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Purpose: This study aimed to optimize machine learning (ML) models for predicting in- 
hospital mortality in patients with ST-segment elevation acute myocardial infarction (STEMI).
Patients and Methods: A total of 5708 STEMI patients were enrolled and divided into two 
groups according to patients’ hospital outcomes. Both groups were randomly split into a training 
set (75%) and a testing set (25%). Four ML models were trained with data, which applied random 
under-sampling (RUS). The performance of optimized ML models was evaluated with respect to 
accuracy, sensitivity, specificity, G-mean and AUC. Two sets of features in chronological order 
were considered: a full set that included all variables during hospitalization and a simplified set 
that only included variables prior to reperfusion therapy, and the performance of the prediction 
models trained with these two sets of features was compared.
Results: For the comprehensive metric – G-mean, the models trained with RUS outper-
formed those without, 80.54% vs 23.31% on average in the full set and 75.72% vs 35.76% 
on average in the simplified set. For models trained with the full set, the SVM achieved the 
best performance with 85.62% accuracy, 84.21% sensitivity, 85.66% specificity, 84.93% 
G-mean and 0.919 AUC. For models trained with the simplified set, the SVM achieved 
83.48% G-mean, which was comparable to the models trained using the full set. For the most 
critical metric – sensitivity, the SVM trained using the simplified set achieved 89.47%, which 
even exceed the SVM (84.21%), DT (81.58%) and RF (81.58%) trained using the full set.
Conclusion: Applying RUS can improve the performance of prediction models, and the 
models trained with simplified set, which only included variables prior to reperfusion therapy 
can accurately predict high-risk patients.
Keywords: STEMI, in-hospital mortality, prediction model, optimized machine learning 
algorithm, random under-sampling

Introduction
As a well-known dangerous disease, acute myocardial infarction (AMI) is the 
leading cause of global morbidity and mortality.1–4 AMI is traditionally classified 
as ST-segment (STEMI) or non-ST-segment elevation myocardial infarction 
(NSTEMI) based on electrocardiography (ECG) characteristics.5 Compared with 
NSTEMI patients, STEMI patients suffer from a higher risk of short-term 
mortality.6 Clinical guidelines for the treatment of STEMI patients recommend an 
invasive strategy with cardiac catheterization, revascularization when clinically 
appropriate, and thrombolysis.7 Especially for high-risk patients, more-aggressive 
interventional and pharmacologic therapy should be targeted. However, physicians 
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tend to adopt non-invasive treatment strategies rather than 
aggressive treatment strategies in clinical practice (the 
“treatment-risk paradox”).8 To alleviate this problem, risk 
assessment is applied to clinical practice as an effective 
method. Clinically, the most commonly used risk assess-
ment tools are the Thrombolysis in Myocardial Infarction 
(TIMI) risk score and the Global Registry of Acute 
Coronary Events (GRACE) risk score.9–11 However, the 
selected population of the GRACE risk score includes 
STEMI and NSTEMI patients. Therefore, it is not 
a model targeting at STEMI patients.10 Although the 
selected population for the TIMI risk score is STEMI 
patients, thrombolytic therapy is the main treatment strat-
egy for the enrolled patients,9 while percutaneous coronary 
intervention (PCI) is the main treatment strategy for 
STEMI patients in China.12 Therefore, the TIMI risk 
score might be inadequate for current clinical practice. 
Furthermore, the TIMI risk score requires the history of 
diabetes, hypertension or angina.9 However, among hyper-
tensive patients, only 42.6% are aware of their high blood 
pressure.13 In summary, existing tools are far from perfect. 
It is necessary to develop new risk prediction models using 
a dataset that can represent the real world.

