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Abstract: Nickel-based superalloy is regarded as one of the materials with the poorest cutting and
drilling performance. Additionally, there is much less research on the drilling of it. This paper
aims to study the drilling performance of dry drilling nickel-based superalloy with uncoated and
CrAlYN coated carbide bit. First of all, the primary and secondary factors influencing the machining
performance of dry drilling nickel-base superalloy uncoated carbide bit were explored through an
orthogonal test. Secondly, the self-prepared CrAlYN coated carbide drills, and uncoated drills were
compared and analyzed from perspectives of service life, drilling force, drilling temperature, drill
surface topography, failure mechanism, and machining surface quality. The research results are as
follows: the drilling temperature is the primary factor affecting the drilling performance under dry
drilling conditions. CrAlYN coating can obviously prolong the service life of tools, reduce the drilling
force and drilling temperature, and improve the machining surface quality at lower rotational speeds.
Moreover, the coated cemented carbide bit has a similar failure mode to the uncoated cemented
carbide bit after the CrAlYN coating falls off in the wear zone of cemented carbide bit, which is
mainly bonding wear on the rear tool surface and the front tool surface.

Keywords: nickel-based superalloy; dry drilling; CrAlYN coated; carbide; bit service life

1. Introduction

Nickel-based superalloy has been extensively applied in aerospace, nuclear energy, and
petroleum industry [1–5] due to relatively strong corrosion resistance and high-temperature
oxidation resistance. The refractory metals (molybdenum, niobium, tungsten, etc.) in the
nickel-based superalloy are featured by hard spots, high strength, and poor heat dissipation.
Thus, the nickel-based superalloy has poorer cutting and drilling performance, which is
mainly manifested by difficult chip breaking during machining, serious cutting-tool wear,
and too fast temperature rising during cutting and drilling [6–8]. Drilling is one of the
most important working procedures and is often the last one in aerospace manufacturing.
Compared with other cutting and drilling processes [9–17], there is less literature about
nickel-based superalloy drilling. A nickel-based superalloy is featured by high strength,
poor heat dissipation, and many hard spots, which result in short service life and poor
processing quality of cutting tools in the process of mechanical drilling. As components
miniaturize and the material is applied in a larger range, drilling becomes increasingly im-
portant in a variety of applications. At present, a larger number of processing methods are
based on hot material removal mechanisms, such as EDM [18–20] and laser drilling [21–23],
but fewer ones are based on mechanical drilling, mainly because of its cutting tool having a
shorter service life.
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Sharman Arc [24] designed a series of experiments in detail to examine the tool
life/wear of commercially available drills for nickel-based superalloys, and he concluded
that currently, commercially available drills fail to produce top-class holes to meet the
requirements of the aerospace industry. Eckstein M et al. [25] processed holes with a
diameter of 8.5 mm through an internally cooled cemented carbide twist drill and found
that the tool wear reached the failure standard after processing 24 holes. Kannan S [26]
processed holes with a diameter of 12.99 mm by using an internally cooled cemented
carbide twist drill and found that the tool surface wear affected the processing quality after
processing 40 holes. Based on the related experiments by drilling nickel-based superalloy
with high cobalt HSS drill and carbide drill, respectively, Sun Jinliang [27] conducted that
the high cobalt HSS drill lost its machining capacity when the machining depth was about
5–6 mm, and carbide bit could process 20 holes at most when the machining depth was
5 mm. Obviously, nickel-based superalloy has poor drilling performance, and the cutting
tool made of it has a short service life. Therefore, it is of great significance to study its
drilling performance.

In order to reduce production costs and guarantee environmental safety during pro-
cessing, in recent years, it has become a trend to reduce the use of drilling fluid and turn to
dry drilling. The application of coating technology can also improve the quality of machin-
ing surfaces [28,29]. R Ramanujam [30] modeled and optimized drilling parameters in dry
turning of nickel-based superalloy with coated carbide blades. Umbrello [31] investigated
the surface integrity in dry machining of a nickel-base superalloy. D G. Lecoz [32] studied
the temperature variation in the workpiece and in the cutting tool during dry milling of
nickel-based superalloy and concluded that cutting temperature was a vital parameter in
controlling tool service life and machined surface quality. S Yan [33] explored the coating
tool temperature variation by establishing a thermal model of coating tool temperature
variation in the dry milling of nickel-base superalloy on turbine blades.

