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Abstract: The evaluation of breast cancer grades in immunohistochemistry (IHC) slides takes into
account various types of visual markers and morphological features of stained membrane regions.
Digital pathology algorithms using whole slide images (WSIs) of histology slides have recently been
finding several applications in such computer-assisted evaluations. Features that are directly related
to biomarkers used by pathologists are generally preferred over the pixel values of entire images, even
though the latter has more information content. This paper explores in detail various types of feature
measurements that are suitable for the automated scoring of human epidermal growth factor receptor
2 (HER2) in histology slides. These are intensity features known as characteristic curves, texture
features in the form of uniform local binary patterns (ULBPs), morphological features specifying
connectivity of regions, and first-order statistical features of the overall intensity distribution. This
paper considers important properties of the above features and outlines methods for reducing
information redundancy, maximizing inter-class separability, and improving classification accuracy
in the combined feature set. This paper also presents a detailed experimental analysis performed
using the aforementioned features on a WSI dataset of IHC stained slides.

Keywords: uniform local binary patterns; characteristic curves; whole slide image processing; feature
analysis; region connectivity; entropy

1. Introduction

Whole slide images (WSIs) of entire biopsy slides facilitate the processing of a wide range of
features extracted from regions of interest for applications such as automated scoring of the tumour
characteristics seen in the images [1]. WSIs typically contain billions of pixels at high magnifications
(up to 40×) with down-sampled versions at different scales. Powerful digital scanners provide the
technology to convert the information in physical slides to WSIs (also known as virtual slides) that can
be processed by image analysis software for the extensive analysis of complex tissue features [2]. One
of the advantages of digital pathology systems is that WSIs can be easily stored and, if required, almost
instantaneously transmitted to a different location in a reliable and secure manner for processing and
review by multiple pathologists. WSIs have therefore found a wide range of applications in automated
computer-aided diagnosis [3].

Recent studies on medical image classification algorithms have emphasized the need for
developing image analysis methods that can measure biomarker-specific features [4,5]. In the past
few years, advances in WSI instrumentation have provided the ability to automatically load up to
300 slides without user intervention, with considerably faster scanning speeds [5]. This has resulted in
the need for fast image processing algorithms that can detect and analyse various image and texture
characteristics, and accurately extract cytological and morphological features that are relevant to
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histopathological studies and diagnosis. In this context, automatic image classification algorithms
in the field of breast cancer diagnosis have recently received significant attention [6,7]. Some of the
recently organized online contests and programming challenges also point to the need for accelerating
the development of image analysis algorithms for the automated scoring and classification of breast
cancer histology slides [8,9].

The overexpression of human epidermal growth factor receptor 2 (ERBB2 or HER2) protein
in immunohistochemistry (IHC) stained slides is an important cell membrane biomarker used for
breast cancer diagnosis [10]. Breast tissue samples are assigned HER2 scores 0, 1+ (negative), 2+
(equivocal) or 3+ (positive: aggressive disease) depending on the intensity, percentage and pattern
of membrane staining observed in IHC-stained slides [11]. In order for classification algorithms to
provide better accuracy and diagnostic concordance with pathologist’s assessments, it is desirable to
use biomarker-specific features [12,13]. Various types of features such as intensity features, texture
features and morphological features can be extracted from regions of interest within a given image. For
example, features describing the intensity and completeness of membrane staining were used in [14].
Such approaches commonly use a membrane segmentation step consisting of colour-based pixel
classification, nuclei identification, watershed and ellipse fitting algorithms [14–16]. In Reference [17],
the cell regions are detected in a pre-processing step using the watershed algorithm, and then classified
using deep learning into immune cells, stroma cells, tumour cells and artefacts. When there are a large
number of features in an image, the information content and the discriminating power of the feature
set will need to be evaluated in detail. A thorough feature analysis will help in significantly reducing
information redundancy in a feature set and increasing the inter-class separability of the features [17].
A combination of multi-level features including histogram of oriented gradients, local binary patterns
and Haralick features is proposed in [18].

