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Abstract

Motivation: Nucleic acids and proteins often have localized sequence motifs that enable highly

specific interactions. Due to the biological relevance of sequence motifs, numerous inference meth-

ods have been developed. Recently, convolutional neural networks (CNNs) have achieved state of

the art performance. These methods were able to learn transcription factor binding sites from

ChIP-seq data, resulting in accurate predictions on test data. However, CNNs typically distribute

learned motifs across multiple filters, making them difficult to interpret. Furthermore, networks

trained on small datasets often do not generalize well to new sequences.

Results: Here we present circular filters, a novel convolutional architecture, that convolves sequen-

ces with circularly permutated variants of the same filter. We motivate circular filters by the obser-

vation that CNNs frequently learn filters that correspond to shifted and truncated variants of the

true motif. Circular filters enable learning of full-length motifs and allow easy interpretation of the

learned filters. We show that circular filters improve motif inference performance over a wide

range of hyperparameters as well as sequence length. Furthermore, we show that CNNs with circu-

lar filters in most cases outperform conventional CNNs at inferring DNA binding sites from ChIP-

seq data.

Availability and implementation: Code is available at https://github.com/christopherblum.

Contact: christopher.blum@hhu.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A fundamental property of biological macromolecules such as

DNA, RNA and proteins is their ability to generate highly specific

interactions. These high specificities are often associated with local-

ized motifs in the primary structure of these macromolecules.

Intricate motif variations, indirect effects on binding specificity and

noisy data make motif inference from high-throughput data a chal-

lenging task (Berger and Bulyk, 2009; Kidder et al., 2011; Man and

Stormo, 2001; Rohs et al., 2010; Weirauch et al., 2013).

As interactions among biomolecules participate in almost all proc-

esses that have biotechnological or biomedical relevance, numerous

methods have been developed to infer motifs and binding specificities

from high-throughput data sources (Weirauch et al., 2013).

These methods range from derivatives of nucleotide frequency count-

ing procedures such as k-mer and position weight matrix (PWM)

methods to, most recently, convolutional neural networks (CNNs)

(Alipanahi et al., 2015; Zeng et al., 2016). Unlike PWM methods,

CNNs do not require aligned input sequences because they convolve

input sequences with sliding weight matrices called filters. Although

this sliding operation resembles k-mer methods, CNNs do not rely on

predefined k-mers. Instead, they learn the weight matrices from data

through an optimization process that involves predicting associated

sequence features, such as ChIP-seq read counts.

CNNs have achieved state of the art performance at predicting

fluorescence intensities derived from protein binding microarray

data (Alipanahi et al., 2015). It has been reported, however, that

training these models with gradient descent methods is sensitive to
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weight initialization, which can impair generalization ability

(Zeng et al., 2016). A common work-around is to use multiple fil-

ters, but this has a draw-back: using CNNs with multiple filters

results in motif information being distributed across the filters, pre-

venting immediate interpretation. Moreover, deep neural networks

typically require large amounts of training data. Due to the noisiness

of protein binding microarray and ChIP-seq derived data, the num-

ber of positive training examples is often limited (positive examples

are sequences that can be assumed to contain a certain motif).

A CNN-based motif inference method, DeepBind, uses data aug-

mentation to artificially increase the number of training examples,

but it still relies on a sufficiently large number of positive training

examples (Alipanahi et al., 2015; Simard et al., 2003).

Here, we present a novel CNN architecture called circular filters

that enables efficient data utilization and easy interpretation of the

learned filters. We show that filters of conventional CNNs often con-

tain shifted and truncated motifs and argue that these correspond to

local optima: during gradient descent optimization, the motif

‘develops’ in the CNN filter from a random position, and it can hap-

pen that only a truncated motif can be learned because a filter edge is

reached. We then introduce circular filters as a natural solution to

this problem. Circular filters are composed of all circularly permu-

tated and weighted variants of the same underlying filter (Fig. 1). If

one filter variant has learned a truncated motif, there is another filter

variant in which the full motif can be learned (given that the filter is

as long as the motif). We emphasize that the algorithm learns to ig-

nore non-optimal filter variants so that after training, only one filter

mainly contributes to the objective. This means that there are no per-

formance drawbacks in using circular filters compared to normal con-

volution, but circular filters help to escape local optima.