In this paper, first of all, the orthogonal test of dry drilling of nickel-based superalloy
with cemented carbide bit was conducted to explore the primary and secondary factors
influencing the tool service life under dry drilling conditions. Secondly, the dry drilling
between self-made CrAlYN coating [34,35] and uncoated cemented carbide drill was
compared under selected working conditions. Moreover, the drilling performance of
CrAlYN coated carbide bit in dry drilling nickel-base superalloy was discussed.

2. Experiment Equipment and Method
2.1. Experiment Materials

(1) Nickel-base superalloy

The nickel-base superalloy GH4169 plate was selected as the workpiece material, with
a thickness of 18 mm and a length and width of 200 mm. Its chemical composition is shown
in Table 1, and the material properties of the workpiece are shown in Table 2.

Table 1. Chemical composition of nickel-base superalloy GH4169.

Element Ni Cr Nb Mo Ti C Si Mn B Fe

Mass/% 51.75 17 5.15 2.93 1.07 0.042 0.21 0.03 0.006 Maargin

Table 2. Material properties of workpiece.

Elastic
Modulus

(GPa)

Poisson’s
Ratio µ

Density ρ

(Kg/m3)
Johnson–Cook Model Parameters

A(MPa) B(MPa) C n m Tmelt(°C) Troom(°C)

220 0.3 8420 985 949 0.01 0.4 1.65 1320 20
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(2) Drill

The brand YG10 cemented carbide in Chinese was selected because of its quite excel-
lent wear resistance, toughness, and strength. As shown in Figure 1, an uncoated YG10
cemented carbide drill with a diameter of 6 mm and a CrAlYN coated drill were selected
as the sample base material in this experiment.

Figure 1. Bits. (a) Uncoated bit. (b) CrAlYN coated bit.

The YG10 cemented carbide is a tungsten cobalt material, in which the Co content
accounted for 10%. Table 3 shows the chemical composition of carbide drill YG10, and
Table 4 shows its mechanical properties.

Table 3. Mass fraction of each element in the drill.

Cutting Tool Serial No.
Element Mass Fraction (%)

W Co C

YG10 84 10 6

Table 4. Mechanical properties of bit materials.

Cutting Tool
Serial No.

Mechanical Properties

Density
g/cm−3 Hardness HRA Bending

Strength MPa
Compressive
Strength MPa

Elastic Modulus
GPa

Impact
Toughness

J/cm−2

YG10 14.7 88.5 2700 4700 585 2.8

The cemented carbide bits YG10 were coated with CrAlYN coated by MSIP016 closed
field non-equilibrium magnetron sputtering ion plating equipment of the Xi’an University
of Technology. The CrAlYN with a Y content of 3.28% was selected in this experiment, with
the elemental mass fraction shown in Table 5. The CrAlYN coated is uniform and dense
particle distribution and flat and smooth coating surface [34,35].

Table 5. Element content of CrAlYN coating.

Coating
Element Content (%)

Cr Al Y N

CrAlYN 44.71 9.72 3.28 42.29

2.2. Experiment Method

Firstly, uncoated carbide bit YG10 was selected to drill nickel-base superalloy GH4169.
By considering the impact of spindle rotating speed, feed rate, and drilling depth on drilling
performance, the three-factor and three-level orthogonal test was designed, with the design
scheme shown in Table 6. In order to avoid the randomness of experimental results, each
group of experiments was repeated three times, and the average was taken. Then, the
better working conditions of the uncoated YG10 drill bit were selected, and the self-made
CrAlYN coated YG10 drill bit was used for comparative analysis in the drilling experiment
to study the drilling performance and friction wear mechanism of nickel-based superalloy.
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Table 6. Factor level.

Level Factor

Drilling Speed
(m/min)

Drilling Feed Rate
(r/mm)

Drilling Depth
(mm)

1 15 0.03 3

2 20 0.04 6

3 25 0.05 9

2.3. Experiment Equipment

The experiment was conducted on the SINUMERIK840D CNC programmed five-axis
milling machine. A maximum speed of 2000 rpm was set to the machine tool. In the process
of drilling, the drilling force was measured through the kistler-9271A force sensor, and
the processing temperature was measured by the A315 online infrared thermal imaging
instrument. Moreover, the real-time temperature change curve was output by connecting
with the computer. The principle of the drilling experiment is shown in Figure 2.