The blossom of artificial intelligence (AI), such as machine 
learning, has provided a possible solution to this unmet need. 
In recent years, many ML models have been successfully 
applied to cardiovascular field.14 In Al-Zaiti et al,15 an ML 
model using 554 temporal-spatial features of the 12-lead ECG 
to predict underlying acute myocardial ischemia in patients 
with chest pain has been developed. It achieves 76% specifi-
city and 77% sensitivity, exceeding commercial interpretation 
software (25%) and experienced clinicians (40%).15 In 
Ragunath et al,16 a deep neural network (DNN) has been 
developed to predict 1-year all-cause mortality by using 
ECG voltage–time traces. It achieves an area under the curve 
(AUC) of 0.88 on a held-out test set, which includes 168,914 
patients and 14,207 events occurred.16 However, ECG cannot 
fully reflect the clinical situation of patients, a number of 
models based on laboratory and clinical features were devel-
oped. In Kwon et al,17 the performance of six typical ML 
models in predicting the 1-year mortality rate of anterior ST- 
segment elevation myocardial infarction patients was 
compared.2 It shows that the XGBoost performs best (92% 
accuracy, 99% specificity, 0.74 f1 score and 0.942 AUC); 
however, the sensitivity is only 60%. Another research devel-
oped a deep-learning-based risk stratification for the mortality 
of patients with AMI (DAMI).17 It achieved an AUC of 0.905 
in predicting the in-hospital mortality of STEMI patients. 

However, the key performance metric-sensitivity that reflects 
the model’s capability to identify high-risk patients is not 
reported. Furthermore, researches have shown that the sensi-
tivity is not high enough for some models with high AUC.18

To the best of our knowledge, existing models were 
trained with imbalanced data, that is there are far more 
negative samples (ie, survival patients) than positive sam-
ples (ie, dead patients), and the ratio is greater than 10:1. 
When trained with imbalanced data, ML models tend to 
predict the samples under test as the majority class.19 

Consequently, many high-risk patients may be missed 
and cause disaster results. To mitigate the effect of data 
imbalance, two strategies are commonly used: cost- 
sensitive learning and data preprocessing. The latter is 
preferred as it is easy to implement. Among data prepro-
cessing, the most versatile and effective method is random 
under-sampling (RUS), which involves the random elim-
ination of majority class examples.20 In this study, we 
applied RUS to balance classes in the training data to 
improve the performance of models. Besides, existing 
models were trained either with full set of features contain-
ing all variables during hospitalization or simplified set of 
features selected by feature importance ranking. However, 
some high-ranking features may not be obtained prior to 
reperfusion therapy, which means the existing models 
were not able to make predictions at the time of initial 
evaluation and treatment. In this work, a simplified set of 
features which only included variables prior to reperfusion 
therapy was proposed, and models using these variables to 
predict high-risk patients were explored.

The aims of this work lied in 1) to propose a dataset 
that can represent the real-world STEMI patients, 2) to 
apply RUS to optimize prediction models, 3) to develop 
models that can predict high-risk patients at the time of 
initial evaluation and treatment.

Materials and Methods
This study was conducted with a hospital-based dataset. 
We consecutively enrolled 5708 STEMI patients in Tianjin 
Chest Hospital from January 2015 to April 2020. The 
enrollment criteria for patients are as follows: 1) persistent 
chest discomfort or other symptoms suggestive of ische-
mia; 2) ST-segment elevation (≥0.1 mV) in at least two 
contiguous leads; 3) an elevation of cardiac troponin 
values with at least one value above the 99th percentile 
upper reference limit.7 To be noted, some of the enroll-
ment patients complicated with atrial fibrillation whose 
pulse rate was less than heart rate. The categories of 
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patient data collection included demographics, presenta-
tion characteristics, admission pathway, treatment and hos-
pital outcomes.

Since the cardiac function of STEMI patients often 
changes in short term, we selected two indicators to eval-
uate the cardiac function of patients. One was direct Killip 
classification, which was evaluated immediately after 
entering the emergency room, and the other was heart 
failure, which included Killip classification II/III/IV and 
was evaluated again before reperfusion therapy.