We show that circular filters improve motif inference over a

wide range of hyperparameter settings, allowing better inference

from long sequences and when data are scarce. We demonstrate that

both CNNs with and without circular filters can infer diverse motifs

such as ‘AACCGT’ easier than less diverse motifs such as

‘AAAAAC’. Finally, we show that a CNN with circular filters yields

accurate predictions for ChIP-seq derived data, performing at least

as well as current state of the art algorithms for motif inference.

2 Materials and Methods

2.1 Models
One-hot coding. To enable processing by CNNs, sequences were con-

verted to image-like representations by one-hot coding. Specifically, a

sequence X ¼ X1; . . . ;XL of length L with elements Xj coming from

an ordered set with finite cardinality Xj 2 D; jDj ¼ N can be repre-

sented as a N�L one-hot coding matrix S with elements Sij that are

equal to 1 if Xj is the i-th element in D and 0 otherwise.

Network architectures. We modeled the class-conditional probabil-

ity pðCmotif jSÞ that a sequence with one-hot coding S belongs to class

Cmotif (‘contains motif’) or not with different neural networks. These

were: a conventional CNN, three different CNNs with circular filters,

and a network with a fully connected layer. Input to the networks were

N�L one-hot codings S, where L was the length of the sequence and

N¼4 was the number of features (4 nt). In the following, the N � LF

matrix F is a convolutional filter of length LF, wk and w are weights

and b is a bias, and rðxÞ ¼ 1=ð1þ e�xÞ denotes the sigmoid function.

The three CNN architectures with circular filters that were

investigated all convolved the input S with circular filters without

padding, followed by a Rectifying linear unit (ReLU) and max-

pooling to yield activations zk (Fig. 1). That is, they shared the fol-

lowing chain of functions:

hpk ¼
XLf

i¼1

XN
j¼1

Sj;ðiþp�1ÞFjm; with m ¼ ðiþ k� 1Þ ðmod LFÞ;

apk ¼ maxð0; hpkÞ ðReLUÞ;

zk ¼ maxfap;1; . . . ; ap;L�LFþ1g ðmax-poolingÞ:

The three CNN architectures with circular filters then differed in

how the activations zk were mapped onto the class-conditional prob-

abilities. Specifically, the CNN with circular filters used a weighted

sum of the activations

pðCmotifjSÞ ¼ r bþ
XLF

k¼1

wkzk

0
@

1
A:

Whereas the CNN with circular filters and sum of the activations

simply summed up all activations

pðCmotif jSÞ ¼ r bþw
XLF

k¼1

zk

0
@

1
A:

Finally, the CNN with circular filters and max-out (Goodfellow

et al., 2013) only used the largest of all activations

pðCmotif jSÞ ¼ rðbþw maxfz1; . . . ; zLF
gÞ:

The CNN without circular filters (Fig. 2) convolved the input se-

quence S with one ordinary filter, then applied ReLU and max-pooling

and mapped the activations z to the class-conditional probabilities

hp ¼
XLf

i¼1

XN
j¼1

Sj;ðiþp�1ÞFji;

ap ¼ maxð0; hpÞ ðReLUÞ;

z ¼ maxfa1; . . . ; aL�LFþ1g ðmax-poolingÞ;

pðCmotifjSÞ ¼ rðwzþ bÞ:

Fig. 1. Illustration of a CNN with circular filters. Circular filters consist of all

circularly permutated variants of the same underlying filter. Convolution with

one circular filter of length N yields N feature maps that are linearly combined

in a subsequent layer. During training, the algorithm learns to select only one

filter variant through the linear combination
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The fully connected network had the following chain of func-

tions. Here, M is a ðN � LÞ � ðL� LF þ 1Þ matrix, and S was

reshaped into a vector of length N � L

hp ¼
XN�L
i¼1

SiMip;

ap ¼ maxð0;hpÞ;

z ¼ maxfa1; . . . ; aL�LFþ1g;

pðCmotifjSÞ ¼ rðwzþ bÞ:

Extracting learned motifs from circular filters. A circular filter of

length N consists of N circularly permutated variants of the same fil-

ter. After model training, each of these variants can in principle con-

tain the correct motif, but the one with the largest associated weight

wk for linearly combining the activations is the most likely to con-

tain the correct motif. We used this rationale to extract predicted

motifs from trained circular filter variants.