Figure 2. Schematic diagram of drilling experiment.

The wear quantity VB at the edge of the back tool surface of more than 0.3 mm was
regarded as the standard of being blunt. The wear of the bit was measured through a tool
microscope 30 times. The wear of each two holes was measured until the blunt standard was
reached. After the drilling experiment, the bit morphology was observed by THE Quanta
250 SEM produced by Czech FEI Company, and the element composition was analyzed by
the matched energy spectrum analyzer. The surface roughness Ra was measured five times
by the TR200 surface roughness meter, and the average value was calculated.

3. Experiment Results and Analysis
3.1. Dry Drilling Experiment of Uncoated Carbide Bit

The three-factor and three-level orthogonal drilling experiment was conducted by
using uncoated cemented carbide bit YG10. Every experiment was performed three times
and averaged. The drilling experiment workpiece is shown in Figure 3, and the experiment
results are shown in Table 7. The number of holes under different working conditions
represented the bit service life. Additionally, the average value of the steady state of the
axial cutting force and the maximum temperature during drilling represented the drilling
force and drilling temperature, respectively.
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Figure 3. Drilling experiment workpiece.

Table 7. Orthogonal drilling experiment results.

Serial No.
Drilling
Speed Feed Rate

(mm/r)
Drilling
Depth
(mm)

Number
of Drilling Drilling

Force (N)

Drilling
Tem.

(m/min) (n) (◦C)

1 15 0.03 3 36 486 260
2 15 0.04 6 24 1192 291
3 15 0.05 9 12 863 291
4 20 0.03 6 18 578 248
5 20 0.04 9 6 1426 369
6 20 0.05 3 16 1022 302
7 25 0.03 9 4 1736 363
8 25 0.04 3 60 885 311
9 25 0.05 6 6 1821 378

The range analysis of bit service life, drilling force, and drilling temperature was
conducted, respectively, as shown in Tables 8–10. Obviously, the primary factor influencing
bit service life and drilling temperature was drilling depth, followed by feed rate and
spindle speed. Moreover, the primary factor influencing drilling force were drilling speed,
drilling depth, and feed rate.

Table 8. Range analysis of bit service life.

Level
Drilling Speed Feed Rate Drilling Depth

15
m/min

20
m/min

25
m/min

0.03
mm/r

0.04
mm/r

0.05
mm/r

3
mm

6
mm

9
mm

Ki 72 40 70 58 90 34 112 48 22
ki 24 13 23 19 30 11 37 16 7

Range 11 19 30
Order: Drilling depth > Feed rate > Drilling speed

Optimization scheme: drilling speed: 15 m/min; feed rate: 0.04 mm/r; drilling depth: 3 mm
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Table 9. Range analysis of drilling force.

Level
Drilling Speed Feed Rate Drilling Depth

15
m/min

20
m/min

25
m/min

0.03
mm/r

0.04
mm/r

0.05
mm/r

3
mm

6
mm

9
mm

Ki 2541 3026 4442 2800 3503 3706 2393 3591 4025
ki 847 1008.67 1480.67 933.33 1167.67 1235.33 797.67 1197 1341.67

Range 633.67 302 544
Order: Drilling speed > Drilling depth > Feed rate

Optimization scheme: drilling speed: 15 m/min; feed rate: 0.03 mm/r; drilling depth: 3 mm

Table 10. Range analysis of drilling temperature.

Level
Drilling Speed Feed Rate Drilling Depth

15
m/min

20
m/min

25
m/min

0.03
mm/r

0.04
mm/r

0.05
mm/r

3
mm

6
mm

9
mm

Ki 842 919 1052 871 971 971 873 917 1023
ki 280.67 306.33 350.67 290.33 323.67 323.67 291 305.67 341

Range 70 33.34 50
Order: Drilling depth > Feed rate> Drilling speed

Optimization scheme: drilling speed: 15 m/min; feed rate: 0.04 mm/r; drilling depth: 3 mm

Under normal circumstances, drilling is a semi-closed chip. The heat entering into
the bit accounts for about 52.5%; the heat taken away by chips accounts for 28%; the
heat transferring to the workpiece accounts for 14.5%; the other 5% of heat transfers to the
surrounding medium. Nickel-based superalloy contains hard points, has high strength, and
has poor heat dissipation, which results in large drilling heat and slow heat dissipation. As
the hole’s depth becomes larger, there is more heat accumulation and over-high temperature,
making the hard alloy drill tend to be damaged and affecting the service life of the bit.
Therefore, the drilling temperature is a key factor influencing the tool service life of the
nickel-base superalloy drill.