Categorical variables were reported as counts and per-
centages. Chi-squared test was used to evaluate the differ-
ences in categorical variables between groups. For 
continuous variables, the Kolmogorov–Smirnov test was 
used to test the normality of distribution. We utilized the 
mean ± standard deviation (SD) to present the normally 
distributed variables, while the median and interquartile 
ranges (IQR) to present the variables whose distributions 
were not normal. Mann–Whitney-U test was used to eval-
uate the differences in continuous variables between 
groups. All the tests were two-tailed.

In this study, the entire data were divided into survival 
groups and death groups according to patients’ hospital out-
comes. Both groups were randomly split into a training set 
(75%) and a testing set (25%). The models were optimized 
with the training set only, using 10-fold Cross-Validation. In 
this process, the training set was divided into 10 parts, and 
each of these parts was used to train models and evaluate 
their performance. The performance of the final models was 
evaluated on the testing set, which was not used for training 
process at all. Besides, we considered two sets of features in 
chronological order: a full set and a simplified set. The full 
set contained all variables during hospitalization, while the 
simplified set contained only included variables prior to 
reperfusion therapy. The variables used in both sets are 
shown in Table 1. Four commonly used ML models (logistic 
regression (LR), support vector machine (SVM), decision 
tree (DT), random forest (RF)) were selected to predict the 
mortality of STEMI patients, while RUS was applied as data 
preprocessing to optimize the models. Furthermore, to 
explore the possibility of developing models that could iden-
tify the high-risk patients at the time of initial evaluation and 
treatment, the performance of the predictive models trained 
using simplified set is evaluated.

The procedure for RUS was described as follows. First, 
the training set was split into majority class and minority 
class. Second, a number of samples in the majority class 
were removed randomly. The reduced majority class was 

then combined with the minority class, resulting in 
a balanced training set. Finally, the models were trained 
with the balanced training set.

The LR is a linear model that assumes a Bernoulli 
distribution of the outcome and a log-linear relationship 
with the predictors.21 LR predicts the binary response 
probability for the outcome class given the predictor 
values. In contrast with the three subsequent algorithms, 
LR lacks tuning parameters.

The SVM is a typical kernel-based supervised learning 
algorithm, and it aims to create a hyperplane among data 
points to maximize the classification interval. The kernel 
method enables us to model higher dimensional, non- 
linear models. In a non-linear problem, a kernel function 
can be used to add additional dimensions to the raw data 
and thus make it a linear problem in the resulting higher 
dimensional space. However, the choice of kernel function 
could greatly affect the performance of the SVM model.22 

In this work, the optimal kernel function was selected by 
10-fold cross-validation.

Table 1 Simplified Set and Full Set of Features

Simplified Set of Features Full Set of Features

1. Sex 1. Sex

2. Age 2. Age

3. Consciousness 3. Consciousness

4. Respiration 4. Respiration

5. Pulse 5. Pulse

6. Heart rate 6. Heart rate

7. Systolic blood pressure 7. Systolic blood pressure

8. Diastolic blood pressure 8. Diastolic blood pressure

9. Killip class 9. Killip class

10. Cardiac troponin I 10. Cardiac troponin I

11. Time from symptom to first 
medical contact

11. Time from symptom to first 
medical contact

12. Prehospital mode of 
transport

12. Prehospital mode of 
transport

13. Heart failure 13. Heart failure

14. Thrombolysis

15. Reperfusion treatment

16. TIMI flow after intervention

Abbreviation: TIMI, thrombolysis in myocardial infarction.
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The DT is a supervised algorithm based on tree struc-
ture where each node indicates a feature, each branch 
represents decision rule and each leaf depicts an outcome. 
DT uses a divide-and-conquer algorithm to split a node 
into two sub-nodes, which is done with respect to out-
come. On each iteration of the algorithm, it iterates the 
unused feature of the dataset and calculates entropy and 
information gain (IG) of this feature. The feature with 
highest IG forms the root node, which is partitioned into 
other sub-nodes and tested with another feature recursively 
until the leaf (outcome) is reached.23 However, a decision 
tree with full depth is vulnerable to overfitting. In this 
work, the optimal depth was determined by 10-fold cross- 
validation.