Model training. Models were trained by minimizing the cross-

entropy between network outputs and sequence labels using either

mini-batch stochastic gradient descent or Stochastic Gradient Langevin

Dynamics (SGLD) (Welling and Teh, 2011), depending on the experi-

ment. When SGLD was used, the magnitude of the noise injected into

the gradients was scaled by a factor c, resulting in c
ffiffi
�
p
Nð0; 1Þ as

injected noise, with � as learning rate. Mini-batches were balanced, that

is, they contained roughly equal numbers of positive and negative exam-

ples, with negative examples created either by random shuffling or di-

nucleotide shuffling of the positive sequences (described in Section 2.2).

DeepBind settings. The default DeepBind training parameter set-

tings were used, except for an override of the filter length and the

number of filters. Furthermore, the original routine for generating

negative examples de novo was replaced by a routine to load the

negative examples from the hard drive. To obtain a platform-

independent instance of DeepBind, DeepBind was run in a Docker

container using Nvidia Docker (Merkel, 2014). This was necessary

because former attempts towards a platform-independent imple-

mentation were still depending on a certain CUDA-version, which

in turn must be compatible with the graphic’s card’s chip architec-

ture (Nickolls et al., 2008; Zeng et al., 2016).

Performance measures All algorithms assigned a score to each se-

quence that indicated the predicted likelihood that a sequence con-

tained a motif. Consequently, we used either AUROC values or

accuracies calculated based on test datasets as performance measures.

2.2 Data
Synthetic data. Synthetic data consisted of labeled positive and nega-

tive training examples (sequences with and without the desired

motif, respectively). Sequences had a length of 40 nt if not men-

tioned otherwise explicitly. Positive training examples were created

by first creating a random nucleotide background and then placing

the desired motif at a random position within the sequence.

Negative training examples were created by randomly drawing from

the positive sequences (with replacement) and then randomly shuf-

fling the nucleotide order. This procedure ensures that models can-

not discriminate positive and negative examples based on their

nucleotide composition.

ENCODE data. The pre-processed ENCODE datasets published

by the DeepBind authors (http://tools.genes.toronto.edu/deepbind/

nbtcode/nbt3300-supplementary-software.zip) were used for training

and testing (Alipanahi et al., 2015). In short, their datasets are derived

from transcription factor ChIP-seq experiment data (http://hgdownload.

cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/)

published by the Encyclopedia of DNA Elements (ENCODE)

Consortium (Dunham et al., 2012). These ChIP-seq datasets comprise

of mapped sequence reads and read numbers for the most significant

peaks. Regions around read peaks (starting 50 nt before and ending 50

nt after each peak) were extracted and sorted according to the read

number in descending order. Since sequences with high read numbers

are more likely to contain a binding site for the respective transcription

factor, these sequences were used as positive examples. The DeepBind

authors then used the first 500 even-numbered sequences as positive test

data and all remaining sequences as positive training data. Then, di-

nucleotide shuffling was used to create negative examples based on the

positive examples for both training and test datasets (Altschul and

Erickson, 1985). Dinucleotide shuffling maintains the dinucleotide fre-

quency, which can be necessary to prevent models from learning to dis-

criminate positive and negative examples solely based on dinucleotide

frequency (for example, the number of CG dinucleotides in naturally

occurring sequences can be significantly lower than the frequency of

other dinucleotides).

Here, we used the original test datasets published by the

DeepBind authors (‘*_B.seq.gz’ files) for model testing (Alipanahi

et al., 2015). To create positive training examples, we used the top

500 sequences from the training datasets (‘*_AC.seq.gz’ files)

(Alipanahi et al., 2015). Negative training examples were created by

randomly drawing from these 500 positive sequences (with replace-

ment) and then shuffling the nucleotide order via dinucleotide shuf-

fling. Negative training data were saved to a hard drive to be able to

provide all models with exactly the same training data.