For a too-low drilling feed rate, there would be a longer drilling time for the same
drilling depth and a higher drilling temperature. For a too-high drilling feed rate, there
would be a short drilling time but larger cutting force, friction and heat, and higher drilling
temperature. When the feed rate was 0.04 mm/r, the bit had longer service life and lower
drilling temperature. The higher the drilling speed was, the greater the drilling force was
and the greater the friction force was. When the drilling speed was 15 m/min, the bit had
longer service life and lower drilling temperature.

Therefore, according to the bit service life and drilling temperature, and combined with
the actual drilling depth, the comparison drilling experiments of CrAlYN coated carbide bit
and uncoated carbide bit were conducted under two working conditions, namely, drilling
depth of 6 mm, drilling feed rate of 0.04 mm/r, and the drilling speed of 15 m/min and
20 m/min, respectively.

3.2. Dry Drilling Experiment of CrAlYN Coated Carbide Bit

The comparison drilling experiments of CrAlYN coated carbide bit and uncoated
carbide bit was conducted under the drilling speed of 15 m/min and 20 m/min, respectively.
The experiment results are shown in Figure 4. At the drilling speed of 15 m/min, the
uncoated bit and the coated bit drilled 24 holes and 60 holes, respectively, increasing the
tool service life by 150%. At the drilling speed of 20 m/min, the uncoated bit and the
coated bit drilled 14 holes and 21 holes, respectively, increasing the tool service life by 50%.
Therefore, CrAlYN coating could improve the drilling performance and tool service life,
especially at lower speeds.
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Figure 4. Service life of coated and uncoated drills (drilling depth of 6 mm and drilling feed rate of
0.04 mm/r).

(1) Comparison of drilling force

Figure 5 shows the comparison of drilling forces of CrAlYN coated and uncoated ce-
mented carbide bit drilling nickel-base superalloy GH4169 at a drilling speed of 15 m/min,
feed rate of 0.04 mm/r, and drilling depth of 6 mm. As shown in Figure 5a, the drilling
force of the CrAlYN coated bit is approximately 40% less than that of the uncoated bit. The
CrAlYN coating makes the bit surface smoother, resulting in less friction.

As seen in Figure 5, although the overall drilling force increased with the number
of holes, it was not linear. Sometimes it would decrease a little with the increase in the
number of holes, and then the drilling force would significantly increase after drilling a few
more holes because the bit cutting edge slowly wear would make the drilling force slowly
increase, but the sudden tipping of the edge would make the drilling force rise sharply;
with the continued drilling, the tipping of the edge was slowly ground smooth, reducing
the roughness, and making the drilling force slightly decrease.

Figure 5. Cont.
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Figure 5. Comparison of drilling forces at drilling speed of 15 m/min, feed rate of 0.04 mm/r, and
drilling depth of 6 mm. (a) Drilling forces of uncoated bit. (b) Drilling forces of coated bit.

Figure 6 shows the comparison curves of drilling force between CrAlYN coated and
uncoated cemented carbide bits under two working conditions. As it shows, compared
with the uncoated bit, the drilling force of the CrAlYN coated carbide bit decreased by
about 40%. The CrAlYN coating had better compactness, a flat and smooth surface, and a
smaller friction coefficient, so it reduced friction and significantly reduced drilling force.
The drilling force increased suddenly in the curve due to the breakage of the drilling edge,
resulting in a discontinuous drilling edge and large roughness.

Figure 6. Cont.
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Figure 6. Comparison of drilling force between uncoated and coated bits (drilling depth of 6 mm and
drilling feed rate of 0.04 mm/r). (a) Drilling force at a drilling speed of 15 m/min. (b) Drilling force
at a drilling speed of 20 m/min.

(2) Drilling temperature comparison

In the process of drilling, the maximum temperature of the drilling area was recorded
through an infrared thermal imager, and then the maximum temperature under different
working conditions was compared and analyzed. The temperature of the main cutting
edge when the drill bit and the workpiece interacted violently could not be measured by
the thermal imager, but the cutting heat was usually taken out by the chips. Too-high heat
could even make the bit turn red. Therefore, the comparison of the trend of the drilling
temperature detected under the same experimental conditions was quite significant.