The RF is a supervised algorithm that constructs an 
ensemble of decision trees. Specifically, the RF combines 
bootstrap sampling of data for constructing each tree, and 
random selection of variables at each decision node, and 
finally majority voting on outcomes. The RF feature 
importance scores are determined by the Gini importance 
index. Specifically, the variable chosen as root split for 
many trees gets a higher Gini importance than a variable 
chosen less frequently or for descendant nodes.21 To be 
noted, the number of decision trees could greatly affect the 
performance of the RF model. In this work, the optimal 
number was determined by 10-fold cross-validation.

All descriptive statistics were performed using the 
SPASS software. The ML model selection, fitting and 
optimization were performed using Python (version 3.7) 
with the scientific libraries “scikit-learn”.

Four performance metrics: sensitivity, specificity, 
G-mean and AUC are used in this study. Sensitivity refers 
to the models’ ability to correctly identify high-risk 
patients, defined as

sensitivity ¼
TP

TPþ FN
(1) 

where TP is the number of true positives and FN is the 
number of false negatives.

Specificity reflects the models’ ability to correctly 
reject low-risk patients, defined as:

specificity ¼
TN

TN þ FP
(2) 

where TN is the number of true negatives and FP is the 
number of false positives.

The area under the curve (AUC) of the receiver oper-
ating characteristic curve (ROC) is used to evaluate the 
overall performance. However, some researches have 
shown that AUC could lead to an overoptimistic estima-
tion of the algorithm’s performance in the case of highly 
skewed datasets.18 Therefore, G-mean is employed as 
performance metrics, defined as

G � mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
spcificity� sensitivity

p
(3) 

Its key idea is to maximize the recognition of each of 
minority and majority classes while keeping these accura-
cies balanced.

Results
From January 2015 to April 2020, a total 5708 patients 
were included in our study, including 4198 men (73.55%) 
and 1510 women (26.45%). The median age of them was 
63 years. In our study, 87.95% of them received reperfu-
sion treatment and the main reperfusion strategy was pri-
mary PCI (77.73%). The overall in-hospital mortality rate 
was 2.70% (n = 154). The basic descriptive statistics and 
the differences between patients died and survived are 
summarized in Tables 2 and 3. The nonsurvivors were 

Table 2 Basic Characteristics of Continuous Numerical Variables

Features Total Patients Survived Patients Died p-value

No. of patients 5708 5554 154

Age, years 63.00 (16) 64.50 (16) 75.00 (16) <0.001

Respiration, counts/min 19.00 (3) 19.00 (3) 19.00 (2) 0.006
Pulse, beats/min 76.00 (22) 76.00 (22) 82.00 (32) <0.001

HR, beats/min 76.00 (23) 76.00 (22) 82.00 (32) <0.001

SBP, mm Hg 133.00 (32) 133.00 (31) 120.50 (43) <0.001
DBP, mm Hg 80.00 (21) 80.00 (21) 74.50 (25) <0.001

cTnI, ng/mL 1.750 (3.420) 1.735 (3.410) 2.230 (3.863) 0.041

S to FMC, min 102.00 (179) 101.00 (178) 110.00 (291) 0.065

Abbreviations: HR, heart rate; SBP, systolic blood pressures; DBP, diastolic blood pressure; PCI, percutaneous coronary intervention; cTnI, cardiac troponin I; S to FMC, 
time from symptom to first medical contact.
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more likely to have lower systolic (SBP) and diastolic 
blood pressure (DBP), higher pulse, higher heart rate 
(HR), higher cardiac troponin I (cTnI), higher Killip clas-
sification and higher age. Compared with survivors, the 
nonsurvivors were mainly admitted through emergency 
medical services (EMS) or transferred from other hospi-
tals, while had a lower proportion of reperfusion treatment. 
Besides, nonsurvivors experienced heart failure and 
unconscious more often, and the mortality was higher in 
women compared with men.