Two important image features associated with HER2 over-expression in IHC-stained
slides—namely, (i) characteristic curves [19] and (ii) rotation-invariant uniform local binary patterns
(ULBPs) [20]—were recently introduced. Characteristic curves provide information about the variation
of the observed percentage of staining with respect to saturation thresholds used for the stain colour,
and are often represented as a one-dimensional smooth curve. When feature points fall along a smooth
curve, we can make use of the information redundancy in the set to reduce the dimension of the feature
vector. On the other hand, higher-order texture descriptors such as the ULBP contain a large number
of feature components. However, these features possess similar geometrical characteristics and show
inter-dependency in their magnitude and shape. An analysis of their parametric variations is useful
for both feature reduction. Some of the common geometrical characteristics of the ULBP feature curves
can be used to get a two- or three-dimensional representation of the feature vector for visualizing how
the points are clustered within each class. Our previous work [21] used Fisher linear discriminant
analysis (LDA) and principal component analysis (PCA) to evaluate the effectiveness of the features,
reduce feature dimension, combine features of different types, maximize inter-class separability and to
improve the overall classification accuracy. Such discriminant analysis approaches are commonly used
to study the feature transformations used in multi-class classification algorithms [22,23].

In this paper, we use a different approach of analysing both geometrical and statistical properties
of feature components to minimise redundancy in the set. This paper also considers the connectedness
of stained membrane regions as an important feature to be used in the classification process. We define
a measure of connectedness based on the size of the largest stained connected component in an image
tile after thresholding using hue and saturation values. We also augment the feature set using the
entropy and energy of the image after transforming it to a grey-level image in the CIE-Lab space.
This paper makes contributions to the understanding of biomarker-specific features useful for HER2
classification by considering the above four types of features, namely, intensity, texture, morphological
features and colour-sliced histograms, analysing their characteristics for reducing feature dimension,
and demonstrating their feature representation capabilities using classification algorithms.
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This paper is organized as follows. The next section gives a description of the dataset and methods
used in our analysis. Section 3 gives an overview of characteristic curves, which are features based on
intensity variations. Section 4 discusses the computation of rotation-invariant uniform local binary
patterns. Section 5 introduces a connectedness measure that is useful as a morphological feature for
HER2 classification. Section 6 outlines first-order statistics of grey-level distribution in CIE-Lab space,
useful for our analysis. This section also gives an overview of changes in classification accuracy and
feature dimension at each processing stage. Section 7 gives a few geometrical characteristics of the
features that could be used for dimensionality reduction. Section 8 gives a summary of the work
presented in the paper, and outlines future research directions.

2. Materials and Methods

The dataset used in this research work consisted of a total of 172 whole-slide images
in Nano-zoomer Digital Pathology (NDPI) format, corresponding to 86 cases of patients with
invasive breast carcinomas [7]. WSIs of both Haematoxylin and Eosin (H&E)-stained slides and
immunohistochemically-stained slides were provided for each case. The images were released to
research groups by the University of Warwick as part of an online HER2 scoring contest held in 2016 [8].
The contest organizers granted permission to the participating teams to use the dataset for research
purposes. For training classification algorithms, a set of ground truth data was provided. It consisted
of the HER2 scores assigned for each case and also the observed percentage of membrane staining in
the tissue sample as determined by expert pathologists.

For our experimental work, we used 52 WSIs of IHC-stained images from the training dataset,
with 13 WSIs belonging to each of the four HER2 classes. The H&E slides were not used in our
work. Each WSI image was further subdivided into approximately 80 small tiles (image patches)
of size 512 × 512 pixels for the computation of features. From this set, image tiles containing less
than 40% of the region of interest (membrane regions) were removed. A total of 4019 image patches
were used as samples in our classification experiments. For HER2 classification, we require features
that represent the percentage and intensity of membrane staining, and the morphology of staining
patterns (i.e., texture and connectedness). We therefore designed characteristic curves which efficiently
represent the variation of percentage of staining with saturation levels [19,20]. The local binary patterns
were used to capture local texture characteristics [20]. In this paper, we also introduce a connectedness
measure that represents the connectedness of the stained membrane regions. Two global histogram
features (i.e., energy and entropy) are included in the feature set, as they also showed significant
variation for each class, with good inter-class separability. The features are described in detail in the
following sections. As shown later in Table 1, a total of 38 features were computed per sample. For
each run of the classification algorithm, this set of 4019 samples was further subdivided randomly into
a training set consisting of 2813 samples (70%), and a cross-validation set consisting of 1206 samples
(30%). In this paper, we show that the selected features provide a good level of accuracy using two
classification algorithms: one-vs.-all logistic regression and support vector machine. The focus of the
paper is on the computation and analysis of biomarker-specific features for HER2 classification, and
the machine learning algorithms are used only to evaluate the feature representation capabilities of the
selected set.

