPNk ABð Þ

i=1 wik

: ð1Þ

A population-adjusted indirect comparison is then
constructed in the AC study population as

d̂BC ACð Þ= d̂AC ACð Þ− d̂AB ACð Þ, ð2Þ

where d̂AB ACð Þ = gðŷB ACð ÞÞ−gðŷA ACð ÞÞ for a suitable link
function g(�), and d̂AC ACð Þ is reported by the AC study.

Signorovitch et al5 proposed to estimate the weights
wik using the method of moments to balance the mean
covariate values (and any included higher order terms,
for example squared covariate values to balance the vari-
ance) between the weighted AB population and the AC
population. Belger et al6,7 suggest another form of

population reweighting based on entropy balancing,8

which matches moments of the covariate distributions
under the additional constraint that the optimal entropy
balancing weights are those which are as close as possible
to uniform weights (ie, as close as possible to no
weighting at all). This additional constraint means that
entropy balancing methods should (at least for
homoskedastic outcomes) have equal or reduced SE (and
equal or greater effective sample size) compared to
MAIC, while achieving the same reduction in bias. How-
ever, as we now show, estimation of weights via entropy
balancing and the method of moments are in fact entirely
equivalent. This leads to an important conclusion regard-
ing the optimality of standard MAIC weights based on
the method of moments, and suggests interesting avenues
for further research.

2 | EQUIVALENCE OF THE
METHOD OF MOMENTS AND
ENTROPY BALANCING

The estimation of weights for MAIC, whether based on
the method of moments or on entropy balancing, can be
formulated as a minimization problem.5,8 Equivalence
therefore follows from consideration of the respective
objective functions that are to be minimized.

Let xik be a vector of covariate values for an individual
i on treatment k in the AB study. Signorovitch et al5

showed that, after centering the covariates around the
means in the AC study (ie, so that �xAC = 0), MAIC mini-
mizes the objective function

HMM αð Þ=
X

k=A,B

XNk ABð Þ

i=1

exp xTikα
� �

, ð3Þ

for a vector of parameters α. With solution
α̂=arg min HMM αð Þð Þ, the (normalized) weights wik are
then given by

wik =
exp xTikα̂
� �

P
v=A,B

PNv ABð Þ
u=1 exp xTuvα̂

� � : ð4Þ

(We use the normalized weights here to better show the
equivalence to entropy balancing; a set of weights can be
rescaled arbitrarily without affecting the estimate in
Equation (1).2,5)

Entropy balancing also seeks weights that match the
moments of covariates between studies, but that further
minimize the entropy distance from uniform weights,P

k=A,B

PNk ABð Þ
i=1 wiklog N ABð Þwik

� �
. Hainmueller8 used
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Lagrange multipliers to find an unconstrained dual opti-
mization problem, which (again after setting �xAC = 0 )
gives the objective function

HEB αð Þ= log
1

N ABð Þ

X
k=A,B

XNk ABð Þ

i=1

exp xTikα
� � !

: ð5Þ

With solution α̂=arg min HEB αð Þð Þ, the weights are
again given by (4).

Comparing the objective functions (3) and (5), we
see that

HEB αð Þ= log HMM αð Þð Þ− log N ABð Þ
� �

: ð6Þ

Therefore, since the logarithm is a monotonic func-
tion and log(N(AB)) is constant, the solutions of these two
minimization problems are identical; MAIC weights
based on the method of moments or entropy balancing
are identical up to a normalizing constant.

Example R code is provided in the Appendix S1 that
implements both the method of moments and entropy
balancing approaches to MAIC, applied to the simulated
example given by Phillippo et al.2

3 | DISCUSSION

In this brief method note, we have shown that the MAIC
weights are identical whether estimated using entropy
balancing or the method of moments. In practice,
entropy balancing performs the minimization on the log
scale which may perform better computationally, but the
estimated weights will be identical for MAIC and entropy
balancing, up to optimization error. An important corol-
lary from this result is that standard MAIC (based on the
method of moments) also enjoys the additional “optimal-
ity” property that the estimated weights are as close as
possible to uniform weights (no weighting at all), in an
entropy sense. Alternative loss functions could be used in
the entropy balancing scheme which may change the
performance of the method, and would then no longer be
equivalent to standard MAIC based on the method of
moments. For example, it remains to be seen whether
other loss functions could be used to obtain MAIC
weights that are optimal in the sense that they minimize
the SE of the resulting population-adjusted estimates
(or equivalently, maximize the effective sample size); this
is likely of greater practical interest than pursuing opti-
mality in the entropy sense.