The performance of the traditional and optimized ML 
models trained using the full set is shown in Table 4. 
Although the models trained without RUS had higher 
accuracy, 96.99% vs 77.35% on average, and higher spe-
cificity, 99.37% vs 77.16% on average, the sensitivity of 
them was extremely lower than models trained with RUS, 
9.87% vs 84.21% on average. The AUC of the models 
trained with or without RUS did not have significant 
difference, 0.864 vs 0.841 on average and the ROC 

analysis results are presented in Figures 1 and 2. The 
G-mean of models trained with RUS was far higher than 
those without, 80.54% VS 23.31% on average. The SVM 
trained with RUS achieved the best performance in terms 
of G-mean (84.93%) and AUC (0.919). Specifically, it 
achieved 85.62% accuracy, 84.21% sensitivity, 85.66% 
specificity, and the confusion matrix is shown in 
Figure 3. It selected 32 out of 38 high-risk patients. 
Among the models trained without RUS, the SVM classi-
fier also achieved best performance according to G-mean 
(45.52%). Specifically, it achieved 96.42% accuracy, 
23.68% sensitivity, 98.41% specificity, and the confusion 
matrix is shown in Figure 4. It selected 9 out of 38 high- 
risk patients. The SVM trained with RUS selected 23 more 
high-risk patients than the SVM trained without RUS.

The performance of the traditional and optimized ML 
models trained using the simplified set is shown in Table 5. 
The results were similar to those with the full set, the models 
trained with RUS had lower accuracy, 81.72% vs 96.79% on 

Table 3 Basic Characteristics of Categorical Variables

Features Total Patients Survived Patients Died p-value

No. of patients 5708 5554 154
Male 4198 (73.55%) 4108 (73.96%) 90 (58.44%) <0.001

Consciousness 5690 (99.68%) 5542 (99.78%) 148 (96.10%) <0.001

Heart failure 401 (7.03%) 318 (5.73%) 83 (53.90%) <0.001
Thrombolysis 314 (5.50%) 307 (5.53%) 7 (4.55%) 0.586

Prehospital mode of transport <0.001

EMS 916 (16.05%) 876 (15.77%) 40 (25.97%)

Transferred from other hospitals 1143 (20.02%) 1102 (19.84%) 41 (26.62%)
Self-transported 3649 (63.93%) 3576 (64.39%) 73 (47.40%)

Killip classification <0.001
I 5396 (94.53%) 5277 (95.01%) 119 (77.27%)

II 235 (4.12%) 221 (3.98%) 14 (9.09%)

III 44 (0.77%) 39 (0.70%) 5 (3.25%)
IV 33 (0.58%) 17 (0.31%) 16 (10.39%)

Reperfusion type <0.001
Non 748 (13.10%) 669 (12.05%) 79 (51.30%)

Primary PCI 4381 (76.75%) 4317 (77.73%) 64 (41.56%)

Emergent coronary angiography 265 (4.64%) 261 (4.70%) 4 (2.60%)
Thrombolysis 245 (4.29%) 238 (4.29%) 7 (4.55%)

Thrombolysis + Primary PCI 69 (1.21%) 69 (1.24%) 0 (0.00%)

TIMI flow after intervention 0.082

0 185 (3.24%) 180 (3.88%) 5 (7.35%)

1 6 (0.11%) 6 (0.13%) 0 (0.00%)
2 214 (3.75%) 209 (4.50%) 5 (7.35%)

3 4308 (75.47%) 4250 (91.50%) 58 (85.29%)