2.3 Experiments
How frequently do CNN architectures learn shifted motifs?

Synthetic datasets were generated for all 4096 6-mers. Each dataset

consisted of either 5 or 100 positive and 104 negative examples.

Two network architectures were investigated: the CNNs with and

without circular filters (Figs 1 and 2, respectively). Models were

trained for 104 steps at a learning rate of 0.01.

The learned filters were then used to predict the most likely motif

based on the nucleotides indicated by largest weight at each filter

position. These predictions were then compared to the original 6-

mer motifs. In this comparison, it was checked if the learned filters

corresponded to shifted and truncated versions of the original motif.

Specifically,

• shifts –3, –2 and –1: it was checked if the l rightmost nucleotides

of the filter were equal to the l leftmost nucleotides of the motif

hidden in the sequences, with l 2 3; 4;5,
• shift 0: it was checked if all 6 nt of the filter were equal to the

complete motif hidden in the sequences

Fig. 2. Illustration of a CNN without circular filters. The network is trained to dis-

criminate between sequences with and without motifs in a supervised manner

Neural networks with circular filters 3939

Deleted Text: :
Deleted Text: &hx201C;Data&hx201D;
Deleted Text: Zeng <italic>et<?A3B2 show $146#?>al.</italic>, 2016; 
Deleted Text: ucleotides
http://tools.genes.toronto.edu/deepbind/nbtcode/nbt3300-supplementary-software.zip
http://tools.genes.toronto.edu/deepbind/nbtcode/nbt3300-supplementary-software.zip
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
Deleted Text: ucleotides
Deleted Text: ucleotides
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: as
Deleted Text: figure
Deleted Text: ucleotides


• shifts 1, 2, 3: it was checked if the l leftmost nucleotides of the fil-

ter were equal to the l rightmost nucleotides of the motif hidden

in the sequences, with l 2 3;4; 5.

To test whether the number of times k with which shifted motifs

were learned from the n¼4096 datasets, we used the Binomial dis-

tribution Bn;pðkÞ, where p ¼ 1=4l is the probability to learn a motif

of length l by chance. Since some of the resulting p-values were too

small to be calculated with standard statistical programs, the small-

est k necessary for a p-value less than or equal to 10�5; ksignif , was

calculated instead. For example, the value of the leftmost bar in the

barplot in Figure 3b at 0:033 � 135=4096 is significant because a

shift of –3 was observed 135 times and ksignif was 100. Values for all

ksignif can be obtained from Supplementary Table S1.

What is the effect of sequence length on motif inference? To in-

vestigate the effect of sequence length on motif inference, synthetic

datasets were generated for 100 random 6-mer motifs (Fig. 3d; a list

of the 100 motifs is given in Supplementary Table S2). For each

motif, eight training and test datasets were generated, corresponding

to sequence lengths between 10 and 80. Datasets contained either

10, 100 or 105 positive and 105 negative training examples. CNNs

with and without circular filters as well as a neural network with a

fully connected layer and were trained on all datasets. Models were

trained for 104 steps at learning rate 0.1, and prediction accuracies

on test datasets (1000 positive and negative examples) were calcu-

lated, and the median accuracies over all 100 random 6-mers were

used to compare the architectures.

Does motif composition affect motif inference using CNNs?

To assess whether the composition of a motif affects its inference

with CNNs (Fig. 3e and f), we compared how well each of all 4096

6-mers could be inferred with both the CNN with and without cir-

cular filter. Synthetic datasets were generated for all 4096 6-mers.

Then, models were trained on these datasets ten times (‘single run’),

and it was checked how often the motifs had been inferred correctly.

In addition to this, ten models were trained ten times each, and it

was checked how often the best-performing among the ten models

had inferred the motif correctly (‘best out of ten runs’). Taking the

best out of several models essentially corresponds to a re-

initialization and re-training of the model weights. Models were

trained for 5000 steps at learning rate 0.01, and datasets had 100

positive and 104 negative examples. We then used the frequency of

the most frequent letter as a measure for motif composition to cor-

relate motif composition with the rate of correct inference of that

motif. For example, in the motif ‘AACCGT’, the frequency of the

most frequent letter is 2 (both ‘A’ and ‘C’ occur twice in

‘AACCGT’), whereas in the motif ‘AAAAAC’, it is 5. Differences in

the relative frequency with which motifs were inferred correctly

were tested using Mann-Whitney-U tests.