For entropy balancing, Hainmueller8 notes that other
“base weights” for which to minimise the distance from

could be used instead of uniform weights, and this would
also depart from equivalence to standard MAIC based
on the method of moments. With non-uniform base
weights w 0ð Þ

ik , the entropy balancing objective function in
(5) becomes

HEB αð Þ= log
X

k=A,B

XNk ABð Þ

i=1

w 0ð Þ
ik exp xTikα

� � !
, ð7aÞ

and the weights are then given by

wik =
w 0ð Þ
ik exp xTikα̂

� �
P

v=A,B

PNv ABð Þ
u=1 w 0ð Þ

uv exp xTuvα̂
� � : ð7bÞ

Setting uniform base weights w 0ð Þ
ik =1=N ABð Þ in

(7) recovers formula (5) above. Non-uniform base weights
could, for example, be used to perform nonparametric
covariate adjustment,9 or to adjust for treatment
switching,10 prior to population adjustment by weighting
to match the AC population. The idea is that the final
weights aim to retain the initial adjustment applied by
the base weights, while also applying the necessary popu-
lation adjustment. This would be a novel development
for MAIC, and is an interesting avenue for further
research. It remains to be seen how this approach might
perform in practice, for example, if the population differ-
ences are large and the final weights are far from the base
weights. The example R code in the Appendix S1 also
includes an implementation of entropy balancing MAIC
with non-uniform base weights.

Different schemes for applying weights have also
been proposed. MAIC as described by Signorovitch
et al5 estimates weights for the entire AB population at
once to balance covariate distributions with the entire
AC population. Belger et al6,7 compare with other possi-
ble approaches, which involve splitting apart trial arms
and balancing covariate distributions separately
between the control arms (A) and between the treat-
ment arms (B and C) in the IPD and aggregate
populations. The properties of such “splitting”
approaches in comparison with a more typical popula-
tion reweighting are largely unknown and require fur-
ther investigation; however, some initial simulation
studies have reported performance benefits over stan-
dard MAIC.11 While MAIC is at present the most com-
monly used approach for population adjustment, other
methods are available which may have advantages over
MAIC.2,12,13 Recent simulation work showed that
regression-based approaches such as multilevel network
meta-regression and simulated treatment comparison
performed better than MAIC in many scenarios, and
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that in some cases MAIC could even increase bias com-
pared to a standard indirect comparison.12

We have discussed an “anchored” indirect compari-
son scenario where a common comparator arm is avail-
able. However, a sizeable proportion of MAIC analyses
published to date instead rely on an “unanchored” indi-
rect comparison, where absolute outcomes on treatments
B and C from single-arm studies or in a disconnected

network are compared directly as d̂BC Cð Þ = gðŷC Cð ÞÞ−
gðŷB Cð ÞÞ, where ŷB Cð Þ is estimated using weights and ŷC Cð Þ
is reported by the C trial.2,4 Unanchored comparisons
rely on a much stronger assumption than anchored
comparisons, namely that all prognostic factors as well
as all effect modifiers have been suitably adjusted for.2,3

The equivalence of the method of moments and entropy
balancing approaches follows in exactly the same man-
ner in an unanchored setting. Unanchored MAICs have
previously been used in scenarios with a common com-
parator but where treatment switching is present.2,4

The entropy balancing approach with non-uniform base
weights, described above, provides an attractive option
for combining weight-based adjustments for treatment
switching10 with an anchored MAIC, while crucially
retaining reliance on randomization.

Several simulation studies have compared approaches
based on standard MAIC and entropy balancing and
found no difference between these approaches.6,7,11 The
equivalence result given in this paper explains these find-
ings, as we now know that these approaches are identical
up to the numerical accuracy of the optimization rou-
tines. Available guidance on the use of MAIC (eg, 2)
should be updated to note the equivalence of entropy
balancing and standard MAIC.

In conclusion, the equivalence of MAIC weights esti-
mated using the method of moments and entropy
balancing means that standard MAIC (based on the
method of moments) inherits the desirable “optimality”
property that the weights are as uniform as possible.
Moreover, the additional flexibility of entropy balancing
suggests several interesting avenues for further research.
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