Abbreviations: EMS, Emergency medical services; PCI, percutaneous coronary intervention; TIMI, thrombolysis in myocardial infarction.
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average, lower specificity, 82.61% vs 99.06% on average, 
higher sensitivity, 84.21% vs 9.87% on average, higher 
G-mean, 75.72% vs 35.76% on average and similar AUC, 
0.753 vs 0.761 on average. As can be seen from Tables 4 and 
5, the SVM trained with RUS using the simplified set achieved 
83.48% G-mean, which was comparable to the models trained 
using the full set. For sensitivity, the SVM trained using the 
simplified set achieved 89.47%, which even exceeded the 
SVM (84.21%), DT (81.58%) and RF (81.58%) trained 
using the full set. The confusion matrix of the SVM trained 
with RUS using the simplified set is shown in Figure 5. It 
selected 34 out of 38 high-risk patients, which is 2 more than 
the SVM trained with RUS using the full set. Besides, the 
feature importance scores for predicting the in-hospital 

mortality were provided by the RF trained with RUS, as 
shown in Figure 6, where the cTnI had the highest importance 
score.

Discussion
Although the mortality of the STEMI patients is high, 
the risk assessment tools widely used in clinical practice 
are far from perfect. With the thriving of ML, there were 
many researches that developed risk assessment models 
based on ML and the performance of their models is 
shown in Table 6.24–28 However, these models only 
focused on accuracy or AUC without reporting sensitiv-
ity and none of these researches dealt with the imbal-
anced data problem. When facing imbalanced scenarios, 

Table 4 Performance Comparison of the Traditional and Optimized ML Models Using the Full Set

Models Trained with RUS Using the Full Set

Models Accuracy (%) Sensitivity (%) Specificity (%) G-mean (%) AUC

LR 73.77 89.47 73.34 81.01 0.908

SVM 85.62 84.21 85.66 84.93 0.919
DT 78.33 81.58 78.24 79.89 0.819

RF 71.67 81.58 71.40 76.32 0.809

Models Trained without RUS Using the Full Set

LR 96.91 7.89 99.35 28.01 0.877
SVM 96.42 23.68 98.41 26.09 0.795

DT 97.27 5.26 99.78 22.92 0.842

RF 97.34 2.63 99.93 16.22 0.848

Abbreviations: LR, logistic regression; SVM, support vector machine; DT, decision tree; RF, random forest; AUC, area under the curve.

Figure 1 ROC analysis results of models trained without RUS using the full set. 
Abbreviation: ROC curve, receiver operating characteristic curve.
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the models tended to predict the samples as majority 
class (survival patients) in order to maximize the accu-
racy, and the AUC would lead to an overoptimistic 
estimation of the models. Therefore, although these mod-
els had high accuracy or AUC, they might have low 
sensitivity. The sensitivity of prediction models is highly 
related to the prognosis of the patients. The models with 
low sensitivity tend to ignore the high-risk patients who 

require special attention, which would lead to an 
increased risk of death. For these reasons, we applied 
RUS to mitigate the effect of samples imbalance and 
used G-mean as another evaluation metrics.

The results showed that the overall performance of the 
models trained with RUS had been greatly improved. 
Whether in the full set or the simplified set, although the 
specificity of the models was slightly decreased, the sensitivity 

Figure 2 ROC analysis results of models trained with RUS using the full set. 
Abbreviation: ROC curve, receiver operating characteristic curve.

Figure 3 The confusion matrix of the SVM trained with RUS using the full set. 
Abbreviations: SVM, support vector machine; RUS, random under-sampling.
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was greatly improved, which means more high-risk patients 
could be found. It is more important in clinical practice. 
However, there is little difference in the AUC of the models 
trained with or without RUS. It is obvious that AUC cannot 
reflect the performance of the models objectively. G-mean 
which takes both specificity and sensitivity into account can 
comprehensively evaluate the performance of models. The 
G-mean of the models trained with RUS was significantly 
higher than that of those without. This result further proved 
the effectiveness of RUS.