Figure 7 shows the comparison of the drilling temperature of CrAlYN coated and
uncoated YG10 bit in the two working conditions. Obviously, at lower rotational speeds,
the drilling temperature of the coated bit was stable and more than 15% lower than that
of the uncoated bit. At higher rotational speeds, the drilling temperature of the coated bit
was more than 20% lower than that of the uncoated bit in the initial drilling phase, but
the temperature increase was significantly greater than that of the uncoated bit in the later
drilling phase, and the drilling temperature was similar to that of the uncoated bit when
the bit failed. On the one hand, CrAlYN coating had a smaller friction coefficient, so the
coated bit friction, drilling force, and heat generation. On the other hand, CrAlYN coating
had low thermal conductivity, so less heat was transferred to the tool body, making the
temperature rise slowly and delaying the tool damage, thus prolonging the service life.
The higher the drilling speed was, the more heat was generated; the insulation effect of the
coating reduced the heat entering the tool. In addition, the nickel-based superalloy had
poor thermal conductivity, resulting in more concentrated heat, faster temperature increase,
and serious bonding.

3.3. Bit Wear Morphology

Figure 8 shows the morphology of the main rear tool surface of the bit observed under
the tool microscope. The main cutting edge of the uncoated bit is worn and broken seriously
in Figure 8c. Compared with the uncoated bit, bonding was clearly displayed at the coated
bit, and the sticking substance looked yellow at higher drilling speed (the red circle in
Figure 8d), indicating that the drilling temperature increased significantly with the increase
in drilling speed.
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Figure 7. Comparison of drilling temperatures between uncoated and coated bits (drilling depth of
6 mm and drilling feed rate of 0.04 mm/r). (a) Drilling temperatures at a drilling speed of 15 m/min.
(b) Drilling temperatures at a drilling speed of 20 m/min.

Figures 9 and 10 show the wear morphology of the main rear tool surface of the
uncoated bit and CrAlYN coated bit photoed by SCANNING electron microscope (SEM).
As shown in Figure 9, the contact between the main drilling edge and the auxiliary drilling
edge of the bit was severely worn or even broken because the outer edge of the main
drilling edge had the highest linear velocity and the largest extrusion pressure.
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Figure 8. Bit failure wear morphology. (a) Uncoated bit at drilling speed of 15 m/min. (b) Coated
bit at drilling speed of 15 m/min. (c) Uncoated bit at drilling speed of 20 m/min. (d) Coated bit at
drilling speed of 20 m/min.

Figure 9. Crack in back of uncoated drill.
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Figure 10. Wear morphology of rear edge of main cutting edge of coated drill.

As shown in Figure 10, CrAlYN coated bits had longer service life, but the wear zone
behind the tool surface was smaller than that of uncoated bits, and the edge of the wear
zone was continuous and neat. Although the wear zone was removed due to severe wear
during the drilling, the coating in other areas still protected the bit base. Thus, CrAlYN
coating had good bonding with the bit matrix, and strong oxidation resistance could slow
down the diffusion of oxygen atoms in the coating caused by temperature rise in the process
of friction and wear. It slowed down the oxidation of the coating and matrix materials,
prevented premature oxidation cracking, realized oxidation inhibition, wear resistance, and
heat insulation, and thus effectively improved the cutting performance of CrAlYN coated
bits and prolonged tool life.

A serious bonding phenomenon was seen at the main rear tool surface of the uncoated
bit in Figure 9. In the metal drilling process, continuous chips flowed through the main
cutting edge and had friction on the contact surface. At the same time, under the action of
drilling heat, the hardness of workpiece material at the contact area decreased, resulting
in plastic deformation and element diffusion of drill and chip. In the end, the tool and
chip were closely bound, causing “retention”. At the end of one drilling, the temperature
dropped, the chips were bonded to the drilling edge, and plastic deformation occurred
again when drilling again. Therefore, the cracks on the main rear edge of the uncoated bit
were bonded, layered by layered, and irregular. By comparison, the main drilling edge of
the CrAlYN coating bit was more slightly bonded, but there were also lumps (see the red
circle in Figure 10).