3. Characteristic Curves

The level of membrane staining in an IHC image can be represented using a smooth curve
known as the characteristic curve, which shows the variation of the percentage of pixels above
a saturation threshold as the threshold value is increased within an experimentally determined
range. The computational aspects of characteristic curves and their properties are detailed in [19,20].
The properties that make characteristic curves excellent candidates for intensity-based feature
descriptors are their magnitude and drop-off rate, which vary significantly with HER2 scores as
shown in Figure 1. The shapes of the characteristic curves can therefore be directly correlated with
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the staining levels required for HER2 scores as per the assessment guidelines [11]. For example, the
characteristic curve always lies below the 10% threshold when the score is 0, and only a small initial
segment of the curve lies above the 10% mark when the score is 1. If the score is 3+, the curve lies
completely above the 30% mark, showing a strong and complete membrane staining. As seen in
Figure 1, the curve passes through a much wider range of values of percentage staining when the score
is 2+.
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Figure 1. The shapes of the characteristic curves for images with different human epidermal growth
factor receptor 2 (HER2) scores (a) Input image; (b) Thresholded image at saturation 0.1; (c) Thresholded
image at saturation 0.5; (d) Characteristic curve with x-axis denoting saturation from 0 to 0.5, and y-axis
% of stained region.

The characteristic curves used in our work have 21 points corresponding to saturation thresholds
varying from 0.1 to 0.5 in steps of 0.02. Since all characteristic curves have a non-increasing trend
and are defined only between pre-determined saturation thresholds along the x-axis, one global
characteristic of the shape is the area under the characteristic curve. A box-plot showing the distribution
of area in the dataset containing 1271 randomly selected samples is shown in Figure 2. The single
metric itself shows a good inter-class separation of the feature vectors and can be used to visualize
their distribution.
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Figure 2. Box plot showing the distribution of the area under characteristic curves for an input dataset
containing 1271 samples.

4. Uniform Local Binary Patterns

Local binary patterns (LBPs) are texture descriptors specified using the pattern of variation of
intensity values around pixel neighbourhoods [24]. Texture features based on LBPs find applications
in pattern analysis, texture classification and computer vision. Since WSIs do not have any predefined
orientation, the LBPs computed for WSIs must be rotation invariant. For this, we use uniform local
binary patterns (ULBPs) [20]. The computation of nine ULBP components U0 . . . U8 is detailed
in [20]. We disregard U8 as it mainly represents background regions of constant intensity. Similar to
characteristic curves, each ULBP feature curve also consists of 21 sampled points corresponding to
variations in the saturation threshold from 0.1 to 0.5. Therefore, the whole feature vector U0 . . . U7 has
a total dimension of 168. Figure 3 shows the variation of the first three ULBP components with the
saturation threshold plotted along the x-axis. Similar variations are seen in the remaining ULBP values.
The ULBP feature curves show considerable difference in their magnitude and variance between
classes with HER2 scores 1+, 2+ and 3+. However, the variance is found to be small between classes 0
and 1+ because between those two classes, there is no significant difference in the texture of staining
patterns. Similarly, when the saturation threshold is increased, regions become more uniform in colour
values, and hence the LBP values all tend to zero.

The ULBP feature curves generally have very low curvature and allow a first-order approximation
where each curve is parameterized into the slope and the y-intercept of the approximating line. This
linear approximation helps us to visualize their distribution in a training set.
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Figure 3. Variations of a uniform local binary pattern (ULBP) component with saturation thresholds
for images with different HER2 scores. The x-axis represents saturation values from 0.1 to 0.5, and the
y-axis represents the ULBP feature values.

