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This study was aimed at two image segmentation methods of three-dimensional (3D) U-shaped network (U-Net) and multilevel
boundary sensing residual U-shaped network (RUNet) and their application values on the auxiliary diagnosis of lung cancer. In
this study, on the basis of the 3D U-Net segmentation method, the multilevel boundary sensing RUNet was worked out after
optimization. 92 patients with lung cancer were selected, and their clinical data were counted; meanwhile, the lung nodule
detection was performed to obtain the segmentation effect under 3D U-Net. The accuracy of 3D U-Net and multilevel
boundary sensing RUNet was compared on lung magnetic resonance imaging (MRI) after lung nodule segmentation. Patients
with benign lung tumors were taken as controls; the blood immune biochemical indicators progastrin-releasing peptide (pro-
CRP), carcinoembryonic antigen (CEA), and neuron-specific enolase (NSE) in patients with malignant lung tumors were
analyzed. It was found that the accuracy, sensitivity, and specificity were all greater than 90% under the algorithm-based MRI
of benign and malignant tumor patients. Based on the imaging signs for the MRI image of lung nodules, the segmentation
effect of the RUNet was clearer than that of the 3D U-Net. In addition, serum levels of pro-CRP, NSE, and CAE in patients
with benign lung tumors were 28.9 pg/mL, 12.5 ng/mL, and 10.8 ng/mL, respectively, which were lower than 175.6 pg/mL,
33.6 ng/mL, and 31.9 ng/mL in patients with malignant lung tumors significantly (P < 0:05). Thus, the RUNet image
segmentation method was better than the 3D U-Net. The pro-CRP, CEA, and NSE could be used as diagnostic indicators for
malignant lung tumors.

1. Introduction

Primary bronchial lung cancer is referred to lung cancer for
short, which is the malignant tumor with the highest mortal-
ity in China and in the world. In recent years, with the
increase in smokers and the release of harmful gases, the
air pollution has been worsening, and both the incidence
and mortality of lung cancer have an obvious increasing
trend, which seriously influences human health and life.
Since 2003, China has promulgated a number of clinical
standards for the diagnosis and treatment of tumors, includ-
ing the Chinese Guidelines for Diagnosis and Treatment of
Primary Lung Cancer by the Ministry of Health and the Chi-
nese Version of National Comprehensive Cancer Network
[1–3]. Many researchers have proven that the survival rate

of lung cancer patients can be promoted under guideline-
based treatment. However, the prognosis of lung cancer
patients is still very poor at present. For the high malig-
nancy, relatively difficult treatment, and rapid metastasis,
the metastasis of lung cancer has occurred locally or system-
ically of a considerable part of patients at the time of diagno-
sis. Generally speaking, the treatment principle of lung
cancer is in accordance with multidisciplinary integration
treatment and individualized treatment. Common treatment
methods in modern medicine include surgery, radiotherapy,
chemotherapy, and vaccination [4]. With the continuous
update of chemotherapy and radiotherapy protocols and
the popularization of new targeted therapies, it is necessary
to predict and evaluate the treatment effects of terminal
non-small-cell lung cancer (NSCLC). Thereby, the
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individualized treatment plan can be adjusted as soon as
possible to avoid delays by improper treatment, and the
prognosis of patients can be improved to the maximum
extent [5, 6].

In recent years, magnetic resonance imaging (MRI) tech-
nology has made great progress, such as the high-efficiency
gradient imaging technique and parallel imaging technique
[7]. The success of these technologies has greatly promoted
the application of various lung imaging technologies in clin-
ical diagnosis and treatment. Compared with computed
tomography (CT) and positron emission tomography-
(PET-) CT, MRI scanning does not have any radioactivity
and is therefore safer for patients [8]. The paramagnetic con-
trast agents that can shorten the time of echo (TE) have been
introduced, which enhances the magnetic resonance signal
while reducing the susceptibility effect near the cross-area
organizational interface [9]. Dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) can extract a vari-
ety of quantitative parameters from the time-intensity curve
[10]. These parameters have been proven in numerous clin-
ical studies to be surrogate indicators of tumor diffusion,
blood flow, microvessel density, and capillary permeability
[11]. Semiquantitative DCE-MRI parameters, like time to
peak, maximum enhancement ratio, A, B, C, and D time-
intensity signal curves, and pharmacokinetic parameters,
have shown the potential to differentiate lung lesions [12].
Studies have shown that DCE-MRI can achieve a diagnostic
accuracy of 69-92%, which is comparable to dynamic
enhanced CT and PET/CT, but MRI can achieve a higher
specificity [13].