From a clinical perspective, the models trained using 
the full set of features have high sensitivity, they can 

identify high-risk patients accurately. In this way, those 
high-risk patients can be paid more attention after being 
escorted to the cardiac intensive care unit, which has an 
positive effect on reducing in-hospital mortality. Although 
the overall performance of the models trained using the 
features obtained prior to reperfusion therapy has been 
weakened compared with the models trained using the 
full set, the sensitivity is high enough to support the 
decision-making. According to the 2017 ESC Guidelines, 
the aggressive treatment strategies were recommended for 
high-risk patients. However, in clinical practice, the phy-
sicians and the relatives of patients tend to choose the non- 

Figure 4 The confusion matrix of the SVM trained without RUS using the full set. 
Abbreviations: SVM, support vector machine; RUS, random under-sampling.

Table 5 Performance Comparison of the Traditional and Optimized ML Models Using the Simplified Set

Model Trained with RUS Using the Simplified Set

Models Accuracy (%) Sensitivity (%) Specificity (%) G-mean (%) AUC

LR 85.13 68.42 85.59 76.53 0.841
SVM 78.19 89.47 77.88 83.4 0.746

DT 92.92 55.26 93.95 72.05% 0.746

RF 70.62 71.05 70.61 70.83 0.710

Model Trained without RUS using the simplified set

LR 97.27 5.26 99.78 22.92 0.877

SVM 96.35 23.68 98.34 48.26 0.656

DT 96.77 10.53 99.14 32.30 0.785
RF 96.77 15.79 98.99 39.54 0.694

Abbreviations: LR, logistic regression; SVM, support vector machine; DT, decision tree; RF, random forest; AUC, area under the curve.
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invasive treatment due to overestimating the risk of reper-
fusion therapy and ignoring the risk of death from ische-
mia. It hinders delivery of effective care to the patients 
who need it most, leading to the mortality of a large 
number of high-risk patients (the “treatment-risk para-
dox”). The proposed models can identify high-risk patients 
at the time of initial evaluation, which allows the patients 
to receive reperfusion therapy in the early stage of myo-
cardial infarction, decreasing the risk of therapy. 

Therefore, the proposed models can support the decision- 
making about intensive treatment for high-risk patients, 
which can improve treatment compliance.

The cTnI level was the most significant risk factor 
given by RF, and many studies29–31 have also reported 
that the level of cTnI has a high predictive value of the 
AMI patients’ outcome, which further demonstrates the 
reliability of our models. We believe that ML might better 
handle the correlation between the variables and RF is 

Figure 5 The confusion matrix of the SVM trained with RUS using the simplified set. 
Abbreviations: SVM, support vector machine; RUS, random under-sampling.

Figure 6 The feature importance scores for predicting the in-hospital mortality provided by the RF. 
Abbreviation: RF, random forest.
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a particular expert in creating conditional relations. 
Moreover, our models were trained with a dataset that 
can reflect real-world STEMI patients and could give pre-
dictive results without medical history. Therefore, our 
models avoided collecting medical history, resulting in 
the improvement of usability.

However, our work still has the following two limita-
tions: 1) Our work is a single-center study, only including the 
patients who were treated in Tianjin Chest Hospital. 2) It is 
inevitable that the patient enrollment and the data measure-
ment are accompanied by bias. Nonetheless, the result of our 
study still provides an effective and robust method for pre-
dicting in-hospital mortality of STEMI patients.

Conclusion
Many medical problems are characterized by a highly 
imbalanced distribution of examples in classes. In this 
paper, we applied RUS to alleviate the effect of data 
imbalanced, which improved the performance of models. 
In the management of STEMI patients, the models trained 
using the full set of features can be applied to select high- 
risk patients after being escorted to the cardiac intensive 
care unit, and the models trained using the simplified set of 
features can be applied to assist physicians in choosing the 
optimal treatment. In summary, this study demonstrated 

the feasibility and effectiveness of the model with RUS, 
which can improve prognosis of patients.
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