Figure 11 shows the energy spectrum analysis of the wear zone of the main rear tool
surface of the uncoated bit and the CrAlYN coated bit, respectively. The Ni, Fe, and Cr
elements were obviously high, indicating that the workpiece material was bonded on the
main rear tool surface. Combined with the analysis in Figure 9, it can be seen that bonding
wear is the main failure mode of cemented carbide bit drilling nickel-based superalloy.
Compared with uncoated bits, the wear zone coating of CrAlYN coated bits was damaged,
and the carbide matrix was exposed, but the wear zone was obviously smaller than that of
uncoated bits. When the tool life of CrAlYN coated bit is much longer than that of uncoated
bit, the Ni, Fe, and Cr elements in the wear zone of CrAlYN coated bits were slightly lower
than that of uncoated bits. CrAlYN coated bits could retard tool wear and prolong tool
service life.
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Figure 11. Energy spectrum analysis of the wear zone of drill rear drill surface. (a) Main rear
tool surface of the uncoated bit. (b) Main rear tool surface of the CrAlYN coated bit (c) Element
composition list of uncoated bit rear tool face. (d) Element composition list of coated bit rear tool face.

Figure 12 shows the wear morphology of CrAlYN coating on the front surface of the
bit. As seen from it, Ni, Fe, and Cr elements in the red box in Figure 12a have a significantly
high proportion. The plastic deformation layer at the face of the chip slowed down. When
the slowness and pressure increased to a certain extent, the underlying chip and tool front
surface bonded, called the bonded area of coated bit front surface. Moreover, the Co and W
contents in the red box in Figure 12b were high because the chip flow and extrusion took
away the bond, and the coating fell off, called the coating falling off area on the front tool
of the coated bit.

It can be seen that the failure of CrAlYN coated carbide bits was mainly caused by the
bonding wear of the rear and front tool surfaces. The coating protected the carbide bit base
and improved the bit service life, but once the coating fell off, the bonding increased, and
its failure was similar to that of uncoated carbide bits.

3.4. The Machined Surface Quality

The inner surface roughness Ra of all holes was measured by the TR200 surface
roughness meter, and the average value was calculated, as shown in Figure 13. Under
different drilling speeds, the inner surface roughness of the coated bit was more than 25%
lower than that of the uncoated carbide bit because CrAlYN coated bits had a flat, smooth
surface that had less friction and had slightly higher machining quality than uncoated
bits. At low-speed working conditions, the machined surface roughness was slightly lower.
Because of lower drilling temperature, longer tool service life, and the processing quality
was slightly higher than that at the high-speed working condition.
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Figure 12. Adhesive wear EDS on the front edge of coated drill. (a) Bonded area on the front surface
of the CrAlYN coated bit. (b) Coating falling off area on the front surface of the CrAlYN coated bit.
(c) Element composition list in the figure. (d) Element composition list in the figure.

Figure 13. Inner surface roughness Ra.

4. Conclusions

In this paper, the orthogonal test was conducted on the carbide bit YG10 dry drilling
nickel-based superalloy to analyze the primary and secondary factors influencing the
bit service life, drilling forces, and drilling temperature under dry drilling conditions.
Secondly, under the selected working conditions, the self-made CrAlYN coated carbide
bit and uncoated carbide bit were compared and analyzed from perspectives of bit service
life, drilling forces, drilling temperature, bit surface topography, failure mechanism, and
machined surface quality. The wear morphology and machined surface quality of the
CrAlYN coated carbide bit and uncoated carbide bit were compared. Finally, the following
conclusions were reached:
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(1) In the dry drilling condition, the primary factor influencing the dry drilling of nickel-
based superalloy of carbide bit is the drilling depth, which is mainly reflected by the
drilling temperature. At the drilling speed of 15 m/min, the bit has a longer service
life, lower drilling temperature, smaller drilling force, and more stable drilling state;

(2) At lower rotation speeds, the CrAlYN coating can protect the carbide bit matrix and
significantly prolongs the bit service life. To be specific, it can prolong the bit service
life by 250% at a drilling speed of 15 m/min and 50% at a drilling speed of 20 m/min;

(3) CrAlYN coating can reduce drilling forces and drilling temperature, retard the forma-
tion and propagation of surface cracks, delay tool wear, and improve the quality of a
machined surface;

(4) The failure mode of coated cemented carbide bit is similar to that of the uncoated
cemented carbide bit after the CrAlYN coating falls off in the wear zone of the carbide
bit, which is mainly bonding wear on the rear tool surface and the front tool surface.
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