Among many machine learning methods, deep learning
is derived from neural networks. It is a new higher-
performance technology, and its representation of data is
often based on learning the combination of low-level fea-
tures, which is to interpret data through cortex learning
inspired by human vision [14–16]. Deep learning models
are divided into deep neural network (DNN) models and
nonneural network models. DNN models mainly include
convolutional neural network, self-encoding, recurrent neu-
ral network, etc., and gain remarkable achievements in the
fields of computer vision and speech recognition [17, 18].
The image segmentation technologies of three-dimensional
(3D) U-shaped network (U-Net) and multilevel boundary
sensing residual U-shaped network (RUNet) were applied
in this study for lung image segmentation of MRI, and the
segmentation results were compared. More methods for
cancer diagnosis and examination were provided, and the
labor for manual segmentation was saved, which helped to
focus on the lesions. Therefore, the application value of
MRI image data under the convolutional neural network
was discussed in the auxiliary diagnosis of lung cancer, so
as to give a theoretical basis and the clinical data for further
researches.

2. Methodology

2.1. Objects of the Study. In this study, 403 patients with lung
nodules or masses were chosen, who underwent thoracic
MRI examinations and were diagnosed in the hospital from

January 2019 to September 2021. Among these patients,
some of them were then excluded, including 86 mild cases,
17 cases with lung cancer, 11 cases with cellular lymphoe-
pithelioma, 2 cases with lymphoma, 3 cases with mucoepi-
dermoid carcinoma, 43 cases with squamous cell
carcinoma, 6 cases with unclear pathological diagnosis, and
7 cases with unqualified MRI images. All patients in this
study or their authorized families signed the informed con-
sent, and this study had been approved by the medical ethics
committee of hospital.

Inclusion criteria were as follows: patients were supposed
to be diagnosed with solid lesions occupying the lung space,
and the largest diameter of the lesions was ≥10mm without
the treatment of radiotherapy or chemotherapy. The
patients had no cerebral tissue disease and no history of seri-
ous physical trauma (mainly referring to the trauma in the
parts directly connected to the nerves, like the spine). The
patients had no contraindication to MRI scanning and could
cooperate to complete the routine procedure of thoracic
MRI scanning. After MRI, surgical resection, and puncture
or biopsy, they were not diagnosed with ecological gene can-
cer through a simple bronchofiberscope examination.
Finally, they had the unbroken relevant clinical data.

Exclusion criteria were as follows: patients had contrain-
dications to MRI examination, such as pacemakers, heart
valves, aneurysm clips, and metal or other unattached
implants. The patients had poor qualitied scanning images
with obvious respiratory motion artifacts or magnetic sus-
ceptibility artifacts. The patients had other pathologies of
primary cancer and severe heart, lung, liver, and kidney dys-
functions, and those were or were suspected of being preg-
nant or breastfeeding.

2.2. Image Segmentation Algorithm under 3D U-Net. The
segmentation network generally needed to be connected to
a two-classification network for the determination whether
the detected lesion was a real lesion. Classification networks
such as Visual Geometry Group 3D, residual network 3D,
and Inception 3D were available, with their own advantages.
The fully connected Visual Geometry Group layer network
solved the issue of gradient disappearance and network deg-
radation through regularization and 3 × 3 × 3 convolution,
while residual network shortcut connection could also han-
dle this. The Inception had several filters of different sizes,
which reduced the number of tuning parameters required
by the network. The specific process of cerebral tissue image
segmentation based on the 3D U-Net algorithm is shown in
Figure 1.