How do hyperparameters affect motif inference with CNNs? To

investigate the effect of circular filters on motif inference for differ-

ent hyperparameter settings (Supplementary Table S3), we trained

and tested CNNs with and without circular filters on simulated data

for a variety (grid) of hyperparameter combinations. We then tested

for which hyperparameter settings utilization of circular filters sig-

nificantly improved performance. Values of 0, 0.1, 1.0, 10 or 100,

multiplied by
ffiffiffiffiffiffiffiffiffiffiffiffi
Ntrain

p
, were used to scale the variance of the noise

injected by SGLD. Here, Ntrain is the total number of training exam-

ples. Models were trained at a learning rate of 0:01=Ntrain, and

values of 0, 0.1, 1.0, 10 or 100, multiplied by Ntrain, were used as

L2-regularization strength. Filter lengths were either 3, 4, 6 or 12 nt,

and either 5, 50 or 500 positive training examples were used for

training. To investigate the effect of the linear combination layer of

Fig. 3. (a) Illustration of truncated motifs learned from training sequences. (b, c)

Frequencies how often a CNN without and with circular filters learned shifted and

truncated motifs. The true motifs had length 6 and were embedded in sequences

of length 40 nt. A shift of 0 indicates that the full motif was learned correctly.

(d) Relationship between sequence length and accuracy of distinguishing sequen-

ces with and without particular 6-mer motifs. Four architectures were investigated:

a CNN with circular filters (green line), a CNN with one filter (blue line), a CNN

with six filters (blue dashed line), and a neural network with a fully connected

layer (dotted gray line). Plots show median accuracies over 100 different, random-

ly selected motifs. (e) The ratio of times a motif is inferred correctly depends on its

composition. Diverse motifs are more likely to be inferred correctly on the first try

for a CNN with circular filters (green boxes), whereas no difference is detectable

for a CNN without circular filters (blue boxes). Diversity is measured in terms of

the frequency of the most frequent motif letter. For example, in the motif

‘AACCGT’, the frequency of the most frequent letter is 2, whereas in ‘AAAAAC’, it

is 5. Differences were tested using Mann-Whitney U tests. (f) When ten attempts

are made at inferring a motif, both CNN (blue boxes) and CNN with circular filters

(green boxes) can infer diverse motifs more easily. (g) Performance comparison

between the CNN with circular filters (green), CNN without circular filters (blue)

and DeepBind (red) on ENCODE ChIP-seq datasets for several filter configura-

tions. For example, a filter configuration of 1� 4 indicates that one filter of length

4 was used. Original training datasets contained 500 positive and 104 negative

examples. Differences were tested using a binomial test, and p-values were cor-

rected for multiple hypothesis testing with the Bonferroni method. We suspect

that DeepBind might have been optimized for the use of multiple, long filters. (h)

Examples of filter weights learned from ENCODE ChIP-seq data with a CNN with

one circular filter of length 20, represented as heat-maps. The shown filter weights

can be interpreted as the TATA-box (recognized by TATA-binding protein, TBP,

left) and the UA1 motif (recognized by Breast cancer type 1 susceptibility protein,

BRCA1, right). Letters on the x-axis indicate the most likely nucleotide at each

position
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the CNN with circular filters (Fig. 1), we also investigated two alter-

native architectures with circular filters. These networks used a sim-

ple sum or max-out of the activations (Goodfellow et al., 2013). We

generated synthetic datasets for both training and testing based on

32 random 6-mer motifs (a list of the motifs is given in

Supplementary Table S4). For the training data, three datasets corre-

sponding to the number of positive training sequences (5, 50 and

500) were generated for each motif, and each training dataset con-

tained 104 negative examples. The test datasets consisted of 1000

positive and 1000 negative examples. Networks were trained using

SGLD for 40 000 training steps, with mini-batches containing 20

training examples. AUROC values were calculated based on predic-

tions on the test datasets. We then calculated the ratio with which

the CNNs with circular filters achieved higher AUROC values than

the CNN without circular filters for a particular hyperparameter.