Figure 4 shows the distribution of points for ULBP feature curves obtained from 900 samples.
This figure clearly shows the clustering of points in each class, as well as their inter-class separation.
Figure 4 also shows an important aspect of the ULBP features—they had a much wider range of
variation in slopes with height value for HER2 class 3+, while for other classes, the slope varied nearly
linearly with the y-intercept. When the intensity and percentage of staining were low, as in HER2
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classes 0 to 2+, the variations in texture were nearly uniform. Significant variations in texture patterns
were observed for HER2 class 3+ where the staining intensity was high.
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5. Region Connectedness

The connectedness of stained membrane regions is also an important visual marker used by
pathologists in the assessment of histology slides. Measures for connectedness have also been
considered in classification algorithms [25]. The filtered region of interest (ROI) obtained from each
image tile is first thresholded at the lowest saturation value (0.1) to obtain a binary image where white
pixels represent stained regions. A connective component algorithm then finds the size of the largest
connected component in the image. The ratio of the size to the number of pixels in the filtered region
expressed as a percentage is used as the connectedness measure.
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Figure 5. Computation of connectedness measure. (a) Input image; (b) Stained regions; (c) Thresholded
binary image; (d) Computed values of connectedness parameters. ROI: region of interest, CC:
connected component.
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Figure 5 shows the processed images of four tiles corresponding to four HER2 scores, with the
second column showing the stained regions marked in yellow and unstained areas in the region of
interest in cyan colour, for a saturation value of 0.1. The third column shows the binary image obtained
by thresholding. The number of pixels in the region of interest and the largest connected component
are shown in the last column. The connectedness measure is computed as the percentage ratio of
the two sizes (also shown in red colour in the last column). A box-plot showing the distribution of
the connectedness values in the dataset containing 1271 samples is shown in Figure 6. Even though
there was a clear separation of the interquartile ranges (approx. 67%) corresponding to each score,
the overall range of connectedness values overlapped between scores.
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6. Histogram Statistics

The distribution of colour values that are relevant for classification can be characterized by
first-order statistics of the histogram of the image tile after appropriate colour-space transformation.
Since most of the colour values of interest in an image of the IHC-stained slides fell along the
blue–yellow axis, we first converted the input images to the CIE-Lab space [26], and used the grey-level
histogram of the b* channel to compute the entropy and energy of the colour distribution (Figure 7).

The entropy and energy computed from normalized histograms of grey-level images are
commonly used in image classification algorithms [27]. As can be seen in Figure 7, the entropy
values on the b* channel were strongly correlated with the amount of staining present in the images,
and hence with the HER2 scores. However, the energy values varied inversely with increasing HER2
scores. The values plotted for all image tiles in the data set also showed an inverse correlation between
the two parameters, with entropy increasing and energy reducing with increases in HER2 scores
(Figure 8).
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7. Feature Dimension

In this section, we take a look at some of the important geometrical properties of the features
presented in the previous sections in order to reduce the size of the feature set to the minimum
required level for classification, without transforming them to a different space. The motivation for this
approach was to retain the primary visual characteristics of the features that are directly correlated with
the staining patterns seen in the images. Transformation-based methods using principal component
analysis (PCA) and linear discriminant analysis were presented in our previous work [21].

The characteristic curves were smooth curves that could be approximated by cubic polynomial
curves. However, replacing the points with polynomial coefficients affected the accuracy of
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classification results. We analysed accuracy variations by increasing the sampling interval on the
curve to select the correct number of points for representing the features (Figure 9). Based on the
experimental results, 10 feature points were selected for representing the characteristic curve. In this
experiment, we used only characteristic curves as features, and the one-vs.-all logistic regression
algorithm was run 200 times, randomly selecting 1206 samples from the input set for cross-validation
in each run. Figure 9 shows the average accuracy from these 200 trials.
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As previously shown in Figure 3, the values of uniform local binary features U0 . . . U7 exhibited a
low curvature variation with saturation thresholds. This geometrical property was helpful in reducing
the number of points on each curve from 21 to 5. Experimental results also showed similarity between
several ULBP curves. A pair-wise similarity test revealed that the pairs {U3, U5}, {U2, U6} and {U6, U7}
had high levels of similarity. Using this result, we could reduce the number of ULBP feature curves
from 8 to 5 (U0 . . . U4). Table 1 gives a summary of the features proposed in this paper and their
dimensions based on the analysis presented above.