The U-Net segmentation method is one of the back-
bones of the medical image segmentation algorithm. The
low-level functions and high-level semantic information
were fused through the algorithm, and the multiscale infor-
mation could be better used. These advantages came from
its structure of the encoder and decoder and its connection
through layer skipping. The original loss function used in
this structure was the pixel-level cross-entropy loss function,
which could sort each pixel value in the image. Since the
pixel sample imbalance was often encountered when seg-
menting medical CT images, sometimes the loss used
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included Dice loss, weight cross entropy, and so on. The
most commonly used Dice loss is expressed as

Dice =
2 Y1 ∩ Y2j j
Y1j j + Y2j j , ð1Þ

Loss = 1 −Dice: ð2Þ
To deal with the pixel sample imbalance, the generalized

Dice loss function was set and defined as

GDL = 1 − 2
∑2

m=1wm∑nbmnqmn

∑2
m=1wm∑nbmn+qmn

: ð3Þ

bmn represented the real value of the l-st category at the
n-th pixel, qmn was the predicted value, and wm was the
weight of each category. Then, the weight wm was described
as

wm =
1

∑n
m=1bmnð Þ2

: ð4Þ

In addition to the loss, the loss of sensitivity and specific-
ity was computed as

Sensitivity =
AB

AB + EF
, ð5Þ

Specificity =
AF

AF + EB
, ð6Þ

Loss = α
∑n

m=1 bn − qnð Þ2
∑n

m=1bn + β
+ 1 − αð Þ ∑n

m=1 bn − qnð Þ2
∑n

m=1 1 − bnð Þ + β
:

ð7Þ
AB in equation (5) meant the test result was a real sam-

ple, and in fact, it was a real sample; EF meant the test result
was a negative sample, and it was a negative sample actually.
EB in equation (6) meant the test result was a real sample,
but it was actually a negative sample; AF meant the test
result was a negative sample, but it was a formal sample in
fact. α balanced the sensitivity and specificity, and β was
used to handle the situation where certain data was empty
and the divisor was 0, bn was the true value, and qn was
the predicted value.

For the unbalanced samples, focal loss could also be
used. It was expressed as

Dmi = log x, x1 = 1ð Þ: ð8Þ

2.3. RUNet Segmentation Algorithm under Multilevel
Boundary Sensing. RUNet is a part of the segmentation net-
work based on the U-Net structure. The difference from U-
Net was that it adopted the method of adding feature layer
elements on the symmetric oversampling layer, which
restored the spatial information of original image as much
as possible during the upsampling process. The residual idea
was also applied on certain hierarchical blocks. The feature
layer of the input layer after the strategy convolution calcu-
lation was computed by adding the first and last feature
maps, which improved the computational efficiency of back-
propagation. The local information and deep global infor-
mation were combined, as the residual network elements
were added. The characteristic equation of the residual cal-
culation process was described as

FM = X + F Xð Þ: ð9Þ

There was the same feature channel for each feature
extraction layer, and the size of the convolution kernel was
set as 3 × 3. After each convolutional layer, batch normaliza-
tion and regularization were performed to optimize the
parameters, and finally, the performance of the model was
improved. The second part of the boundary detection net-
work was used for the learning and calculation of the bound-
ary between the tumor and the surrounding tissues. Then,
the softmax function was used for the probability value of
the boundary Release. Finally, the last end-to-end segmenta-
tion of the network target area and the boundary detection
targets was carried out, and the boundary constraint func-
tion was introduced into the loss function, so that the net-
work can be constrained.

L xi, yi, zi, f ,w, α, βð Þ
= α × Lossseg + β × Loss

= α × β ×〠 zilog źi
� �

Ni = 1 + 1 − zið Þ log 1 − zið Þ
h i

:

ð10Þ

In equation (10), xi ∈ Rh × l represented the prostate
image; yi, zi ∈ Rh × l represented the segmentation predic-
tion label and actual label of the prostate image, respectively;
h was the height and width of the image, which represented
the hyperparameters used to balance the weight of the loss
function; and N was the total number of the samples, which
was the parameter of the model to be solved.

The similarity coefficients in the segmentation were used
to evaluate the difference between the predicted segmenta-
tion and the actual segmentation. The limitation was real-
ized through the cross-entropy calculation. The specific
process of image segmentation is shown in Figure 2.

Input:data Convolution Pooling 

Fully
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Figure 1: The flowchart of the 3D U-Net image segmentation
algorithm.
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2.4. MRI Scanning Protocols. 1.5 T MR scanners were used.
The coils were the 8-channel cardiac array coils, with elec-
trocardiogram triggering as well as respiration compensa-
tion during smooth respiration. Precontrast MRI scanning
included T1-weighted and T2-weighted imaging in the
transverse plane. The pulse-gated T1-weighted fast spin echo
images (time of repetition ðTRÞ/TE = 800ms/8ms; matrix:
320 × 160) and respiratory-gated T2-weighted fast spin echo
images (TR/TE = 7100‐9236ms/90‐110ms; matrix: 320 ×
224) were acquired within a range of 41 cm in both length
and width. The acquired slice thickness was 5mm, and the
slice interval was 1mm. The scanning area covered that
from the thoracic inlet to the adrenal glands.