For example, to determine whether circular filters at an L2 regular-

ization strength of 0.1 overall improved performance, we kept the

L2 regularization strength fixed at 0.1 and then counted how often

the CNNs with circular filters led to larger AUROC values than the

CNN without circular filters for all remaining hyperparameter com-

binations of SGLD noise variance scaling factor, number of positive

training examples, filter length and all 32 motifs. To test the

obtained ratio, r, for statistical significance (H0 : r � 0:5), we boot-

strapped over the 32 motifs (105 bootstrap samples) and used a sig-

nificance level of a ¼ 10�4.

How does the CNN with circular filters perform compared to the

state of the art on ChIP-seq data? We compared how well the CNN

with circular filters can infer motifs from ENCODE ChIP-seq datasets

compared to a CNN without circular filters and the state of the art al-

gorithm, DeepBind (Fig. 3g). Since our computational resources were

limited, we restricted our analysis to 48 randomly selected out the

506 ENCODE ChIP-seq datasets that were used by the DeepBind

authors (a list of the investigated datasets is given in Supplementary

Table S5). We investigated the performances for several filter configu-

rations, using either 1 or 16 filters with filter lengths of 4, 8 or 24 nt.

All three algorithms were provided with exactly the same training

and test data. Training datasets contained 500 positive and 104 nega-

tive examples and were then split into training and development data-

sets in a way such that training datasets contained 400 positive and

9900 negative examples, and development datasets contained 100

positive and negative examples, respectively. The CNNs with and

without circular filters were trained for 5000 steps at a learning rate

decreasing from 0.1 to 0.01, with batch size 100. These networks

were trained 10 times and the best performing model was identified

based on the development datasets (we found this to be fair since

DeepBind uses 30 trials in its calibration phase).

Model performances were then compared based on AUROC val-

ues on test datasets. All ChIP-seq experiments for which one archi-

tecture yielded AUROC values equal to 0 were removed from

further analyses. We found this to be necessary because for some

runs, DeepBind returned AUROC values of 0, a behaviour that has

been reported before (Zeng et al., 2016).

For each filter configuration, we then tested if the number of

times k with which the CNN with circular filters had produced

AUROC values larger than the corresponding ones produced by the

CNN and DeepBind was significant. The null hypothesis was mod-

eled using a binomial distribution Bn;pðkÞ with n the number experi-

ments and p¼0.5. Resulting p-values were adjusted for multiple

hypothesis testing with the Bonferroni method, since a total of 12

hypothesis tests were conducted.

Motifs inferred from ENCODE ChIP-seq data. We used

the CNN with circular filters to infer motifs for all 506 ENCODE

ChIP-seq datasets published by the DeepBind authors. A filter length

of 20 was used for all datasets; models were trained for 5000 steps

at learning rate 0.01 with balanced mini-batches of size 100. The fil-

ter weights shown in Figure 3h were learned based on datasets

BRCA1_H1-hESC_BRCA1_(A300-000A)_Stanford and TBP_HeLa-

S3_TBP_Stanford by the DeepBind authors, which are derived from

ENCODE datasets wgEncodeAwgTfbsSydhH1hescBrca1IggrabUniPk

and wgEncodeAwgTfbsSydhHelas3TbpIggrabUniPk, respectively

(Alipanahi et al., 2015; Dunham et al., 2012).

3 Results

3.1 CNNs frequently learn truncated motifs
While studying motif inference with CNNs, we observed that the

learned filters frequently did not correspond to the complete motif.

Instead, the filters often contained truncated and shifted versions of

the motif (Fig. 3a). To quantify this behaviour, we conducted simu-

lations in which a known motif had to be inferred from a set of short

sequences. Then, it was counted how frequently the trained filters

contained a shifted version of the motif. We found that CNNs learn-

ed shifted and truncated motifs more frequently than the true motifs

(Fig. 3b).