Table 1. Types and dimensions of features used in our analysis.

Features Size Key Properties

Characteristic curves 10 Non-increasing smooth curves
Rotation-invariant LBP 25 Very low curvature; similarity between curves

Connectedness 1 Large variations
Entropy, Energy 2 Inversely correlated

For experimental validation of the suitability of the features, the above features were used in
a “one-vs.-all” multi-class classification algorithm based on logistic regression and support vector
machine [28], using 5-fold cross validation. The experiment was repeated 50 times, and the plots of the
mean and standard deviation of accuracy with each trial are shown in Figure 10. The logistic regression
algorithm gave an average classification accuracy of approximately 93%, with a maximum standard
deviation of 1.5% in accuracy. The support vector machine algorithm gave a comparatively lower score
of accuracy at approximately 89% and a higher standard deviation of 2.5. A sample confusion matrix
obtained from one of the runs of the logistic regression algorithm is given in Table 2.

Few research works using biomarker-specific features in the classification of IHC slides have been
reported so far. In the following, we give a brief comparison of these methods (Table 3). An extensive
review and comparison of methods (not restricted to immunohistochemical quantification) used in the
classification of breast cancer pathology slides is given in [15].
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Table 2. Confusion matrix obtained from one trial run of the multi-class logistic regression algorithm.

Predicted Accuracy = 93.86%

0 1+ 2+ 3+ Precision Recall F1-Score

Actual

0 299 11 0 0 0.86 0.96 0.91

1+ 42 206 7 0 0.94 0.81 0.87

2+ 5 1 286 7 0.97 0.96 0.96

3+ 0 0 1 341 0.98 1.0 0.99

Table 3. A comparison of immunohistochemical (IHC) classification algorithms using biomarker-specific
features. CNN: convolutional neural network.

Ref Methods/Features Classifiers Accuracy

[14]
Colour pixel classifier
Nuclei segmentation

Ellipse fitting

Linear regression,
Minimum cluster distance 80% Avg

86.5% Max

[18]
LBP

Haralick features
Histogram of oriented gradients

SVM
CNN 80% Avg

92% Max

Our method
Characteristic curves

ULBP
Connectedness, Entropy

Logistic regression
SVM 91% Avg

93% Max

8. Conclusions and Future Work

This paper proposed a set of image features that are closely related to visual markers used for
the HER2 classification of breast cancer histology slides. Specifically, four different types of features
based on variations in stain intensity, texture characteristics, morphological variations and histogram
statistics were considered. Characteristic curves represent the percentage of staining and its variation
with saturation levels as a non-increasing smooth curve. Rotation-invariant uniform local binary
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pattern curves were used as texture descriptors. This paper also introduced a connectedness measure
as a morphological feature of the staining patterns. The feature set was further augmented with global
histogram features computed for the b* channel values of the image in the CIE-Lab colour space.
Methods based on the geometrical characteristics of the features to visualize their distribution in the
training set and also to reduce their dimensionality were presented.

Further research work is directed towards analysing higher-order statistics of texture features
including Grey Level Co-Occurrence Matrices (GLCMs) for improving the classification accuracy [29].
More texture features representing the morphological characteristics of membrane staining could help
in reducing the overlap between regions corresponding to classes 1+ and 2+, and also between classes
2+ and 3+. It should also be noted that due to inaccuracies present in the process of IHC staining
slides, there will always be some level of uncertainty in the stain intensity that will correspond to
inaccuracies in the slide assessment [30]. The study of feature analysis will be followed by an extensive
analysis of classification algorithms including neural networks, decision trees, random forests and
more sophisticated deep learning algorithms.
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