2.5. Lesion Segmentation. Ubuntu16.04 was used as the pro-
gram running environment, python was the programming
language, and keras was the deep learning framework. Sim-
pleITK and PyDicom were installed, which were for the read-
ing of mhd and dicom files, respectively, and then, these files
were converted into npy format files to facilitate training.

With the images of the RUNet and 3D U-Net, the open-
source ITK-SNAP software was operated for manual drawing
and segmentation of the lesion layer by layer as well as the
placement of the region of interest along the edge of the
lesion. The selected area included the entire tumor without
the visible air area. The region of interest in the lesion was
manually segmented by two doctors with 5 years or more
experience, and the unified results of the two were picked.

2.6. Observation Indicators and Standards. The general data
and the imaging sign indicators of 92 patients with lung can-
cer were counted, and the imaging signs included the lobe
where the tumor was located, the largest diameter of the
tumor, the lobulation, the spiculation, and the pleural
depression. With the benign tumor patients taken as the
control group (n = 10), blood samples were collected from
the patients in two groups. After the serum was separated,
the progastrin-releasing peptide (pro-CRP), neuron-specific
enolase (NSE), and carcinoembryonic antigen (CEA) in the
serum were detected by the enzyme-linked immunosorbent
assay.

2.7. Statistical Analysis. SPSS Statistics 25.0 was used for the
analysis of the clinical data and MRI imaging signs of the 92
patients. The enumeration data was expressed by frequency,
the measurement data was expressed by the average value,

and the difference comparison was analyzed through the
independent sample t-test. It was considered to be statisti-
cally significant as P < 0:05.

3. Results

3.1. Results of the 3D U-Net Segmentation Algorithm. The
LKDS and Luna16 lung nodule detection data sets were uti-
lized for model training, and the acquired MRI images of
lung cancer patients were used to verify the model. Accord-
ing to the detection probability worked out by the algorithm,
the average FROC value can be calculated. When segment-
ing the images of lung nodules, different results would be
obtained as the different loss function networks were
applied. Focal loss was applied to segment lung nodule
images at last. Compared with focal loss, Dice loss was not
easy to converge. The average value of Dice in the final seg-
mentation was 0.62.

3.2. Comparison Results of MRI Lung Nodule Segmentation
Algorithms. For the original lung MRI images, the lung nod-
ule areas were segmented under the 3D U-Net and the mul-
tilevel boundary sensing RUNet optimized in this study (the
red area in Figure 3). The segmented images are shown in
Figure 3. It could be observed that the optimized multilevel
boundary sensing RUNet had a better performance to seg-
ment different lung nodules from the lung MRI image more
clearly and completely.

3.3. Evaluation of Image Segmentation Results. Quantitative
analysis and comparison were carried out for the evaluation
indicators including true positive (TP), false positive (FP),
false negative (FN), Jaccard similarity (JS), accuracy, sensi-
tivity, and specificity. These quantitative statistical indicators
of benign and malignant tumors were compared and ana-
lyzed, as shown in Figures 4 and 5. From these quantitative
indicators, both the two segmentation algorithms had good
segmentation performance. The RUNet model had a TP of
81 and a JS of 79% for diagnosis of benign tumors, as well
as a TP of 82 and a JS of 79.5% for diagnosing malignant
tumors; the specificity and sensitivity were better than those
of the 3D U-Net model.

3.4. Test Results of Biochemical Indicators of Lung Cancer
Patients. The differences of pro-CRP, NSE, and CAE in
serum between benign and malignant lung cancer patients
are shown in Figure 6. It was observed that the pro-CRP,
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Figure 2: Flowchart of the multilevel boundary sensing RUNet segmentation algorithm.
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(a) (b)

(c) (d)

Figure 3: (a) The original lung MRI image. (b) The segmented image of the lung nodules under the 3D U-Net. (c, d) The lung nodule
segmented images under the multilevel boundary sensing RUNet, after the first and secondary segmentations, respectively.
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Figure 4: Results of true positive, false positive, false negative, and Jaccard similarity of benign and malignant tumors.
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Figure 5: Results of accuracy, sensitivity, and specificity of benign and malignant tumors.
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NSE, and CAE in the serum of patients with malignant lung
tumors were 175.6 pg/mL, 33.6 ng/mL, and 31.9 ng/mL,
respectively, while those of patients with benign lung tumors
were 28.9 pg/mL, 12.5 ng/mL, and 10.8 ng/mL, respectively.
After comparison, it was found that serum levels of pro-
CRP, NSE, and CAE of patients with malignant lung tumors
were significantly higher than those of patients with benign
lung tumors (P < 0:05).