3.2 Circular filters improve robustness of sequence

motif inference for simulated data
This observation motivated us to develop a novel convolutional archi-

tecture that already contained all circularly permutated variants of

the same underlying filter, which we refer to as circular filters (Fig. 1).

If one of the filter variants learns a shifted motif, there is another filter

variant that is able to learn the full motif, provided the filter variants

have at least the size of the motif. We found that CNNs with circular

filters rarely learn shifted motifs (Fig. 3c). Specifically, when trained

on 100 positive examples to infer motifs of 6 nt length from sequences

of 40 nucleotide long sequence, the CNN with circular filters learned

the correct motifs 11.2 times more often than a CNN without circular

filters (Supplementary Table S1). Even when the CNN with circular

filters was trained with only five positive examples, the correct motif

was found 4.5 times more often.

Moreover, with increasing sequence length, CNNs with circular

filters inferred motifs more easily than CNNs without circular filters

and fully connected networks (Fig. 3d). In fact, a CNN with circular

filters of length 6 nt inferred 6-mer motifs about as well a CNN

with 6 filters of length 6 each when 100 positive training examples

were provided, even though it only required approximately 1
6th of

the number of parameters. We quantified the effect of circular filters

on motif recognition further by comparing network architectures

with and without circular filters for a variety of hyperparameter

combinations. These included the number of positive training exam-

ples, L2-regularization strength and the amount of noise injected

into parameter updates via SGLD (Welling and Teh, 2011). To in-

vestigate the effect of the weighted sum of activations that appears

in the CNN with circular filters (Fig. 1), we also investigated two al-

ternative architectures with circular filters, which used a simple sum

or max-out of the activations (Goodfellow et al., 2013). Overall,

both the CNN with circular filters and the CNN with circular filters

and sum of activations performed significantly better than the CNN

without circular filters in 74% and 62% of all cases, respectively

(p < 10�4). The CNN with circular filters and max-out however

performed significantly worse than the CNN without circular filters

in 56% of cases (p < 10�4). A detailed comparison is given in

Supplementary Table S3.
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We furthermore investigated the effect of motif composition on

motif inference. For example, the motif ‘AACCGT’ is more diverse

in its composition than ‘AAAAAC’. We found that the CNN with

circular filters inferred motifs more easily the more diverse they

were (Fig. 3e). When models were trained ten times on the same

dataset and the best performing model was used, this effect also

appeared for the CNN without circular filters (Fig. 3f).

3.3 Circular filters improve motif inference from

ChIP-seq data
To compare the performance of the CNN with circular filters to the

state of the art algorithm for motif inference, DeepBind, as well as a

CNN without circular filters, we compared these methods on ChIP-

seq datasets for a variety of filter configurations (Fig. 3g) (Alipanahi

et al., 2015; Dunham et al., 2012). The filter configurations

included different filter numbers and lengths. We found that the

CNN with circular filters performed better than the CNN without

circular filters for most filter configurations. The CNN also per-

formed better than DeepBind for most filter configurations. We sus-

pect that DeepBind might have been optimized for use of multiple,

long filters. When 16 filters of length 24 were used, no significant

difference between the models could be detected.

A CNN with one circular filter correctly inferred sequence motifs

such as the TATA-box, which is recognized by TATA-binding pro-

tein (TBP), and the UA1 motif, which is recognized by BRCA1

(Fig. 3h) (Wang et al., 2012). Images containing inferred motifs for

all 506 ENCODE ChIP-seq datasets can be obtained from: http://

www.mathmodeling.hhu.de/datasets/.

4 Discussion

4.1 Motif inference differs from deep learning

disciplines
We showed in a simple simulation that a shallow CNN architecture

frequently learns non-optimal filters that correspond to shifted and

truncated versions of the underlying inferable pattern. Furthermore,

when networks were trained multiple times and the best performing

models were used, substantially more motifs were inferred correctly.

This indicates that the non-optimal filters corresponded to local op-

tima. This is in agreement with the well-studied behavior of gradient

descent optimization, which is highly sensitive to initial conditions

and prone to local optima. The local optima observed here seem to

be more difficult to escape compared to other machine learning dis-

ciplines where CNNs are applied.