4. Discussion

There are still many shortcomings in the U-Net model; for
example, the extraction effect of boundary edges in medical
image segmentation is particularly unsatisfactory. To deal
with the shortcomings of the U-Net, the multilevel boundary
sensing RUNet model was proposed. The network structure
in the RUNet was composed of the segmentation network
based on the U-Net structure and the network multilevel
boundary detection. End-to-end training and learning were
supplemented into the same network structure, as segmenta-
tion and boundary positioning were realized [19, 20]. The
jumper connection strategy is widely used in U-Net, residual
net, and dense net. By this method, not only was the infor-
mation conversion cross layer between networks improved
but also more spatial image information was restored during
the oversampling process. Thereby, the network gradient
disappearance was solved, and a deeper network structure
was achieved [21, 22]. Thus, the residual jumper connection
method was applied for gradient disappearance caused by
too deep network layers. In the lesion identification in MRI
images of lung cancer patients under deep learning algo-
rithms, it was found that the diagnostic sensitivity of the
RUNet is significantly higher than that of the 3D U-Net,
but the recognition accuracy and specificity of 3D U-Net
are better than those of the RUNet. The difficulty of lung
contour segmentation was that there would be a great differ-
ence of the area ratio of two connected areas, as sometimes
there were two lungs in one connection area, but the second
connection area showed nothing when the images were
processed under the 3D U-Net.

MRI examination has a high clinical application value
for identifying benign and malignant lung lesions. MRI has
no ionizing radiation and can be repeated for several times
in a short period, with great safety. An inversion recovery
echo diffusion sequence is used. On the basis of the fact that
the background signals of the tissue (muscle, fat, liver, etc.)

are fully suppressed, the diffusion-weighted contrast
between the lesion area and the surrounding tissue is more
prominent. Thereby, the ability to distinguish the tumor tis-
sue from the surrounding tissue is improved. While the
RUNet was used in 5lung MRI image processing, cross-
multilevel boundary could be perceived more clearly, and it
was easier to distinguish two connected areas. Therefore,
the RUNet was more convenient and efficient in multilevel
boundary detection.

In addition to imaging data, serum-oncologic indicators
are often used in the diagnosis of cancer. Both pro-CRP and
CEA are autonomous growth factors for the treatment of
small-cell lung cancer [23]. Studies have shown that the
expression level of CEA in the digestive tract, breast, lung,
and other tissues of patients with malignant tumors is signif-
icantly increased [24]. NSE is a type of glycoprotein mainly
in nerve tissues. It has been often used in the diagnosis of
tumors, and some studies suggest that the expression level
of NSE in lung cancer patients is 10 times that of normal tis-
sues [25]. In this study, the pro-CRP, CEA, and NSE in the
serum of patients with malignant and benign tumors were
detected and compared. The results demonstrated that all
the levels of pro-CRP, CEA, and NSE in malignant lung
tumor patients increased significantly, which suggested that
these indicators can be used as biochemical indicators for
the diagnosis of malignant lung tumors.

5. Conclusion

This study was made to explore the application value of the
3D U-Net and multilevel boundary sensing RUNet segmen-
tation methods in auxiliary diagnosis of lung cancer with
lung MRI image data. The results showed that the multilevel
boundary sensing RUNet gained a clearer image effect than
the 3D U-Net for MRI image segmentation of lung nodules.
Besides, the blood immune biochemical indicators of pro-
CRP, CEA, and NSE were significantly higher in malignant
lung tumor patients. This study was single-centered, the
sample size was small, and there was no external verification
of the model, all of which were the shortcomings. In the fur-
ther studies in the future, multicenter trials with larger sam-
ple size should be carried out and verified. As the samples
will increase, the clarity of lung MRI images under the two
segmentation methods will also be compared further in
depth, so that the research foundation and clinical data for
the diagnosis of lung cancer would be enriched.
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