4.2 Circular filters enable robust motif inference
The filters of conventional CNNs are developed during training by

starting from randomly initialized weights (‘seeds’). For motif infer-

ence, this seed influences at which position in the filter the inferred

motif will appear. This means that it can happen that only one side

of a motif can be learned because an edge of the filter has been

reached. A common work-around is to use multiple and longer fil-

ters that give the seeds more space to develop; however, this comes

at the cost of more parameters, and learned motifs are distributed

across filters. With circular filters, the position from where a motif

is developed does not matter anymore because in one of the filter

variants, it will be at the correct position (assuming a filter that is at

least as long as the motif). Thus, circular filters greatly improve the

chance to capture motifs with a single filter.

It has been observed before that slight modifications in neural

network structures alongside negligibly more parameters can

substantially improve inference performance (He et al., 2015; Ioffe

and Szegedy, 2015). These findings have demonstrated the relevance

of hard-wired prior knowledge about the underlying problem and

optimization techniques. Circular filters can be regarded as hard-

wired prior knowledge as well: sequence motifs are locally corre-

lated data features that require convolution to be learned, and opti-

mization with gradient descent develops the motif from initial

weights. It hence is unsurprising that a neural network with a fully

connected layer, for which the first condition is not fulfilled, per-

formed poorly at learning sequence motifs (Fig. 3d). Moreover, a

CNN required six filters to become as good as a CNN with a single

circular filter (Fig. 3d).

Although the three investigated architectures with circular filters

differed only in the last layer, they showed significant performance

differences (Supplementary Table S3). For the CNN with circular fil-

ters and max-out, backpropagation of the classification error can

only occur to the circular filter variant that led to the maximum acti-

vation. After applying the parameter updates, it can happen that an-

other circular filter variant leads to the maximum activation in the

next training step. This may complicate parameter optimization,

explaining the lower performance compared to the architecture

without circular filters. For the other architectures, the classification

error can backpropagate to all filter variants, allowing the motif to

be learned in any of the circular filters. However, also filter variants

that do not contain the inferable pattern can contribute to the classi-

fication error, which may be harmful if some training sequences also

randomly contain other patterns. For the CNN with circular filters,

it can be adjusted by a linear combination how much the filter var-

iants contribute to the classification, which is not the case for the

CNN with circular filters and sum of activations.

4.3 Deep models may not be necessary for modeling

TF-DNA specificities
The good performance of (Alipanahi et al., 2015) suggests that deep

neural networks are necessary to accurately predict molecular bind-

ing interactions. However, although neural networks are complex

function approximators and a deep CNN with 152 layers achieved

state of the art performance at classifying images, it was demon-

strated that deeper architectures actually perform worse at learning

sequence motifs than simpler architectures (He et al., 2015; Hornik,

1991; Zeng et al., 2016). A likely reason is that biological sequences

are not composed of complex hierarchies of patterns such as those

in images. In fact, mutually exclusive sequence patterns or spatial

relationships can already be modeled with two layers, and to the

best of our knowledge, no protein has yet been found which binds

to mutually exclusive motifs. This likely makes truly deep architec-

tures unnecessary and possibly deleterious because more parameters

need to be trained. Also, most transcription factors bind to motifs of

30 nt length, a size that can be captured with simple convolutional

filters (Stewart et al., 2012). Because of the aforementioned reasons,

it is unsurprising that the discriminative implementation of

DeepBind has only one convolution layer but many filters to over-

come local optima.

4.4 Summary
When applied to biological data, a CNN with circular filters per-

formed at least as good as the current state of the art algorithm for

several combinations of filter number and length. In simulations,

CNNs with circular filters performed as good as or better than the

corresponding CNNs without circular filters. Even for small dataset

sizes, CNNs with circular filters were able to infer motifs more
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easily than CNNs without circular filters trained with 20 times more

training examples. Although motif composition affects motif infer-

ence, this does not seem to be a side-effect of circular filters as it also

occurred for CNNs without circular filters. Overall, our findings

show that circular filters enable more efficient use of data for se-

quence motif inference.
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